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ROBUST M-ESTIMATORS OF MULTIVARIATE
LOCATION AND SCATTER

RICARDO ANTONIO MARONNA
Fundacion Bariloche

Let Xy, -+, X, be a sample from an m-variate distribution which is spher-
ically symmetric up to an affine transformation. This paper deals with the
robust estimation of the location vector t and scatter matrix V by means of
““M-estimators,’’ defined as solutions of the system: X; ui(ds)(x; — t) =0
and n! 3 us(di?)(xs — t)(x; — t) =V, where d;2 = (x; — t)/V-1(x; — t).

Existence and uniqueness of solutions of this system are proved under
general assumptions about the functions «; and u,. Then the estimators are
shown to be consistent and asymptotically normal. The breakdown bound
and the influence function are calculated, showing some weaknesses of the
estimates for high dimensionality. An algorithm for the numerical calcu-
lation of the estimators is described. Finally, numerical values of asymp-
totic variances, and Monte Carlo small-sample results are exhibited.

1. Introduction. There are several situations in multivariate analysis in which
it is desirable to obtain robust affine-invariant estimates of (some substitutes for)
the vector of means and of some scalar multiple of the covariance matrix. More
precisely, let x,, - - -, x,, be a sample from an m-variate density f of the form
f(x) = (det V)~}h[(x — t)’V~!(x — t)], where A(|x|) is a density in R™ (|| stands
for Euclidean norm). Then it is desired to estimate the location vector t and
scatter matrix V, assuming that % is only approximately known.

The most obvious case arises when one is mainly interested in location, and
the simultaneous estimation of scatter is simply an auxiliary device to obtain
affine-invariant estimates, as in Proposal 2 of Huber (1964). Other situations
in which robust estimation of some scalar multiple of the scatter matrix is im-
portant in itself are: linear discrimination (Lachenbruch et al., 1973), principal
components, and outlier detection (Gnanadesikan and Kettenring, 1972). Be-
sides its mathematical appeal, invariance is a natural requirement when one
wants to take into account the linear dependence among the variables, and to
represent the situations geometrically.

Among the robust noninvariant procedures considered in the literature, Bickel
(1964) and Sen and Puri (1971) treat the coordinatewise application of location
estimates based on rank tests (R-estimators), and Gentleman (1965) studies a
particular M-estimator of location. Among the affine-invariant estimators,
there is a procedure proposed by Tukey—cited by Huber (1972)—called “peel-
ing” which, like univariate trimming, rejects extremal points of the sample;
and another one, based on iterative trimming, described in Gnanadesikan and
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Kettenring (1972), Section 2.2.3. Very little seems to be known about the
properties of these two procedures (the one-dimensional version of the second
one has been studied by Yohai and Maronna (1975)). Finally, Hampel (1973)
suggested an invariant iterative procedure for the estimation of the scatter ma-
trix, which is actually equivalent to an M-estimate.

In this paper we shall study M-estimators of location and scatter, defined as
solutions of systems of equations of the form

(1.1) nt Y w[{(X — YV X, — OF|(x, — t) = 0,
(1.2) n7t N (X — VX, — )% — (X, -ty =V,

where u, and u, are functions satisfying a set of general assumptions which will
be stated in Section 2. These estimators are obviously affine-invariant, and in-
clude as a particular case the maximum-likelihood estimates for the situation
described at the beginning of this section, with the functions u,(s) =
—s~td[log h(s)]/ds and u,(s*) = u,(s), for s > 0.

Under the assumptions mentioned above, the existence and uniqueness of
solutions of (1.1)—(1.2) are proved in Sections 3 and 4, and in Sections 5 and 6
the estimates are shown to be consistent and asymptotically normal. Then some
robustness measures are calculated in Section 7, and their numerical values,
together with those of the asymptotic variances of some particular estimates,
are exhibited in Section 8. Finally in Section 9 a procedure for the numerical
calculation of the estimators is proposed, and the results of a Monte Carlo ex-
periment on their finite-sample behavior are reported on.

2. Notation and general assumptions. Euclidean norms of vectors and oper-
ator norms of matrices will be denoted by |+|; T will be the identity matrix, and
U’ the transpose of U. If M is a positive semidefinite matrix, the squared dis-
tance between x and y with respect to M will be denoted by d*(x, y; M) = (x —
¥)'M(x —y). The relation “A — B is positive semidefinite” will be written as
“A=B".

In general P will denote a probability measure in R™, and E, the respective
expectation operator, which will be written as E when this causes no ambiguity;
x will always be the “dummy variable” of expectations. The indicator function
of the set 4 will be written /(x ¢ 4) or I(4). The closed ball with center 0 and
radius r will be denoted by B,.

We shall consider solutions (t, V) of systems of equations of the form

2.1 Epuy(dx, t; V)(x —t) = 0

2:2) Epu@(X, ; VO)(X — )(x — 1) =V,

where the functions u,(s) and u,(s) are defined for s > 0. If {x,, --.,x,} is a
sample in R™ of size n, and P is the respective empirical distribution—i.e., the
atomic measure such that P({x,}) = n~*fori = 1,. .., n—these equations become

(1.1)—(1.2), thus defining the estimators. If P is the underlying distribution,
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they define the parameters to estimate. Remark that the parameter space is
0 = {(t, V)} = O, x ©,, where ©, = R™ and O, is the set of m X m-symmetric,
positive definite matrices.

If S is any matrix such that

(2.3) V =S8,

then (2.1)—(2.2) can be written as

(2.4) Epuy(|S7(x — t))S™(x — t) = 0

2.5) Epuy(jST7(x — P)[S7(x — O[S (x — )] =1,

which determine t and V through (2.3). If one wants to determine S uniquely,
he can add to (2.4)—(2.5) the condition that S € ©,. Either pair of equations will
be used, according to mathematical convenience.

