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STOPPING A SUM DURING A SUCCESS RUN!

By Taomas S. FERGUSON
University of California, Los Angeles

Let {Z;} be i.i.d., let {&} be i.i.d. Bernoulli, independent of {Z;}, let
Ty = zand Ty = eu(Tn-1 + Zy) for n = 1. Under a moment condition, op-
timal stopping rules are found for stopping T, — nc where ¢ > 0 (the cost
model), and for stopping $» T, where 0 < 8 <1 (the discount model). Special
cases are treated in detail. The cost model generalizes results of N. Starr,
and the discount model generalizes results of Dubins and Teicher.

1. Introduction and summary. Let Z, Z,, Z,, - - - be independent identically
distributed (i.i.d.) random variables with known distribution. Let ¢, ¢, ¢,, - -
be i.i.d. Bernoulli random variables, independent of Z,, Z,, . .. with probability
p of success, p=Ple=1)=1—Plc=0), 0 < p< 1. Ina given economic
system, Z, represents your return for the ith time period provided there is a
success during the ith period, that is provided ¢, = 1. As long as successes occur
consecutively, your returns accumulate, but when there is a failure your ac-
cumulated return drops to zero. A failure does not remove you from the system;
you are allowed to accumulate future returns until the next failure drops you
to zero again, and so on. The problem is to choose a time to stop, that is to
withdraw from the system and be content with what you have accumulated.

Let z denote your initial accumulated return (a constant) and let 7', denote
your accumulated return at the end of the nth period, so that T, = z and

T,=¢Toy+2Z) n=12,....
We consider two models, the cost model and the discount model. In the cost

model there is a cost ¢ > 0 that represents the cost of living per period. If you
stop at the end of the nth period your net return is

1) X, =T, — nc.
In the discount model, there is a discount factor 8 by which capital is discounted

during each period, 0 < 8 < 1. If you stop at the end of the nth period, your
net return (or rather the present value thereof) is

(2) X, = T, .
The problem is to choose a stopping rule, N, to maximize the expected net return,
EX,.

The general theory of stopping rule problems may be found in the excellent
book of Chow, Robbins, and Siegmund [1]. The problem may be described as
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follows. For given random variables V), Y,, - .- with known joint distribution,
and given measurable functions X, = f,(Y,, Y,, ---, Y, )n = 0,1, ..., and X, =
fo(Y1, Yy, - --), the problem is to choose an extended-valued stopping rule N to
maximize EX,. An extended-valued stopping rule N is a random variable with
values in {0, 1,2, ...} such that the event {N = n} is in the Borel field 5,
generated by Y,, ..., Y,, &, = (Y, ---, Y,). Thus the decision to stop at
time n is a function of Y;, - .-, Y, and does not depend on future observables
Y,.1» ---. The following theorem is known. (See, for example, Theorem 4.5’
of Chow, Robbins and Siegmund [1]. Substitution of the weaker hypothesis
limsupX, < X,, for their implicit assumption limsup X, = X, may be made
without difficulty.)

THEOREM 1. If Esup X, < oo and lim sup X, < X,, a.s., then the stopping rule
3) N* = min {n = 0: X, = ess supys, E{Xy| F,}}

n,
is optimal.

In this formula, the essential supremum is taken over all stopping rules N such
that N > na.s. The rule N* is the rule obtained by the principle of optimality
in dynamic programming.

In the application of this theorem to the stopping rule problems considered
here, we may take Y, = (Z;,¢) for i =1,2,.... To allow for randomized
stopping rules, we could take Y, = (Z,, ¢,;, U;) where {U,} arei.i.d. uniform (0, 1)
random variables. However, it is known from the general theory that there is
no gain in generality. We treat the initial fortune z as a parameter of the problem
and occasionally write our expectation symbol as E,, even though, strictly speak-
ing, it is the functions X, that depend on z rather than the distributions of the
random quantities X,,.

