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FAMILIES OF MINIMAX ESTIMATORS OF THE MEAN OF A
MULTIVARIATE NORMAL DISTRIBUTION

By BRADLEY EFRON AND CARL MORRIS

Stanford University and The Rand Corporation

Ever since Stein’s result, that the sample mean vector X of a k£ = 3 di-
mensional normal distribution is an inadmissible estimator of its expectation
6, statisticians have searched for uniformly better (minimax) estimators.
Unbiased estimators are derived here of the risk of arbitrary orthogonally-
invariant and scale-invariant estimators of & when the dispersion matrix
X of X is unknown and must be estimated. Stein obtained this result earlier
for known . Minimax conditions which are weaker than any yet published
are derived by finding all estimators whose unbiased estimate of risk is
bounded uniformly by £, the risk of X. One sequence of risk functions and
risk estimates applies simultaneously to the various assumptions about Z,
resulting in a unified theory for these situations.

1. Introduction. Consider the problem of estimating the mean vector 0 of a
k = 3 dimensional multivariate normal distribution on the basis of the data
vector X,

(1.1) X ~ N,(@, DI)

where for the moment the covariance matrix of X is assumed to be proportional
to the identity so Var (X;) = D is the same andA known for each component.
For the squared error loss function L(@, 6) = ||@ — 6|*/D, the maximum like-
lihood estimator @ = X has risk R(6, 5‘0’) = k. James and Stein [9] showed
that the estimator ' = [1 — (k — 2)D/S]X, S = ||X||* does substantially better.
Its risk, which is a function only of 2 = ||@|[*/2D, increases from 2 at 1 = 0 to
the minimax value £ as 2 — oo.

A question of considerable theoretical interest is to characterize the class of
minimax estimators 5(X), those having sup, R(8, 5) = k. For orthogonally in-
variant estimators, those that can be written in the form

(1.2) 0 =[1 — (k—2)(F)FIX, F=S/D,
Baranchik [2, 3] proved that the conditions

(1.3) 0<(F) <2

and

(1.4) 7(F) nondecreasing in F

are sufficient that @ be minimax.
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12 BRADLEY EFRON AND CARL MORRIS

Baranchik’s condition (1.4) was recently widened somewhat by Alam [1].
A further extension is presented in Theorem 3: rules of the form (1.2) are minimax
if they satisfy (1.3) and also

(1.5) F*=27¢(F)[[2 — ©(F)] is nondecreasing in F .

Similar results are shown to hold (Section 3) for more complicated cases when
the covariance matrix X of X is unknown and must be estimated from sup-
plementary data. Roughly speaking, the more data available for estimating X,
the weaker the substitute condition for (1.4) need be, (1.5) being the limiting
case where X is completely known (Theorem 4).

Unlike (1.4), (1.5) allows ¢(F) to decrease with increasing F, though not too
quickly. Stein [16] recently has proposed some estimators satisfying (1.5) but
not (1.4) (see Example 4, Section 3).

Our results are proved for the cases of known D, or when D must be estimated
from an observed chi-square statistic having n degrees of freedom, by finding
an unbiased estimator R,(F) of the risk of an arbitrary invariant estimation rule
(Theorem 1). This generalizes Stein’s [16] unbiased estimator R.,(F) of the risk
when D is known. The minimax proof characterizes all invariant estimators
for which R,(F) < k uniformly, resulting in conditions (1.3), (1.5) for D known.

In addition to giving better minimax conditions, Stein’s approach has the
interesting property that R,(F) is itself an observable statistic. Thus it may be
used to estimate the risk of an estimator for a given situation and to suggest the
best estimator from a class of estimators.

2. Unbiased estimates of the risk of invariant estimators. Only the canonical
sampling situation of Section 1 is considered here. Certain more general cases
which reduce to this one are treated in Section 4.

The multivariate distribution (1.1) of X and loss function Hé — 0|’/ D are still
assumed with k > 3, but if D is unknown an estimate D is observed having
distribution! Dy,*/(n 4 2) independent of X. If D is known, notation is unified
by setting n = oo and D = D.

This problem of estimating # is invariant under orthogonal transformations
and, if D is unknown, also under scale transformations: X — aI'X, € — aT8,
D — a*D, D — a*D, T a k x k orthogonal matrix, a > 0 ascalar. The class of
estimation rules invariant under these transformations can be written in the
form [14]

(2.1) 0 =( — (k—2)c(F)JF)X, F=S/D, = ||IX|?

with 7(F) any real-valued function on (0, co). The risk of these rules depends
on @ and D through the scalar parameter 4 = ||6|*/2D only [9]. We denote the
risk by R,(4) or, if D is known, by R_(4).