To facilitate notation and comparison with the univariate case, define for
5> 0: ¢,(s) = suy(s) (i = 1,2). Throughout the paper we shall without further
notice assume the following four conditions about these functions:

(A) u, and u, are nonnegative, nonincreasing, and continuous for s = 0.

(B) ¢, and ¢, are bounded. Let K; = sup,., ¢.(s).

(C) ¢, is nondecreasing, and is strictly increasing in the interval where
¢, < K,.

(D) There exists s, such that ¢,(s?) > m, and that u,(s) > 0 for s < s, (and
hence K, > m).

ExampLEs. It is easy to verify (A)—(B)—(C)—(D) for two families of esti-
mators to be considered later.

(i) Multivariate Huber’s Proposal 2. Let ¢/(z, k) be the well-known “Huber’s
psi function” defined as ¢(z, k) = max (—k, min (z, k)). Let k, and k, be two
positive constants, and take ¢,(s) = ¢(s, k,) and ¢y(s) = ¢(s, k;*)/8, where 3 =
E, ¢(|X]% k,2), P being the m-variate normal distribution with mean 0 and iden-
tity covariance matrix. As in Huber (1964), the object of dividing by § is to
make V an asymptotically unbiased estimate of the covariance matrix in the
normal case. In his Proposal 2, Huber takes k, = k,.

(i) Maximum likelihood estimator for the Student distribution. The m-vari-
ate radial Student distribution with p degrees of freedom has density

Sfm(X) = C(p + |x|2)-mtp2
where C is a constant. The maximum-likelihood estimators are given by ¢,(s) =

(m + p)s/(p + ) and ¢y(s) = (m + p)s/(p + ).
A further assumption relating P to u, will be needed:

(E) There exists a > 0 such that for every hyperplane H, P(H) =1 —
m|K, — a.

As will be seen below, this condition, which is equivalent to the hypothesis



54 RICARDO ANTONIO MARONNA

of the proposition on page 97 of Huber (1964), is essential for the existence,
uniqueness and consistency of the estimators. This causes no problem with the
underlying distribution, since it is customarily assumed continuous. We may
however have trouble with finite samples; since any set of m points in R™ is
contained in some hyperplane H, if P is the empirical distribution corresponding
to a sample of size n, (E) implies that m/n < P(H) < 1 — m/K,. For not too
large samples of high dimensionality this imposes a restriction on the estimators,
since K, must be chosen larger than mn/(n — m). But, as will be seen in (7.1),
a large K, may imply a loss of robustness.

3. Existence of solutions. To simplify notation, define
3.1 F(t, V) = Eu,(d*(x, t; V) (x — t)(x — t)’,
so that (2.2) becomes
(3.2) F(t,V) =V.

For each t, F is a function of 0, into 0,.

Equation (3.2) will be first treated separately. The following simple result is
stated for later use.

LEMMA 1. For each A > 0 there exists ry > 0 such that, for all te B, and all
r=r, F(t, rI) < rL

ProoF. The result follows easily from
lim, ., sup, - SUpy <. r'2'F(t, rHz = 0,
which follows from the boundedness of ¢,.

THEOREM 1. Let P satisfy (E). Then for each t there exists a unique solution
V = V,(t) of the equation F(t, V) = V.

Proor. There is no loss of generality in supposing t = 0. Throughout this
proof F(V) will stand for F(0, V).

If U is positive definite, so is F(U); otherwise there would exist z # 0 such
that 0 = z’F(U)z = Eu,(z'U~'z)(z'x)?, and since u, is positive by (C), this would
entail P(z'x = 0) = 1, contradicting (E). Applying now Lemma 1 (with 4 = 0),
there is a matrix V, = r,Isuch that F(V)) < V,. Define recursively V, ., = F(V,);
this is legitimate since by the reasoning above each V, is nonsingular.

Since u, is nonincreasing, V,,, <V, for all n, so that lim,__, V, exists. This
limit, denoted by V, will be the desired solution if it is proved to be nonsingular.
To this end, a contradiction will be derived from the supposition that there
exists z = 0 such that z’Vz = 0.

For each b > 0, there exists by (D) an s, such that s > s, implies ¢y(s)
K, — b. Define C,, = {x|x'V,”x < s} and C, = N, C;,. Obviously C, ,.,
C,..- Besides, C, is contained in the hyperplane H = {x|z'x = 0}. In effect let
x € C,; putting V,, = §,'S,, we have (z'x)* = [(5,2)'((S,)) %))’ < (2'V,z)(X'V,,7'x)

=
-
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for all n. The last factor is less than s,, and the first one tends to zero, so that
x e H.

Hence, given ¢ > 0 there exists n,, such that n > n,, implies P(C;,) = 1 —
P(H) — c. Besides, since ¢, is nondecreasing

V. 2 R(V,) = El(x € C5,)[(K, — b)/(X'V, x)[xx’.

Multiplying this expression by (S,’)~' on the left and by S,-! on the right,
and taking the trace, it results for n > n,,

m =z (Ky — b)P(C},) = (Ky — b)(1 — P(H) — o),
and this inequality being valid for all positive b and ¢, it follows that m/K, >
1 — P(H). This contradicts (E), thus proving the existence of a solution.

It may be now assumed—by a change of coordinates—that I is a solution. To
prove uniqueness, it will be shown that in this case, U = I implies [F(U) — I| <
[U—-1]ifUe®, Tothisendleta, < -.- < a,and b, < ... < b, be respec-
tively the eigenvalues of U and of F(U). It will suffice to show that a, < 1
entails b, > a,, and that a,, > 1 entails b,, < a,,. Only the first implication will
be proved, the proof of the second one being completely analogous.