In Section 2, we treat the cost model where X, is related to the {Y,} by (1),
and X, = —oo. We assume that E(Z*)* < oo, and show that the hypotheses
of Theorem 1 are satisfied. The rule N* is evaluated and seen to have a very sim-
ple form, namely, N* = min{n = 0: T, = s} for some number s > —c/(1 — p).
This rule is stationary: one does not have to keep track of time or of all the
past history but only of the present accumulated return, T,. Formulae to aid
the computation of the optimal value of 's are given, and in some special cases
the details are worked out fairly explicitly—in the exponential case, where the
positive part of the distribution of Z is exponential, and in the geometric case,
where Z is integer-valued and the positive part of the distribution of Z is
geometric. This generalizes results of N. Starr [5] who treated the case Z
degenerated at 1. If Z is nonnegative and EZ < c¢/p, then the problem is mon-
otone (see Chow, Robbins and Siegmund [1]) and the one-stage look-ahead rule
is optimal.

In Section 3, the discounted model is treated wherein X, is related to the {Y.}
by (2) and X, = 0. We assume EZ* < oo, and show that the hypotheses of
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Theorem 1 are satisfied. The rule N* is seen to have the simple form N* =
min {n = 0: T, = s} for some number s > 0. Again, formulae to aid the com-
putation of the optimal s are given, and the exponential and geometric cases
are worked out in detail. In this section, the value p = 1 is allowed. When
p = 1, the problem reduces to that solved by Dubins and Teicher [2].

When p = 1, this problem is equivalent to the burglar problem mentioned by
G. Haggstrom [3]. In this problem, a burglar makes a sequence of burglaries
with i.i.d. yields Z,, Z,, - .. until he gets caught or decides to stop. Let {;} be
i.i.d. independent of {Z;}, with P{6, = 1} = 8 = 1 — P{d, = 0}, and let {5, = 0}
represent the event that the burglar gets caught during the ith job. It is assumed
that if the burglar is ever caught, his return is fixed at zero. The burglar’s
problem is to choose a stopping rule N to maximize E([]{' d;) 2. Z,;. Butsince
for any stopping rule N, the rule N’, which acts as N would if all ¢, = 1, has
the same expected return and is independent of {d;}, and

E(ITY 6 L Z, = K(IIY" 0)) I Z; = E{E((I1" 0:) 2% Z;[{Z;}: N'})
= E{g¥ 21" Zj},

this problem is equivalent to the discounted stopping of a sum problem of Dubins
and Teicher.

In the burglar problem, it is usually assumed that the Z; are nonnegative. In
addition to making the burglar interpretation of the model more “realistic,” this
assumption has the advantage of making the problem monotone, as Haggstrom
observes, so that the simple one-stage look-ahead rule is optimal.

The general discount model treated here has a similar interpretation: the {Z;}
represent the returns to the burglar, 1 — g represents the probability he is caught
during any burglary, reducing his return to zero permanently, and 1 — p repre-
sents the probability that the burglar himself is burglarized, reducing his return
to zero temporarily but allowing him to continue his occupation.

2. The cost model. Let {Z},{e,},0 < p < 1,2z,¢ >0, and {T,} be as defined
in Section 1, and consider the problem of finding a stopping rule N to maximize
EX, where X, is given by (1), and X, = —oco.

2.1. Form of the optimal rule. We assume that E(Z*)? < oo and show that
under this assumption the hypotheses of Theorem 1 are satisfied.

We first show that E(Z+)? < oo is necessary and sufficient for Esup X, < co.
The proof of necessity, for which we are indebted to Thomas Liggett, uses the
following known results.

LemMma 1. LetZ,Z,,Z,, - .- bei.i.d. with EZ<O0, letc>0, andletS,= > 7 Z,.
Then E sup (S, — nc) < oo if and only if E(Z*)* < oo.

LEMMA 2. LetZ,Z,,Z,, - -- bei.i.d. and let ¢ > 0. Then Esup(Z, — nc) < oo
if and only if E(Z*)* < oo.

Proofs of these lemmas may be found in Chow, Robbins and Siegmund [1].
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Lemma 1 is contained in their Theorem 4.13. The proof of the “only if” part
of Lemma 2 may be found in their proof of Theorem 4.13 since in this part
their hypothesis that EX = 0 is not used. The direct half of Lemma 2 is con-
tained in their Lemma 4.7.