! The multiple 1/(n + 2) which makes D biased is more convenient here than the unbiased
choice 1/n.
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The conditions given in Section 3 for (2.1) to be minimax depend on the fol-
lowing estimate of R, (2).

THEOREM 1. Suppose in (2.1) that ©(F) is absolutely continuous with derivative
©(F). Denote ¢, = (k — 2)/(n + 2). If the risk R,(2) of (2.1) is finite and if the
expectation of each term in (2.2) exists, then a unique unbiased estimator of R, ()
based on F exists and is

k

5 —2
22  RF)=k — (k — 2)[ 7 (F)(2 — ©(F)) + 4<'(F)(1 + cn‘r(F)):'.
REMARK 1. If D is known, set n = oo and ¢, = 0 in (2.2) for the estimator
R, (F) of the risk R_(2).

REMARK 2. The distribution of F = §/D is a multiple of the noncentral F
distribution with (k, n) degrees of freedom. The density of F is

w Al exp(—Z){ 1 [F/(n42)]2- 1tk }
2.3 Fy=73Y%s .
e e (T U Nl (R TR

If D is known then F has the noncentral chi-square distribution with k degrees
of freedom, the density being
Aiexp(—A) (F[2)i**2exp(—F/2)

J! 2I(j + k/2)

REMARK 3. R,(F) may have finite expectation even though some terms in
(2.2) do not. For example, if n < co and t(F) = 2 4 F™+»/* then R,(F) =
k — (k — 2)(n + 2)F*-»/* has finite expectation. But ER,(F) % R,(1) even
though R, (1) < co. Theorem 1 does not apply because Et*(F)/F = co.

24 Joid(F) = X5,

Computation of (2.2) is illustrated in examples 1, 2 for the class of estimators
suggested by James and Stein.

ExaMPLE 1. Suppose ¢(F) = t is constant. Then
(2.5) R.F) =k — (k — 2)%(2 — 1)|F .
Expression (2.5) is minimized uniformly at 1 = 1, yielding the crude James-Stein
estimator.

ExaMmpLE 2. Using «(F) = ¢ but taking the positive part of (1 — (k — 2)1/F)
uniformly decreases the risk (cf. Remark 6). This yields ¢(F) = min (s, Fl(k —2)).
This estimator with ¢t = 1 is the James-Stein estimator, but we prefer the less

conservative choice t+ = ¢* which is based on the foreknowledge that the positive
part will be taken® [7, page 124]

1+ 1.34)(k — 2)>.

(2.6) t* = min <2, e

2 More precisely, we prefer to choose ¢ < 2 so that tn(k — 2)/k(n + 2) is the median of Snedecor’s
Fy,» distribution. Formula (2.6) approximates this quite well.
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The unbiased estimator of the risk of these rules is

(2.7) R(F) =k — (k —2)%(2 — t)/F if Fz=(k—2)
_n—2 .
= ;1:,21: —k if F< (k-2

which exceeds (2.5) for F near zero. This can be a poor estimate of R,(4), being
discontinuous at (k — 2)¢ and negative for F < (k —2)rif n <2 orif n =3
and F < k(n + 2)/(n — 2).

REMARK 4. Even if ¢(F) has isolated simple discontinuities, R,(4) = ER,(F)
holds provided the [a.e.] derivatives of = are used, provided ¢’ is interpreted as
a delta function at points of discontinuity, and provided 7 is given its average
value across the discontinuity. This is illustrated by the following example.

ExaMPLE 3. Define B(F) = (k — 2)z(F)/F, so (2.2) can be written
(2.8) R,(F) = k — 2kB(F) — 4FB'(F) + FB(F)
4
— " _FB(F)(B(F) + FB'(F)) .
n- 2

The discontinuous function B(F) = I, 4(F), the indicator function on [0, c],
defines an estimate (1 — B(F))X which corresponds to estimation following a
preliminary test that @ = 0. Note that B(F) = B(F) and B'(F) = 0 [a.e.]. At
the point of discontinuity ¢, symbolically define B'(c) = [B(c*) — B(c7)] 9, with
0, the delta function at ¢, so EB'(c) is replaced in (2.8) by [B(c*) — B(c™)]-fa,(c) =
—fua(c). Also redefine® B(c) = [B(c*) 4+ B(c7)]/2 = .5. After slight simplifica-
tion, (2.8) yields

29) RN =k + 2foe)(2 + cln +2) + 55 (- 2

2F - 2k>f,,,z(F) dF .

n 4
Since f,, ,(c) depends on 2, (2.9) does not provide an observable unbiased estimator
of R,(4).