Let R = E¢,(a,"'x'x)(x’x)~’xx’. Since x'U~’x < a,7'x’x, then F(U) = q,R:
hence it suffices to prove that the smallest eigenvalue of R is larger than one,

or equivalently, that z’Rz > z'lz for all z = 0. Since F(I) = I, this amounts
to proving that

0 < Z(R — Dz = E[¢y(a,X'%) — $,(X'X)|(X')"H(z'x)" .

The integrand is nonnegative, since @, < 1 and ¢, is nondecreasing. Suppose
that the last member of the inequality vanished for some z = 0. By (C),
dy(a,7X'X) — ¢y(x’x) = 0 implies ¢,(x'X) = K, if x 2= 0. Hence P(¢,(x'x) =
K,) + P((z'x) = 0) = 1. The second summand is less than 1 — m/K, by (E).

Taking the trace in equation F(I) = I, it follows that the first one is < m/K,.
This contradiction completes the theorem.

LeEMMA 2. If P satisfies (E), then the function V(t) = V(t) has the following
properties:

(i) There exists A, such that for all t: |[V(t)7!| < A7
(ii) There exists A, such that for all t: t'V(t)~'t < A4,%
(iii) lim supy,_. [t| 7| V(t)] = 4, < co.
(iv) V(t) is a continuous function of R™ into ©, (taking in O, the topology in-
duced by R™ ™).
Proor. (i) From (E) it is easy to deduce the existence of ¢ > 0 such that
(3.3) sup, sup,,_; P{x||z/(x — t)| £ ¢} £ 1 — m/K, — a2,

where a is the constant appearing in (E). There exists b > 0 such that (K, —
by(m/K, + a/2) > m; and by (D) there exists 4, > 0 such that ¢,[(cA4,)*] >
K, — b. For each t let e = e(t) be the smallest eigenvalue of V = V(t), and
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z = z(t) be the corresponding eigenvector with unit norm. It will be shown
that 1/e < A% and this will prove (i) since 1/e = |V~

Suppose by the contrary that 1/e > A4 for some t; taking the trace in (2.5)
yields

(3.4) m = Edy(d*(X, t; V-1)) ;

and since d*(x, t; V') = e7|z’(x — t)?, and ¢, is nondecreasing, it follows that

mz P(|2'(x — )] > o)pul(eA)’] > (m/K; + a/2)(K; — b) > m.

(i) Let S = S(t) be any matrix such that V(t) = SS’, so that (i) is equivalent
to [S(t)~Y| < 4,, and (3.4) may be written as

(3.4) m = E¢y(|S7'x — S7It[) .
Since for each x
limy,, ., infiy <4, $o(IMX — s[) = K, ,

then the Dominated Convergence Theorem and K, > m yield the existence of
positive b and A, such that |s| = A, implies

(3.5) C Einfy, ¢u(IMX —sP) = m 4 20.

Hence if some t satisfied 'V (t)~'t = |S(t)~'t|* > A,, we would obtain a contra-
diction with (3.4') by putting in (3.5): M = S~'and s = S-'t.

(iii) Let now e = e(t) be the largest eigenvalue of V(t)(= |V|) and z = z(t)
the corresponding unit eigenvector, so that for all w: w'V-'w > e~!|w|’. Apply-
ing this in (2.2), since u, is nonincreasing it follows that

V S wlelx — tP)(x — t)(x — t) .

Multiplying on the left and on the right respectively by z’ and by z, dividing
by e, and applying Cauchy-Schwarz, it results that

(3.6) 1 = e712'Vz < E¢y(ex — ) .

Now (ii) implies that 4, > |t|*/e(t), so that lim inf, _ e(t) = oo; hence, for
(3.6) to hold, it is necessary that lim inf, _., [t|*/e(t) > 0, which is equivalent to
the thesis.

(iv) When t ranges on a compact set of R™, |V(t)| remains bounded. In effect,
given A > 0, there exists by Lemma 1 an r such that F(t, /I) < rI for all t e B ;
proceeding recursively as at the beginning of the proof of Theorem 1, for all
t € B, we obtain that V(t) < rI, and a fortiori |V(t)| < r, as asserted.

Besides, (i) entails that |[V(t)~!| is also bounded. Hence the image under V(t)
of a compact of ©, is contained in a compact of ©,. Since F(t, V) is a continu-
ous function of © into ©,, and F(t, V(t)) = I for all t, the continuity of V(t)
results from a simple topological argument. This completes the proof of the
theorem.
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THEOREM 2. If P satisfies (E), then there exists a solution (t,, V,) of the system
(2.1)—(2.2). Besides, t, belongs to the convex hull of the support of P.

Proor. In view of Theorem 1, it must be proved that there exists t, such that
3.7 Eu,[d(x, ty; V(t)™)](x —- t) = 0,

which yields V, = V,(t,). Let S(t) be the square root of V(t) in 0, which, by
Lemma 2 (iv), is a continuous function of t. To simplify notation write h(x) =
u;(|x|)x, and define the function g of R™ into R™:

g() = g, () = t 4 c(|t] + DER[S(t)~(x — t)]

where ¢ is a constant to be later conveniently determined. It is clear that, if
¢ # 0, solutions of (3.7) coincide with fixed points of g. We shall now prove
that for some ¢ = 0 there exists a closed ball B such that g(B) £ B. Since g is
obviously continuous, Brower’s fixed point theorem (Dunford-Schwarz, 1958)
entails the existence of a fixed point of g, as desired.