THEOREM 2. In order that E sup, (T, — nc) < oo, it is necessary and sufficient
that E(Z*)? < oo.

Proor. To simplify the computation, we put z = 0 and ¢ = 1. Sufficiency.
Note that T, has the distribution of P»%:» Z  where K is independent of the
{Z}and P(K = k) = (1 — p)p*, k =0,1,2, ... Therefore T, < Q., where Q,
has the distribution of Q = ¥ Z,*, and

Esup, (T, — n) = 25, P{sup, (T, — n) = x}

4 S Xy X P{T, —n =z x}

< v Zmeo P{@ = x 4+ 1}

= Yo (x+ HPQ = ¥ .
The last sum is finite since Q has a finite second moment:

EQ* = E{E(Q*|K)} = E{KE(Z*)* + K(K — 1)(EZ*)*} < oo .

Necessity. Let I(A) represent the indicator random variable of the event A4, and
note that sup, (T, — n) = sup, I(s, = 1, ¢,.; = 0)(Z, — n) which is equivalent
in distribution to sup, (Z, — K,), where K, = min{n = 1:¢, = 1, e,_, = 0} (let
¢ =0), and for j > 1 K; =min{n > K;_,: ¢, = 1,¢,, = 0}. Then K, — K,
K, — K,, - - - are i.i.d. with finite variance. Let # = E(K, — K,). Itissufficient
to show that Esup(Z, — K,) < co implies Esup (Z, — ¢'n) < oo for some ¢’ > 0
since then by the “only if” part of Lemma 2, E(Z,*)* < co. Butsup(Z, —c'n) =<
sup (Z, — K,) + sup (K, — ¢'n) and Esup (K, — ¢'n) < oo when ¢’ = 2p, say,
by Lemma 1. []

It is easy to see that lim X, = X, a.s. or, equivalently, that P(T, = nc + a
i.0.) = 0 for any real number a. For example, by the Borel-Cantelli lemma,
it is sufficient to show that 37, P(T, = nc 4+ a) < oo, and, with Q defined as in
the proof of Theorem 1, 3}, X(T, = nc + a) < 3. P(Q = nc + a) which is finite
since Q has a finite first moment. Therefore, the stopping rule N* of Theorem 1
is optimal. '

We now show that the rule N* has a very simple form. For this purpose, let
V*(z) denote the optimal return starting with initial fortune z,

V*(z) = supy E, Xy = E, Xy .
LEMMA 3. V* is convex and nondecreasing. There is a unique number s such that
zL<V¥2) s for z<s and
V¥(z) =z for z=s.
Furthermore, V*(z) =z —c/(1 — p) for all z.
(Note that s may be negative, but s > —c/(1 — p).)
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Proor. For a fixed rule N, E, X, = zP(N < K) + E; X, where K = min{k > 1:
¢, = 0}. Therefore, V*(z) is the supremum of linear affine functions with non-
negative slopes and so is convex and nondecreasing. Except for the stopping
rule N = 0, whose return is z, the slope of E,(Xy) is less than P(K > 1) = p.
(That we may restrict attention to nonrandomized stopping rules was mentioned
in the introduction.) Therefore for some s, V*(z) = z for z > s, and V*(z) > z
for z < 5. Finally, since the rule N’ = min {n > 1: ¢, = 0} has expected return
—cEN" = —¢/(1 — p), we have V*(z) = —c/(1 — p) for all z. []

If P(Z, < 0) = 1, then the rule N’ in the proof of Lemma 3 is optimal when
z £ —c/(l — p), and V*(z) = max (z, —c/(1 — p)).

LemMA 4. esssupys, E(Xy|-F,) = V*(T,) — nc a.s.