REMARK 5. There are other useful expressions for R,(4) besides (2.2) which
cannot be used to estimate R,(4) because they involve 2. For example:

2100 RN = E|[(1 — BEYX — OlD = x5, ZXR(=D g

i
2.11) R, =(n+k+2)E — 1
¥ iy ¥ 2 +F

— 4/E,(1 — B(F)) + 2j .

The symbol E; in (2.11) indicates that the integral is with F distributed condi-
tionally as the density inside the braces of (2.3). This expression is similar to

those appearing in [3, 13, 15, 17], and follows from [13], (3.3)—(3.4). It is
useful for proving the following result.

(1 — B(F)y

3 This is the only definition of B(c) that will give the correct result when n < oo; any definition
suffices for n = oo.
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REMARK 6. If B(F) > 1 ever, then the “positive part rule” with
(2.12) B*(F) = min(l, B(F))

reduces the risk (2.10) uniformly since both terms of (2.11) involving 1 — B(F)
are thereby diminished. A similar proof of this fact was given in [15] for the
case D known.

ReMARK 7. The R,(2) notation we have used is justiﬁed below by showing
that R, (4) is the limit of R,(4). Suppose constants 0 < a < (k — 2)/4, 1 <
b < oo, ¢ < oo exist such that
(2.13) [7(F)| < e(F~* + F").

Suppose R, (4,) exists for some ny, 4, # 0. Then R,(4) exists for all 2 = 0 for
all n = n,. For each 4, lim,__ R,(4) = R.(4). This is proved at the end of the
section.

The condition (2.13) is chosen because it includes the interesting functions
7(F) we know of and because it makes the result easy to verify. We conjecture
that R,(1) — R..(4) with no restriction on 7(F) other than the existence of some
n, < oo such that Rno(l) < oo.

ProoF oF THEOREM 1. Writing B(F) = (k — 2)z(F)/F,

(2.14) R, (A = E||IX — 6 — B(F)X||*/D
=k — 2E Y, B(F)X(X, — 0,)/D + EBXF)S/D .

Stein [16] observed that for any absolutely continuous function A(x) with
Lebesgue measurable derivative #'(x) satisfying E|A'(X,)| < oo,
(2.15) E(X, — 0)h(X;) = DEK' (X)) .
This formula is proved by integration by parts.
Using (2.15) with A(X,) = X, B(F) and using

oF _ 1 oS _ 2X

1

ax, Dax, D

permits simplification of (2.14) to
(2.16) R,(3) = k — 2kEB(F) — 4EB'(F)F + EB*(F)S/D .

A formula like (2.15) for the chi-square distribution, provable by integration
by parts, is
(2.17) E(W — nb)h(W) = 2bEWH (W)
for W ~ by,? and & such that all expectations in (2.17) exist. We take W = D
in (2.17) so b = D/(n + 2) and apply (2.17) to k(D) = B¥S/D)S/D to obtain an
expression for the last term in (2.16).

2 A0k OF

2.18 EBYF)S/D = " _EBYF)F + _“_ED L %"

( ) (F)S] n42 (F) +n+2 oF oD
n—2 4

= EFB(F) + EF*B(F)B'(F) .

n 42



16 BRADLEY EFRON AND CARL MORRIS

Insertion of (2.18) into (2.16) yields (2.8). Substituting B(F) = (k — 2)z(F)/F
into (2.8) gives R,(1) = ER,(F) with R,(F) defined by (2.2). This unbiased
estimator is unique because the noncentral F distribution is complete.

Proor OoF REMARK 7. Let ¢ satisfy 0 < § < (k — 2 — 4a)/k. From the mo-
ment convergence theorem ([11], page 184) it suffices to show that ||X — @ —
[(k — 2)z(F)/F]X]|[*** has expectation bounded independently of n and since
E||X — 0|"*® < oo is independent of n we need only consider E{z*(F)S/F*}'*°.
Then '

(2.19) (F) < F* = $*/D*  so
E{TZ(F)S/F2}1+6 S ES(2b—l)(1+5)Eé(2—2b)(l+5) .