Note in the first place that lim, ., [t|='t'S(t)~*t = 0 by Lemma 2 (ii); and that
Lemma 2 (iii) entails

lim inf,,_, [t|7''S(t)~'t = lim inf,,_, [t||S(t)|* =6 > 0.
Hence
(3.8) lim sup,, .., ||’ ER[S(t)~'(x — t)]
< —olimsup, .. Eu,(|S(t)~(x — t)|) < —dpuy(s,) ,
where s, is the constant in (D), and p = 1 — m/¢,(s,’), which by (3.4) verifies

P(IS(t)7'(x — t)| < s5,) = p for all t.
Summing up, since |h(x)| < K, for all x, then for each ¢

3.9) limsup,, ., [|[t|*t + cER[S(t)~}(x — t)]]> < 1 + K> — 2[dpu,(sy)]c -

Since u,(s,) > 0 by (D), taking ¢ positive near 0, the second member of (3.9)
becomes < 1; hence there exist d > 0 and ¢ > 0 such that

(3.10) lim sup,, ., |||~ + cER[S(t)~'(x — t)]| < 1 —d.

Hence there exists 4 such that |t| < A4 implies |g(t)] < 4. Otherwise there
would exist a sequence {t,} with |t,] <'n, such that |g(t,)| > nforalln. Asg
is continuous, this would imply limsup, ., |t,| = oo, and besides |t,|~!|g(t,)| > 1,
which contradicts (3.10). Hence, for some 4 > 0 we must have g(B,) < B,,
thus completing the proof of the existence.

To prove the second assertion of the theorem, let C be the convex hull of the
support of P, and b = inf, ., d*x, t,; V,~'); so that (3.4) entails m > dy(b). If
t, ¢ C, there exist a hyperplane H separating t, and C, a vector z orthogonal to
H, and a positive ¢ such that z/(x — t) > ¢ for all x ¢ C. Multiplication of (2.1)
by 2’ yields 0 = cEu,(d(x, t;; V,7")), and by (D) we have P(d(x, ty; V,™) > 5,) = 1,
which implies that ¢,(b) > m. This finishes the proof of the theorem,
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4. Uniqueness. It is easy to prove uniqueness of solutions for the equations
defining the model parameters, i.e. when P is the underlying distribution.
Greater generality for the distribution is obtained by stronger restrictions on ¢,.

THEOREM 3. Either of the following two hypotheses suffices for the uniqueness of
the solution of (2.1)—(2.2):

(i) The distribution P has a density f(X) which is a decreasing function of |X|.
(ii) The distribution P is symmetric (i.e., P(x € A) = P(—x € A) for all Borel
sets A) and satisfies (E); ¢, is nondecreasing, and m > 1.

Proor. In both cases, remember that t, = 0 is a solution of (2.1) for all V,
and that for each t, (2.2) has a unique solution V(t). Hence to prove (i) it suffices
to show that for all t == 0 and all nonsingular S

4.1) t §pm 1 (IS7H(X — (X — H)f(x)dx < 0.
Let 4 = {x|t'(x — t) > 0}. Splitting the above integral as {, 4+ {,., and
applying in the latter the change of variables y = —(x — t) + t, we see that

the expression in (4.1) is equal to

a0 (x — u(IS7H(x — (/(x) — f2t — x)) dx;
and this is negative, since |x| > |2t — x| for all x € 4.

Since the symmetry of a distribution is conserved under linear transformations,
to prove (ii) it suffices to show that Et'[u,(]x — t|)(x — t)] < O for all t = 0.
The Cauchy-Schwarz inequality and the fact that ¢, is nondecreasing, yield
(a — b)'[u,(|a])a — u,(|b])b] = 0 for all a and b, with equality holding only if
a’b = |aj|b|, i.e., if aand b are linearly dependent. Hence, takinga = x — tand
b = x, the integrand in the expectation above is negative; and if the expectation
vanishes, x must be linearly dependent with x — t with probability one, which
contradicts (E) if m > 1. This finishes the proof.

When P is the empirical distribution, the fact that P is atomic seems to be of
no help in proving the uniqueness for the equations defining the estimators, so
that it is necessary to prove it for arbitrary P. Naturally this will require
stronger conditions on the ¢,’s. An insight on the type of conditions required
may be obtained from the univariate case.

THEOREM 4. Let y(s) = d¢,(s*)/ds. The following set of conditions (F) is sufficient
for the uniqueness of the solution of (2.1)—(2.2) if P satisfies (E) and m = 1:

(F1) ¢/(s) =0 forall s = 0.

(F2) Let s, =sup{s|¢/(s) > 0}. Then y(s) = 0if s = s,.

(F3) There exists s, < s, such that ¢,(s,*) > m, and such that y(s)/¢,)(s) is in-
creasing on [0, s,] and nondecreasing on [0, s,].

The proof is not difficult and follows along the same lines as the uniqueness
proof in page 98 of Huber (1964). Details may be found in Maronna (1974).
Assumptions (F2) and (F3) are obviously valid if ¢,(s*) = C(¢,(s))’, which is
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the case of Proposal 2. I conjecture that Theorem 4 is also valid for m > 1, but
I have not been able to obtain a rigorous proof.

5. Consistency. Let P be a distribution in R™ satisfying (E), for which
(2.1)—(2.2) have a unique solution (t, V), and let x,, - - -, X,,, - - - be independent
variables with common distribution P. For each n let P, be the empirical dis-
tribution corresponding to the sample {x,, ---, x,}, and (t,, V,) a solution of
(2.1)—(2.2) when the measure is P,.

THEOREM 5. lim,__ (t,, V,) = (t, V) with probability one.

Proor. The generalization given by Wolfowitz (1954) of the Glivenko-Cantelli
theorem establishes that for half-spaces $ < R™, lim,_,, P,(S) = P(S) uniformly
in S, with probability one. It follows easily that with probability one, P, satis-
fies (E) for large n, so that by Theorem 2 of Section 3, the estimators (t,, V,)
indeed exist.