Proor. For fixed z, let N(z) be an optimal rule starting at z, and define
du(z, Yy, -+, Yy) = P(N(z) = k| .5,) where Y, = (Z,,¢;). The ¢, are not nec-

T

essarily measurable in z but for any 4 > 0 the functions ¢,/'(z, Yy, - -+, ¥,) =
25w liis i (2)Pu(j0, Yy, - - -, Y,) are measurable. Let N’ be the rule for
which P(N° =k | &) =0fork <n,and P(N° =k | 5 ) = ¢y _Tos Youips -+ +» Y3
fork>n LetT/ =joand T, = ¢, (Ti_, + Z,,,) for k > 1. Then N >n
andfork>nandj6 < T, < (j + 1)d, T, = T;_,, so that

E(YNalﬁn) = 2w I[ja,(j+1).s)(Tn) 2ii=n E{Xn ¢k—n(j5’ YVopis 05 Yk)lyn}
Z 25— ltis,iena(Tn)
X 2ien E{TY — k€)ion(jOs Yarss -+, Yi) | F} — ne
= 25w Iis 100 (TR)V*(j0) — ne
= 25w T, ava(T)(VH(T,) + 0) — ne (Lemma 3)
=V*T,) + 0 — nc a.s.
Therefore, ess supy,, E(Xy|-%,) = V*(T,) — nc a.s.
To prove the reverse inequality, we are to show for all N > n E(X, | & ,) <
V*(T,) — nc a.s. For a given rule N > n, let ¢k(Y1, <o, Y) = P(N=k| &),
and define ¢,/(Y,4s -+5 Voru) = Gpp(Yy o+, Yoo Youpy +++, Y,,,) for fixed

Y, ---, Y, Thenletting Ty =T, and for k > LT =¢(Tioy+ Z,,1), we
have

E(Xy| 7)) = Dieea E{(T, — ke)d(Ys, - - 5 Y| L)
= D E{(TY — k) (Yo =+ 5 Youa) | F ) — ne
< V¥T,) — nc a.s. 0

As an immediate consequence of these two lemmas, we have
THEOREM 3. The rule N* = min{n > 0: T, = s} is optimal.

2.2. Evaluation of the optimal rule. To evaluate the optimal value, s, let N,
denote the stopping rule N, = min{n = 0: T, > ¢}, and let V,(z) denote the
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expected return of this rule starting at z.
) Vi(z) = E(Ty, — cNy) .

The value of ¢ that maximizes V,(z) is equal to s provided z < s. Since s is
known to be at least —c/(1 — p), we may evaluate s as the value of ¢ that max-
imizes V,(—c/(1 — p)). The following theorem aids such an evaluation since it
reduces computations involving N, and T, to computations involving the joint
distribution of N/ and S, ,, where S, = 3¢ Z, (with Z, = z), and
N/ =min{n =0:§,=1.

(See also Lemma 7.) The distribution of N,” and S, has been studied at length
in the literature on statistical sequential analysis, and various techniques, in-
cluding Wald’s fundamental identity, are available for use in computations.

Since the trivial case P(Z < 0) =1 has s = —c¢/(1 — p), we assume that
P(Z > 0) > 0, so that P(N,/ = o) < 1 and Ep** > 0. If N/ = oo, then both
p'¢ and p¥¥'S, , are interpreted to be zero.

THEOREM 4. For t < z,V,(z) = z. Fort > z,

(6) Viz) = E.p¥'Sy, + (1 — E, p"")(V(0) — ¢/(1 — p)),
where
Ny _ Ny
(7) Vt(o) — EOP tSI c' —C 1 EOP ¢ .
E, p" (I — p)E, pt

Proor. Let K = min{k = 1:¢, = 0}. Then
(8) Vi2) = E{Ty, — cN}
= E{I(N/ < K)(Sy, — eN/)} + E{I(N/ = k)(Ty, — cN,)}
where I(A) represents the indicator random variable of the event 4. Since
P(K > n) = Y., (1 — p)p* = p*, the first term of (8) may be evaluated at
) E{I(N/ < K)(Sy, — cN/)} = E{(Sy,, — cN/)E{I(N, < K)|N/}}
= E{(Sy, — NP}