If b > 1 then ES?' -1+ exists but the exponent of D in (2.19) is negative and
ED®-*0+5 will not exist until n/2 exceeds (26 — 2)(1 + ) and then will exist
for all larger n with expectation bounded by a constant independent of n. Setting
b = —ain (2.19), only the term ES-®*b(+% can present a problem. But the
conditions 0 < a < (k —2)/4 and 0< 6 < (k — 2 — 4a)/k guarantee that
(2a + 1)(1 + 9) < k/2 and ES*~*” exists for all ¢ > 0 and is independent of n.
This completes the proof.

3. A more general minimax condition. Baranchik [2, 3] has shown that con-
ditions (1.3), (1.4) lead to minimax estimators in the situation of Section 2.
This is obvious from inspection of (2.2), for then R,(F) < k for all F, requiring
its expectation R,(4) < k. Increasing ¢(F) is clearly not necessary from inspec-
tion of (2.2). The class of all functions r making R,(F) < k uniformly in F is
characterized in Theorem 2.

THEOREM 2. Withn = 1, k = 3, assume that ©(F) is absolutely continuous and
that R,(F) exists' as an unbiased estimator of R,(2). Necessary and sufficient condi-
tions that

(3.1 R(Fy<k  forall F=0

are that

3.2) 0=c(F)<2  foral F,

that for all F with ©(F) < 2

(3.3) Gu(F) = FE22(F)[(2 — o(F))+sn
is nondecreasing, and that if F, exists such that t(F,) = 2 then
(3.4) (F)=2  forall F=F,.

Proor. Conditions (3.2), (3.3), (3.4) are sufficient, for with / = (k — 2)/2
we may write
(3.5) R(F) = k — 4IF-42 — o(F))***s¢,/(F)
when ¢(F) < 2 and R,(F) = k when ¢(F) = 2.

4 The reader is reminded of Remark 3 which includes an example for which Theorem 2 fails
to hold.
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To prove necessity of these conditions, suppose R,(F) < k for all F > 0. If
there exists F, such that ¢(F,)) < 0 then ¢,(F,) < 0. Note that ¢, (0) =
lim,_, ¢,(F) = 0 whether ¢(0) = lim,_, r(F) is finite or not. Then there exists
0 < F < F, such that ¢,'(F) < 0 and R,(F) > k from (3.5). Hence ¢(F) > 0
for all F. If there exists F, such that (F,) > 2 then t!(F,;) > 0 from (2.2) and
therefore ¢(F) increases monotonically to r(co) > 2. Thus lim,_,, R,(2) > k ([7],
page 121) implying R,(F) > k for large F when R,(F) exists. Condition (3.2)
is established. Condition (3.3) now follows from (3.5). Condition (3.4) must
hold because ¢'(F) = 0 for all F such that z(F) = 2, from (2.2). Butifz’(F) > 0
for some F, then there exists F, > F such that ©(F,) > 2, violating (3.2). The
proof is complete.

If 7(F) is not absolutely continuous then R,(F) does not exist, but conditions
(3.2)—(3.4)still are sufficient that the estimator corresponding to «(F) is minimax.

THEOREM 3. The estimator (1 — (k — 2)t(F)/F)X is minimax fork > 3,n > 1
provided (3.2), (3.3), and (3.4) hold.

PRroor. Since ¢,(F) is nondecreasing on the interval with 0 < ¢(F) < 2, let
$u(F) = limg_,, ¢, ,(F) with each function ¢, , being nondecreasing and abso-
lutely continuous. Define absolutely continuous functions 0 < .(F) < 2 by

(3.6) ¢n’m(F) — F(k—Z)/2Tm(F)/(2 _ ,z.m(F))H:Zcﬂ )

Since r,, satisfies (3.2)—(3.4), it yields a minimax estimator with risk R, (1) < k
and z,, — v as m — co. The dominated convergence theorem is easily applied
because the {r,} are uniformly bounded, so as m — oo, R, (1) — R,() < k.
Since points F where ¢(F) = 2 present no difficulty, the theorem is proved.

REMARK 8. Alam [1] determined minimax conditions (1.3), (1.4) for the case
n = oo (D known) which permit ¢ to decrease, his condition being that there
exists 0 < r < I = (k — 2)/2 such that

3.7 0= r(F) <2 —24l for all F
(3.8) F't(F) is nondecreasing.
Theorem 3 is more general. This follows because ¢, increases at any point of
increase of 7, and at a point F where ¢ decreases, letting e = I/t — 1 > 0,
(3-9) Pul(F) = {Fe(F)}" [{z{(F)(2 — =(F))}
still increases because 7%(2 — r) is an increasing function of r on 0 < ¢ <
2e/(1 + &) = 2 — 2¢/L.