Since ¢, and ¢, are continuous and bounded, it is easy to verify that the esti-
mators satisfy conditions (B-1), (B-2") and (B-3) of Section 3 of Huber (1967), so
that according to Huber’s Theorem 2, to prove consistency it suffices to show the
existence of a compact set K < O such that with probability one the sequence
(t., V,) ultimately stays in K. Unfortunately, Huber’s condition (B-4), which
would entail the desired result, does not hold for the simultaneous estimation
of location and scale, so that a direct proof will be necessary. It will suffice to
prove the existence of finite constants A, B, C such that with probability one

(5.1) limsup,..|V,| < 4; limsup,..|V,|<B; limsup, . |t,|=C.

To prove the first inequality in (5.1) note that, in the notation of Section 3,
V, =V, (t,). It is easy to see that the bound A4, in Lemma 2(i) of Section 3
depends upon the distribution P only through the constant ¢ of (3.3). Now it
follows from Wolfowitz’s theorem that (3.3) holds also for P,, i.e., there exists
¢’ such that with probability one:

lim sup, ., sup, supy,,_, P{x||[z’(x — t)| £ '} = 1 — m/K, — a/2.

Hence proceeding as in Lemma 2 (i) we verify the existence of 4’ such that, with
probability 1, lim sup, ., sup, [V, (t)7}| = 4,', and hence lim sup, ., [V,”| < 4/
a.s., as stated. )

In the same manner, one proves that there exists 4,’ such that with probability
one
(5.2) limsup, . t,/V,7't, < (4)).

In effect, the bound A, in Lemma 2(ii) depends on P only through 4,
(which in turn depends only on c¢) and through the expectation in (3.5).
Wolfowitz’s theorem entails that for each ¢ there exists a compact Q such that
liminf, . P,(Q) = | — ¢ a.s., and hence (3.5) holds also for P,. That is, there
exist 4, and & > 0 such that [s| > A4,’ implies that with probability one

liminf, . E, infiyc,. ¢(Mx —s[') = m + 20",

Nn—00
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so that again proceeding as in Lemma 2 (ii) one proves that
lim sup,_,, sup, 'V, ()7t < (4)* a.s.,
which implies (5.2).

To prove the theorem it will now suffice to prove the second inequality in
(5.1), since it, together with (5.2), entail the third one. Let S, be the square
root of V, in @,, z, the unit eigenvector corresponding to the largest eigenvalue
of V,, and b, = |V,|~t. We shall equivalently prove the existence of ¢ > 0 such
that lim inf, ., b, = c a.s. In the rest of the proof E, will stand for E, , and
the subscript n will be generally omitted, except from E, and P,.

Write for simplicity w = S~'t and ¢ = ¢(x) = |S~’x — w|. Multiplying (2.5)
by z’ and by z, and recalling that Sz = z/b, we obtain
(5.3) 1 = E, u(¢*)(bz'x — Z'W)*.

Let 0 € (0, 1) to be later conveniently determined, and take ¢ < §/[K, + K, +

u,(0)A4,"* 4 u,(0)A4,']. Wolfowitz’s theorem entails the existence of an r such that
lim sup,_., P,(B,°) < ¢ a.s., and hence for large n, (5.3) implies that a.s.

(5.4) [1 — E I(B,)uy(¢*)(bz'x — 2’W)}| < K,e < 0
and since (5.2) implies lim sup, |w| < 4, a.s.,
(5.5) E I(B,)uy(q°)(2'w)* < eu,(0)(A,)? < 6.

Hence subtracting and adding (5.3) in the modulus below and applying (5.4)—
(5.5) it follows that

(5.6) Il — (Z'WYE, uy(q?)] < 20 + u,(0)br(br + 24,) .

Choose c, such that for b < ¢, the last summand in (5.6) is less than 4, and
¢ = min (¢, 6/r). A contradiction will be derived from the assumption that
liminf, ., b < ¢ with positive probability. Passing over to a subsequence {n'}
such that b, < ¢, (5.6) entails that limsup,_. |l — (2'W)*E,u,(¢*)| < 36 with
positive probability, and hence taking § < { one obtains

(5.7 3 < (ZW)VE,u(q’) = (2'W)'uy(0) .
Hence since #, is nonincreasing
(5-8) [(Z'W)E,u(9)| = pus(s0)/(2u5(0))*

where s, is the constant in (D) and p = 1 — m/¢y(s;?), which by (3.4') verifies
P.(q < 5,) = p for all n.
At the same time, multiplying (2.4) by z’ we obtain the equation a, + a, —
a, = 0, where
a, = E I(B)u,(q)(bz'x — z'w) ,
a, = E,I(B,)u(q)bz'x ,
a; = EnI(Br)ul(q)Z,w .

From their respective definitions it follows that |a,| < ¢k, < d and |a,| < br < 3,
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so that |a;] < 2d. Hence subtracting and adding 4, in the modulus below, and
recalling (5.2) it results that

(5.9) limsup, .., |E, u,(q)z'w| < e|z'W| + |a,| < 30;

so that taking, for example, ¢ equal to one-fourth of the right member of (5.8)
we obtain a contradiction between (5.9) and (5.8). This finishes the proof.

6. Asymptotic normality. The proof of the asymptotic normality of the esti-
mate (t,, V,) will be based on a very general result on M-estimators given in
Section 4 of Huber (1967). The notation of this section will be chosen to match
that of Huber’s paper. We shall generically write @ = (t, V). Let O, be the
set of m X m-symmetric matrices, and ° = @, x ©,. The vector space ©° will
be normed with |#| = max (|t|, |V|). Let ¥ be the function of R™ x © into ©:
¥(x, 0) = (¥,(x, 0), ¥,(x, )) defined by

(%, 0) = u(d(x, t; V)(x — 1)
Wy(x, 0) = uy(d’(x, t; V))(x — t)(x — t).

Let P be the underlying distribution and 4(6) = (4,(9), 4,(0)) = E, ¥(x, 6),
so that the “true” parameter @, to be estimated is defined by 4(6,) = 0, and if
P, is the empirical distribution, the estimator 8,* = (t,, V,) is defined by
E, ¥(x,0*%) = 0. Forj=1,2 define

Us(x, 0, 9) = sup,, o <; [¥,(x, 8,) — ¥y(x, )| .