To evaluate the second term of (8), note that on {N, = K}, Ty, — cN, = f},t —
¢N, — cK, where Ty, =0 and for n > 1, T, = ey, (T, + Zy,.), and N, =

min{n = 0: T, = t}. Then since I(N,/ = K) depends only on X}, - .., X,_,, and
T;Vt — ¢N, depends only on X, X, - - -, they are conditionally independent

given K, and
E{I(N/ = K)(Ty, — cN,)}
= E{EJIN! = K)| K)E(T;, — N, — cK|K})
(10) = E{EJ(N! Z K)| K)(V(0) — cK))
= E{I(N; 2 K)(V.(0) — cK)}
= (1 — E, p")V,(0) — cE{I(N/ = K)K}.
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Now, since E{I(K < n)K} = S, (1 — p)p= = (1 — p)(dJdp) Xt p* = (1 —
np"(1 — p) — p")/(1 — p), we have
(1) E{N, =z K)K} = (1 — (1 = p)E{N/p"} — E, p™)/(1 — p) .
Combining (8), (9), (10) and (11) gives formula (6) for ¥,(z). Formula (7) may
be obtained by setting z = 0 in (6) and solving for ¥,(0). [J

In addition to evaluating s as the value of ¢ that maximizes V,(—c/(1 — p))

(or ¥,(0) if it is known that s > 0), one may derive the following equation and
solve for s as the root. First note that (6) may be rewritten as

(12)  Viz) = EopYi-s(Sy,_, + 2) + (I — Eop¥i=2)(V(0) — ¢/(1 — p)).
Weputt=s,andletd =5 —z > 0.

(13)  V*(s — 8) = E,pY (S, + 5 — 0) + (1 — Eyp*@)(V,(0) — ¢/(1 — p)).
Let

(14) N'"=min{n = 1: }7Z, > 0}.

As 9\, 0, N/ \/N", so that E,p"’' 7~ E,p"’. In addition, S, , — S, and
P’ Sy, is bounded by an integrable function: P Sy, =phiSE Sphe YV Zt <
2 p'ZT < ¥y p'Zit. Therefore taking the limit as 6 — 0 in (13) yields

s = E pY'(Syr + 8) + (1 = E;p"")(V(0) — ¢/(1 — p)).

Rearranging terms yields

(15) s = Eop" Sy

- W + Vs(o) - C/(l _P)
- 0

2.3. Special cases. In certain cases, equation (15) for s simplifies considerably.
We consider first the exponential case, in which the conditional distribution of
Zgiven Z > 0 is exponential. Specifically, we assume that F,(z) = (1 — a)G(z) +
aH(z), where G is a distribution function such that G(0) = 1, H(z) = (1 —
e=nI(0 < z),and 0 < @ < 1. Let S, = 37 Z,, and N” satisfy (14). It is well
known that the conditional distribution of S, given N” = n < oo is simply
exponential with distribution function H and with expectation . Similarly,
the conditional distribution of Sy, — t'given N/ =n < oo is H. Thus, from
(7) and (15)

— _ PEpY” 1 — EpY 1
s=LF b (pts)—c s :
1— Ep" (I —pEp™ 1—p

Rearrangement yields

(16) ¢ = £___,
(1 — p)Ep"s 1 — Ep"

Furthermore, the distribution of N,/ is the same as the distribution of
N/" 4+ ... + N,/ where M — 1 has a Poisson distribution with expectation s/,
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and given M, the variables N, ..., N,/* are i.i.d. with the distribution of N”’.
Hence, setting § = Ep"",

(17) EPNS' — EPNIII"'""“NM” — E™
— fe—s1-0/n
Thus (16) may be solved for s provided ¢ is known, yielding
s=_# gl —p0
1 —4¢ c(1 — 6)

Furthermore, 6 can be computed from knowledge of the Laplace transform
of G, ¢(r) = { €' dG(z), which exists at least for all # > 0. This may be done
using a method similar to that of Lemma 8 of Dubins and Teicher [2], as follows,

0 = Ep¥" = E{E{p""| Z,}
(18) = E{l(Z, = O)E{p"" | 2.} + I(Z, > O)p}
= (I — o)[{%, Ep**?-: dG(z) + pP(Z = 0)0] 4+ ap
= (1 — a)pbp((1 — 0)/z) + ap,
where we have used (17) in the last step. If for example, G is concentrated at
zero, so that ¢ = 1, then 6 = ap/(1 — (1 — a)p).

A second case in which (15) simplifies is the geometric case, where Z takes
on only integer values and the conditional distribution of Z given Z > 0 is
geometric. Specifically, the frequency function of Z is f,(z) = (1 — a)g(z) +
ah(z), where g is an arbitrary frequency function on {..., —1, 0}, A(z) =
(I —mztforz=1,2,...,0<7<1l,and 0 < a < 1. When = = 0, the
distribution of Z is termed elementary in Dubins and Teicher [2]. Analogous to
the exponential case, the distribution of S,., given N’ = n < oo is simply geo-
metric on {1, 2, ...} with parameter = and expectation 1/(1 — z). Furthermore,
for > 0, the distribution of Sy, — ([f] — 1) given N/ = n < oo is also this
geometric distribution. We use [x] to represent the smallest integer greater than
or equal to x. Hence, (15) simplifies to

c T+ 60—zl
(19) ;= + (s — 9
(I —pEp™ (1 —m)(1 —0)
where 6 = Ep"”. In addition, the distribution of N, is the same as the distribu-
tion of Ny’ 4 ... 4+ N,/ where M — 1 has a binomial distribution with sample
size [s] — 1 and probability of success 1 — = (most easily proved by induction
on [s]), and given M, the variables N,”, ..., N ' are i.i.d. with the distribution
of N”. Hence,
(20) EpNs' — EPNI"+---+NM" — Epn
=0(x + 6 — wO)=1-1,
Substitution into (19) yields

c . rs] 1 [s] — s
Ch gt =T T
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Given knowledge of ¢, this equation may be solved for s by first finding [s] as

— mi . _f\-n (1 —p)éo }

(22) [5] = min {n. (0 =m0y z g C
and then adjusting s to get equality in (21). It is easily seen that this method
leads to the unique solution of (21). If the initial value of z is an integer, then
the rule N, is identical to the rule Ny, so that the optimal rule is to stop at the
first n such that (7 + 6 - 70)~"» = (1 — p)f/(c(1 — =)(1 — 8)).

Analogous to (18), the value of # can be obtained from knowledge on the
generating function of g, M(r) = }9__. t7g(z), which exists at least for
0sr< 1.

0 = Ep"" = E{E{p"" | Z,}}
(23) = (1 — @) Tieee EP*Yiesg(z) + ap
=1 — a)pM(x 4 6 — =) + ap.

The value of @ is the unique root of this equation between zero and one.

The case of Z degenerate at 1, treated by Starr [5], is obtained from the
geometric case when a = 1 and 7 = 0. In this case, (23) gives § = p, and (22)
gives [s] = min {n: p**! < ¢}, which agrees with Starr’s formula.

A third case in which equation (15) for s simplifies is when P(Z = 0) = 1
and pEZ < c. In this case, N” = 1 and (15) is satisfied by s = (pEZ — ¢)/(1 —
p) < 0, since V,(0) = 0. In fact, in this case the stopping rule problem is mon-
otone and N* is the one-stage look-ahead rule. To compute the one-stage look-
ahead rule, you compare what you already have at stage n, say t — nc, with what
you expect to have if you continue just one stage and then stop, Ee(r 4+ Z) —
(n + 1)c. The one-stage look-ahead rule requires stopping if the former is larger
than the latter, which occurs if and only if t > (pEZ — ¢)/(1 — p). Here, we
continue only if our accumulated return is sufficiently negative; we stop when
our accumulated return finally exceeds (pEZ — ¢)/(1 — p), or when we experi-
ence our first failure (which should probably be called a success in this situation).

Among the problems discussed in this paper, the only other nontrivial situa-
tion for which the one-stage look-ahead rule is optimal, is the discount model
with P(Z = 0) = 1 and p = 1, as pointed out by Haggstrom.