According to Huber’s Theorem 3 and its corollary, if there exist positive
numbers b, ¢ and d, such that EU\(x, 6, 0) < b6 and EU}(X, 0, 0) < cd for
|0 — 6y + 0 < 0, (j =1, 2), and if the derivative (DA),, is nonsingular, then
the distribution of n#(@, — 6,) tends to a normal law with zero mean, and co-
variance matrix (D2),'C((DA4);')’, where C is the covariance matrix of the vari-
able ¥(x, 6,). We shall assume that P is of radial type, i.e., is obtained from
a radial distribution by an affine transformation; although the results are proba-
bly true for symmetric distributions.

THEOREM 6. If the functions s¢;'(s) are bounded (j = 1,2), and P is a distri-
bution of radial type such that (2.1)—(2.2) have a unique solution 6, = (t,, V,)
and such that E, ¢/(d(X, t;; V,™')) > 0, then n¥(0, — 6,) has a limit normal distri-
bution with zero means, t, and V, are asymptotically independent, and the covariance
matrix of the asymptotic distribution of t, is given by (a/b*)V,, where

a = mEd(d(X, ty; V)
b = E[u(d(x, t; Vo)1 — m™Y) + ¢/ (d(x, ty; Vo HYym=1] .

Proor. We must prove that the hypotheses of Huber’s theorem hold. It will
be first shown that if K is a compact in ©, then there exists & > 0 such that
Uix,8,9) < bd(j =1,2) for all @ €K, all x e R™ and 4§ sufficiently small; this

will obviously imply the desired conditions on U, and U,. We begin by calcu-
lating the derivatives of ¥, and ¥, at some 6 = (t, V), applied to a generic
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element (h, M) ¢ ©°. Application of the chain rule yields (writing for simplicity
d = d(x, t; V1)
(6.1) (D¥)),(h, M) = —u(d)h — u'(d)/(2d)[2h'V}(x — t)
+ (x — tyVIMV-}(x — t)](x — t),
(D¥,),(h, M)
(6.2) = —u(d)[h(x — t)’ + (x — t)h'] — M — )/ (@)[2h'V-}(x — t)
+ (X — )V IMV(x — t)|(x — t)(x — t)’.

Since the functions s¢;'(s) and ¢,(s)/s are bounded, so are the ¢;/(s) (j = 1, 2).
Recalling that d-'|x — t| < |V]}, it is easy to verify that there exist constants A4
and B depending only upon |V| and |V~!|, such that for all (h, M), |(D¥ ;),(h, M)| =
Alh| + BM| (j = 1, 2); and the Mean Value Theorem entails the desired result
on the U,’s.

It may be now assumed without loss of generality that P is spherically sym-
metric and 6, = (0, I). From (6.1)—(6.2) and from u/(s) = s7(¢,'(s) — u;(s))
it follows that
(6.3)  E(D¥)o(h, M) = —[Euy(|x|)(h — Wx[x[~*x) + E¢/([x)h'x|x|x,
(6.4) E(D¥,),(h, M) = —[Eu,/(|x[")x'Mx xx’  M].

It will be shown that (D4), is nonsingular. It follows from (6.3)—(6.4) that
the “partial derivatives” 94,/0V and 04,/0t vanish at @,, so that it suffices to
verify that the operators D, = (04,/0t),, and D,, = (94,/9V),, are nonsingular.

Since P is radial, |x| and z = x/|x| are independent, and the latter is distri-
buted uniformly on the unit spherical surface. Multiplying (6.3) by h’, and
taking into account that E(h’z)* = |h|*/m for all h, it follows that

W'D, h = —[(1 — m=)Eu([x]) + mEg/(Ix])[h["];
and this is negative for all h = 0, thus proving that D, is nonsingular.
Now put W = —D,, M = 4U 4 M, where according to (6.4), 4 = Eu,/(|x]*)|x|*

and U = Ez’Mz zz’. It must be proved that W = 0 only if M = 0. Application
of (3.4) and (D) yield

(6.5) A = EQ)(XP)X]* — E¢y(|X]®) = c — m,
where c is positive.

Now we calculate U. Leta,, - - -, a, be the eigenvalues of M, and e, ---, ¢,
the respective unit eigenvectors. Inserting the decomposition M = )} a e e/

in the definition of U, the spherical symmetry of z implies that e;/Ue, = 0 if
i # k; this in turn implies that the e,’s are the eigenvectors of U. To calculate
the respective eigenvalues u;, recall that for all j the variable (z'e;)* has a beta
distribution with parameters (m — 1)/2 and 1, and hence E(z’e)* = 3/[m(m + 2)];
this implies that u; = (3™, a, + 2a;)/[m(m + 2)]. Hence W has eigenvectors e;
with respective eigenvalues

(6.6) w; = [(¢c — m) 117, a; + (m* + 2¢)a;]/[m(m + 2)].
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We must prove that if the w,’s are all zero, so are the a;’s. If ¢ = m, this fact
is obvious by (6.6). If ¢ # m, the system of linear equations in the a;’s given
byw,=0(j =1, ..., m)is equivalent to )™, a,+ Ca; =0 (j=1, ..., m),
with C = (m* + 2c¢)/(c — m). The matrix of this system has eigenvalues C (with
multiplicity m — 1) and C 4 m. As both are obviously nonnull, the system has
a unique solution, proving that D4 is nonsingular at #,, and hence that Huber’s
conditions for asymptotic normality hold.