Whenever P(Z = 0) = 1, the optimal rule for either model may be considered
as a one-stage look-ahead rule for the problem modified so that one is obliged
to stop at the first failure and receive ¥ ,(0), an idea due to Ross [4]. However,
the problem of computing s and V,(0) still remains.

The results for the cost model may be generalized by allowing the costs to
be random. Thus, we take Y, = (Z,, ¢;, C,) where C, are i.i.d. with EC, > 0,
and C, represents the cost during the ith period. We assume for simplicity that
{(Z,, C))} and {¢;} are independent. If both E(Z*)* < co and E(C-)* < oo,
then Esup, (T, — C™) < oo, where C™ = 37 C,. For Esup, (T, — C™) <
Esup, (T, — nc') 4+ Esup (nc’ — C™); the first term is finite for any ¢’ > 0 from
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Theorem 2, and the second term is finite if 0 < ¢ < EC, from Lemma 1. Since
under these conditions we also have lim (T, — C,) = — oo, N*is optimal. The
proof given that N* has the simple form of Theorem 3 still goes through, but
the evaluation of the optimal s is difficult in general. However, if one assumes
in addition that {Z;} and {C,} are independent, then the formulae of Sections 2.2
and 2.3 are valid as is, if ¢ is replaced by EC,.

3. The discount model. Let {Z},{¢,},0 < p<1,2,0< 8 < 1, and {T,} be
as defined in Section 1, and consider the problem of finding a stopping rule N to
maximize EX,, where X, is given by (2) and X, = 0. The development we give
parallels that of Section 2, so we give less details. Where the proofs are essen-
tially identical, they are omitted.

3.1. Form of the optimal rule. We assume EZ* < oo and show that the hy-
potheses of Theorem 1 are satisfied.

THEOREM 5. Esup 8T, < oo if and only if EZ* < oo.

PrOOF. (if) Esup 8*T, < EY¢ p*T,* < ¢ BE Y Z,F < 3¢ B'nEZ+ < oo.
(only if) sup BT, = B%Z,+ where K = min{k > 1:¢, = 1,¢,_;, = 0}. Since K
and {Z;} are independent, co > Esup T, = ES¥Z,+* = EBXEZ,*, completing
the proof since ES* > 0. [J

It is clear that limsup X, < X, a.s., since 8T, < 8" 317 Z;* — 0 a.s. There-

1

fore the stopping rule N*, of Theorem 1 is optimal. To evaluate the rule N¥,
we first find the form of V*(z) = sup, E, X,,.

LemMmA 5. V*(z) is convex, nondecreasing and nonnegative. There is a unique
number s = 0 such that

2 V¥2)£s for z<s and
V¥(z) =z for z=s.

The proof is omitted.

LEMMA 6. esssupy,, E(Xy|.Z,) = B"V*(T,) a.s.
The proof is omitted.

THEOREM 6. The rule N* = min{n = 0: T, = s} is optimal.
This follows immediately from Lemmas 5 and 6.

3.2. Evaluation of the optimal rule. To evaluate the optimal value of s, we
may compute V,(0) = E,f"T,, for the rule N, =min{n > 0: T, > 1. The
following lemma allows us to reduce computations involving the joint distribu-
tion of N, and T, to computations involving the joint distribution of N, and
Xy,» where S, = 37 Z, and N/ = min{n = 0: S, = 7}. Throughout this and
the following section, E represents E,, the expectation when z = 0.
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LemMMA 7. Let g be a measurable real-valued function of a real variable. If

EB™g(Ty,) exists and is finite, then
1 — pRYE(pB)**'g(Sy..
Ep¥ig(T,) = (I — PRE(PE)"'9(Sw, )N, .
(I = 8) + (I — p)BE(pH)™

Proor. To simplify the notation, we drop the subscript ¢ from N, and N/.
Let K=min{n = 1:¢, = 0}.

EBY9(Ty) = E{I(N' < K)BV'9(Sy) + I(K < N')B¥EB"g(Ty)}

= E{fV9(Sy)P(K > N'|N')} + E{E{I(K = N")B¥| N'}}EFg(Ty) .

Now P(K > n) = p*, and E{I(K < n)f} = (1 — p) Xt p*p*~' = (1 — p)A(1 —
(pA)")/(1 — pp). Hence

. 1 — .
EE0(T) = E(pp)"'0(Sw) + L 0% (0 — Bpdy" )BTy
If EfYg(Ty) is finite, it may be found from this equation, and the formula of
the lemma results. []

THEOREM 7.

_ (1 = pP)E(pP)"t'Sy,
V,(0) = —
(I = p) + (1 — pBE(pS)™

Proor. The lemma applies, since E|":T, | < ET}, < t + EZ*. []

A simple method to find s is to search for the value of  that maximizes ¥,(0).
Alternately, the following equation may be used. If we start at s, we are in-
different between stopping and continuing. The rule that uses N/ = min{n > 0:
2.1 Z; > 0} until the first failure and N, thereafter is also optimal at s. Hence,

s = E{I(K > N")B""(s + Sy.) + I(K < N")BEV,(0)}
where K =min{k = 1:¢, = 0}, which simplifies to
(24) § = E(PIB)N”SNA;:/ + 1 —-ps V,(0) .
(I —E(pp™) 1 —pb
When p = 1, this reduces to the Dubins-Teicher result. If P(Z < 0) = 1, then
s =0.

3.3. Special cases. First, consider the exponential case where F,(z) =
(I — @)G(z) + aH(z) with H(z) = (1 — e~##)[(0 < z), G(0) = 1,and 0 < a < 1.
The conditional distribution of S,,, given N”” and of Sy, — t given N,/ are both
H, so that (24) becomes

oo E@Bn (L= p)SE(E (s + )
L= EpB)” " (1= P) + (1 — p)BE(pB)™

Furthermore, similar to (17)

E(P‘B)Nal — 6e—a(l-—0)/p s
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where 6 denotes E(pB)"”. Hence,

5 = Ou + (1 —pbe e—su-0/p
Il—60 (A —-6)1-=0p

There exists a unique root to this equation that can be found by numerical
methods.
To compute ¢, one may use equation (19) with p replaced by pp, namely

0= (1 — a)ppbp((l — 0)/) + apB

where ¢ is the Laplace transform of G.
Next, consider the geometric case where f,(z) = (1 — a)g(z) + ah(z) with

h(z) = (1 — m)z*-*forz =1,2, -..,0 < 7 < 1, and g(z) an arbitrary frequency
function on {..., —1, 0}. The conditional distribution of S,,, given N”” and of
Sy, — ([f] — 1) given N,” are both £, so that (24) becomes
— g o (L= Pp)BEPE™([s] — 1 + 1/(1 — 7))
(I —m)(1 —0) (I =B + (1 — pBE(pH)™

where 0 = E(pB)""’. Also, from (20)

E(pB)Ys' = 0(0 + = — frm)ls1-1,
so that

[s] — (1 =P80 + (1 —p)Bol + = — Om)*
(I = o)1 — B — )
— (5] — 5 L= B + (=PI + = — Iryer
)

To solve this equation, first find the smallest integer [s] such that the left side
is nonnegative, and then adjust s on the right side to get equality.

If p =1, we obtain s = 6/((1 — 6)(1 — x)). If p =1, and = = 0, we obtain
s = 0/(1 — 0), the value obtained by Dubins and Teicher for the elementary
case.

Finally, to compute ¢, we may use equation (23) with p replaced by pg:

0 =1 — a)ppOM(x 4 0 — =0) 4 apB

where M is the generating function of g.

As in the paper of Dubins and Teicher, we may allow the discount factor g
to be random. That is, we may assume that {(Z,, 8,)} are i.i.d. independent of
{e.}, where §, represents the discount factor of the ith period, and 0 < 8, < 1.
The hypotheses of Theorem 1 are still valid for the returns X, = B™T, where
g™ represents []f 5;,. The optimal rule N* has the simple form of Theorem 6
but the evaluation of s is difficult in general. However, under the additional
assumption that {Z;} and {$,} are independent, the formulae of Sections 3.2 and
3.3 hold provided 8 is replaced by EB,.
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