If z,, - - -, z, are the coordinates of the vector z, the symmetry of the distri-
bution implies that Ez,z;z, = 0 for all i, j, k, and hence that the covariances
between each component of ¥, and each element of ¥, are all null. Then the
covariance matrix of the asymptotic distribution of (t,, V,) can be represented
in block form as

D'A(DgY) 0

0 D;'B(D;})

where A and B are respectively the covariance matrices of W (x, 6,) and of
W¥,(x, 8,). This proves asymptotic independence, and application of (6.3) yields
the last assertion, so the proof is complete.

7. Robustness measures. We shall briefly consider two indicators of robust-
ness introduced by Hampel (1968 and 1971): the influence function and the
breakdown bound. The distribution P will be assumed to be spherically sym-
metric, so that with the notation of the former section 8, = (0, s’I) for some
s> 0.

A standard argument (Andrews et al., 1972) yields the influence function of
the location estimator t:

IF(x; t, P) = —D;'W (x, 6,) = b~'u,(s~'|x])x,

where b and D,, are defined in Theorem 6. From this we calculate easily the
“gross error sensitivity” of t: GES (t, P) = sup, |IF(x; t, P)| = K,s/b. The in-
fluence function of V is obtained likewise, but the resulting expression is not
easy to handle.

To calculate the breakdown bound 6* of (t, V), operating with distributions
of the form Q = (1 — ¢)P + &d,, and letting X — oo, one obtains (see Maronna,
1974):

(7.1) 5% < min (1/K,, 1 — mJK,) .

It is natural to conjecture that there is actually equality above. In fact the
values of the right member computed for Huber’s Proposal 2 in the univariate
case, coincide with the numerical values given by Hampel (1971); but unfortu-
nately Hampel does not give an explicit proof of his results.

In any case, a consequence of (7.1) is that if one wants to take K, large enough
to ensure (E) as explained in Section 2, he may damage d*. Moreover, since
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Ky > m, (7.1) implies that for all M-estimators, 0* < (m + 1)71, so that for high
dimensionality there may be difficulties which will require further thought. At
the same time, operating with measures of the form Q = (1 — ¢)P + ¢H,, where
H, is the uniform distribution on the spherical surface of radius r, and letting
r— oo, it follows that ¢ must be larger than m/K, in order for the estimate to
break down. This fact, together with the reasonable deficiencies given in the
next section, suggest that it is extreme departure from the radial type, rather
than longtailedness, that may cause the estimates to fail when m is large.

It is not difficult to prove that, if P is the m-variate spherical normal distri-
bution, m~* GES (t, P) = (m/2)~*T'(m/2)/T'[(m — 1)/2] for all estimators; and the
right-hand member approaches 1 rapidly for large m. This points out another
intrinsic (lesser) drawback of M-estimators for high dimensionality.

8. Some asymptotic values. In this section we shall consider numerically the
asymptotic behavior of the two families of estimators described in Section 2:

(i) Multivariate Huber’s Proposal 2. For simplicity only the case k, = k, is
considered, although other possibilities might be better. To allow some com-
parison between different dimensions, the family is parameterized with the
number p = P(|x| > k,), where P is the unit spherical normal; i.e., p is the
“Winsorization proportion.” The estimator is denoted by H(p, m) or H(p). The
values chosen are p = 0.5, 0.3 and 0.2, which for m = 1 correspond approxi-
mately to k; = 0.7, 1.0 and 1.2, which are three of the values considered in
Andrews etal. (1972). We include also the limit cases p = [—i.e. the “median”—
with some positive k,, and p = 0—i.e., sample means and covariances.

(i) Maximum likelihood estimator for the Student distribution with g degrees
of freedom, to be denoted by MLST (g, m) or MLST (g) for the values ¢ = 1,
2, 3 and 5.

The distributions chosen were the unit radial normal, and the radial Student
distribution with g degrees of feedom, denoted by ST (g, m) or ST (9).

Since the location estimators in consideration will have an asymptotically
normal distribution with mean 0 and covariance matrix cl, it will be only
necessary to report the constant ¢, which will be called the “variance” of the
estimator. Table 1 exhibits their deficiencies, obtained by dividing the “vari-
ance” by that of the corresponding maximum likelihood estimate. No asymptotic
parameters are given for the scatter matrix.

In addition we give for 9* the value (7.1), and the sensitivity measure SENS =
GES?/m, where GES is computed for the unit normal.

The variances may be obtained from the deficiencies by recalling that the
variance of MLST (g, m) for ST (g, m) is 1 + 2/(g + m). The value of 3* for
H(1.0) is omitted since it depends on k,.

9. Results for finite samples. Some parameters of the distributions of the
estimators for finite samples in the spherically symmetric case were computed
by the Monte Carlo method. The algorithm used for the numerical solution of
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TABLE 1
Asymptotic deficiencies and robustness of MLST(g, m) and H(p, m).

ST(1) ST(2) ST(3) ST(5) NORMAL SENS  4*

m=2
MLST(1) 1.000 1.054 1.116 1.206 1.537 2.278 0.333
MLST(2) 1.083 1.000 1.015 1.060 1.279 1.639 0.250
MLST(3) 1.228 1.018 1.000 1.017 1.179 1.533 0.200
MLST(5) 1.563 1.094 1.022 1.000 1.097 1.609 0.143
H(1.0) 1.200 1.081 1.071 1.094 1.273 1.273 —
H(0.5) 1.460 1.102 1.031 1.005 1.093 1.515 0.361
H(0.3) 1.826 1.208 1.081 1.018 1.048 1.802 0.291
H(0.2) 2.161 1.300 1.129 1.037 1.029 2.070 0.248
H(0.0) ) oo 2.143 1.296 1.000 oo 0
m=4
MLST(1) 1.000 1.030 1.066 1.122 1.377 2.423 0.200
MLST(2) 1.047 1.000 1.010 1.042 1.239 1.589 0.167
MLST(3) 1.136 1.013 1.000 1.013 1.170 1.362 0.143
MLST(5) 1.350 1.069 1.017 1.000 1.103 1.261 0.111
H(1.0) 1.270 1.081 1.037 1.023 1.132 1.132 —
H(0.5) 1.650 1.199 1.088 1.023 1.045 1.336 0.195
H(0.3) 2.018 1.321 1.156 1.055 1.023 1.547 0.165
H(0.2) 2.335 1.417 1.210 1.081 1.014 1.735 0.146
H(0.0) o oo 1.667 1.364 1.000 oo 0
m==6
MLST(1) 1.000 1.019 1.043 1.081 1.287 2.792 0.143
MLST(2) 1.032 1.000 1.007 1.031 1.203 1.734 0.125
MLST(3) 1.094 1.009 1.000 1.010 1.155 1.413 0.111
MLST(5) 1.249 1.053 1.013 1.000 1.101 1.210 0.090
H(1.0) 1.327 1.107 1.047 1.015 1.086 1.086 -
H(0.5) 1.728 1.252 1.126 1.044 1.030 1.264 0.136
H(0.3) 2.078 1.375 1.198 1.081 1.015 1.440 0.117
H(0.2) 2.369 1.469 1.252 1.109 1.009 1.591 0.106
H(0.0) oo oo 2.545 1.410 1.000 oo 0
m=10
MLST(1) 1.000 1.010 1.022 1.043 1.189 3.679 0.090
MLST(2) 1.018 1.000 1.004 1.018 1.151 2.145 0.083
MLST(3) 1.055 1.006 1.000 1.006 1.125 1.652 0.077
MLST(S) 1.152 1.034 1.009 1.000 1.091 1.289 0.006
H(1.0) 1.397 1.147 1.073 1.024 1.051 1.051 —
H(0.5) 1.787 1.305 1.168 1.073 1.018 1.198 0.084
H(0.3) 2.099 1.422 1.240 1.112 1.009 1.335 0.075
H(0.2) 2.352 1.509 1.292 1.140 1.005 1.451 0.069
2.600 1.471 1.000 oo 0

H(0.0) o -

(2.1)—(2.2) was inspired by the procedure used in Andrews et al. (1972, page 17)
for MLST (1, 1). Taking F(t, V) as in (3.1) define

G(t, V) = F(t, V)V'F(t, V)
and

g(t, V) = Eu(d(x, t; VY)X/Eu,(d(x, t; V1)),
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so that (t, V) is a solution of (2.1)—(2.2) if and only if G(t, V) = V and g(t, V) = t.
Start from an initial approximation (t,, V,)—I chose sample means and covari-
ances—and recursively compute t,., = g(t,, V,) and V,,, = G(t,, V,); if the
limit exists, it must be a solution. I have not been able to prove the convergence
of the procedure, but its empirical behavior is good, at least for low dimension-
ality. The procedure using F instead of G is instead much slower, especially for
samples from long-tailed distributions. However, a much more rapid algorithm
will be necessary for simulating in higher dimensionality, probably accompanied
by a better election of the starting values. Here, due to machine-time limitations,
only the bivariate case could be treated.

Recall that, if the underlying distribution is radial, so is the distribution of
t,, and moreover, n|t,|> ought to be approximately a multiple of a y* with m
degrees of freedom, so that t, can be well represented by some scale parameters
of n|t,|>. The parameters chosen were (see Andrews et al., 1972):

(i) The “variance”: v = Enlt,|*/m.

(i) The “a-pseudovariances”: PV = £,/y,*, where &, and y,* are respectively
the upper a-percent points of n|t,[* and of the y* distribution with m degrees of
freedom. Here we report only PV .

(iii) The “index of nonnormality”: INN = PV /PV ,.

(iv) A measure of the “deformation” of V, with respect to the “correct” form
(in this case, radial) DEF(V) = (det V)V"/(tr V/m). We computed the (lower)
a-percent points of DEF(V,), DEF,, for « = 0.25 and 0.50.

The distributions used were Normal and ST(3). Since they are of the form
“Normal/Independent,” a large gain in precision was achieved for t, by exploit-
ing their peculiar conditional independence properties as explained in Andrews

TABLE 2

Behavior of estimators for finite samples

v PV INN DEF50 DEF25
Normal, n = 10
H(0.0) 1.0(0) 1.0(0) 1.0 0.83 0.68
H(0.3) 1.051(3) 1.050(3) 1.0 0.80 0.64
H(0.5) 1.103(6) 1.100(5) 1.0 0.77 0.59
ST(3), n = 10 '
H(0.0) 2.78(11) 2.90(7) 1.18 0.74 0.56

H(0.3) 1.663(14) 1.753(21) 1.09 0.78 0.62
H(0.5) 1.572(12)  1.651(18) 1.08 0.76 0.57
Normal, n = 20

H0.0) 1.0(0) 1.0(0) 1.0 0.93 0.87

HO.3) 1.048(3)  1.049(3) 1.0 0.91 0.85

H©0.5 1.094(5)  1.094(4) 1.0 0.9 0.8
ST3), n = 20

H0.0) 2.92(9) 3.06(9) 1.28 0.84 0.7

H(0.3) 1.609(14) 1.647(17) 1.04 0.89 0.80

H©0.5) 1.528(11) 1.564(15) 1.04 0.89 0.79
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et al. (1972), which applies almost literally to the multivariate case. Unfortu-
nately, it does not seem possible to apply the same ideas to V,, and hence the
percent points of DEF had to be computed “naively” from its empirical distri-
bution function.

Table 2 shows the results for the estimators H(0.0) (sample means and covari-
ances), H(0.30) and H(0.50), and the sample sizes » = 10 and 20, giving in
parentheses after each value its estimated standard deviation in units of the last
digit. The number of replications was 400 for the Normal, 1500 for ST(3) with
n = 20, and 2000 for ST(3) with n = 10.
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