Interesting minimax rules exist with ¢ sometimes decreasing although they

have received little attention, perhaps because they could not be proved minimax
easily. Several examples follow.

ExAMPLE 4. The James-Stein rules «(F) = min (¢, F/(k — 2)), | <t < 2 are
inadmissible, but can be dominated only by rules with ¢(F) strictly decreasing
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at some points ([7], page 123). Stein[16] proposes the foliowing class of estimators
which may have members dominating the James-Stein rule with ¢ = 1. With
n = oo they take the form

(3.10) c(F)y =14 Flk=2)—d—1

1+ d@k(F)

defining
ou(F) = U(k[2) X520 (F2)/TV( + k[2) .

These rules are generated from the improper prior distributions on 6 which sets
6 = 0 with probability 1 — p and with probability p requires @ to have density
||@|[>~* with respect to Lebesgue measure on k dimensional space. The constant
d increases strictly from 0 at p = 0 to co at p = 1 in which case 7 (F) is in-
terpreted as 1 — 1/¢,(F). 1f 0 < d < oo (0 < p < 1) then ¢,(F) increases from
zero to a value exceeding unity and decreases thereafter to unity.

Numerical study of the case k = 4 has revealed that ihe hypotheses of Theorem
2 are satisfied if and only if = .542, all smaller values of d leading to decreasing
points of ¢(F). While (3.10) cannot be minimax if d is too close to zero,
there are values of d < .542 for which (3.10) is minimax, but the estimates of
risk R (F) of these rules must exceed k at some points.

EXAMPLE 5. Other minimax estimators with t(F) sometimes decreasing are
Bayes estimators derived from priors suggested by Brown ([4], 16, Section 4)
and by the authors ([7], page 125).

In addition to providing a condition that specific rules are minimax, Theorems
1 and 2 offer insight about the class of minimax rules with R,(F) < k. This is
the subject of the next two remarks and Theorem 4.

REMARK 9. If r reaches the value ¢(F,) = 2, ¢ must be constant at that value
thereafter. Furthermore, having left zero, r can never return (otherwise ¢,
would decrease from a positive value to zero). Stated differently, if z(F;) =0
then £(0) = 0 and (F) = 0 at all points less than F,. The rate of decrease of
7 is also limited, according to

(3.11) (F) = =K 2@ = (I )
this being the condition that R,(F) < k. Every point of discontinuity of - must
be a point of increase if Theorem 3 is to apply, for otherwise ¢,(F) would de-

crease at the discontinuity.

REMARK 10. Certain estimators, even if minimax, may be improved easily.
Assume first that n = co. Estimators with ¢(F) nonincreasing everywhere are
uniformly dominated by the crude James-Stein rule, which has 7 (F) = 1, and
also by the rule with ¢y(F) = 2 — (F). Regardless of monotonicity, any esti-
mator with ¢(F) < 1 — ¢ for all F, some ¢ > 0 fixed, is dominated by ry(F) =
o(F) + ¢ or if ¢(F) = 1 + ¢ for all F then r,(F) = ¢(F) — ¢ is uniformly better.
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Of course, from Remark 6, if 7(F) > F/(k — 2) ever then it can be uniformly
improved by 7,(F) = min (z(F), (k — 2)/F).

When n < oo, we must assume also that ¢(F) = —1/c, for z,(F) to dominate;
that ¢(F) < 2 + 1/c, for 7,(F) to dominate; and that ¢’(F) = 0, for ¢,(F) to
dominate. The statement about 7,(F) holds for n < o if /(F) < 0, but this is
an uninteresting condition. These assertions all are substantiated easily by in-
specting R,(F). Better conditions for n < oo can be given with slightly more
effort, e.g., o/(F) < (k — 2)¢/4c, F is sufficient for 7, (F) to dominate when
t(Fy =1+

The final theorem shows that more rules satisfy the minimax criteria of
Theorems 2 and 3 as n increases.

THEOREM 4. If 0 < ©(F) < 2 is given such that ¢, (F) is nondecreasing then
¢, (F) is nondecreasing for all n = n,.

ProoOF. Write
(3.12) Gu(F) = Pu(F)2 — 2(F))eu=n
with ¢, — ¢, > 0, 50 ¢,(F) is the product of increasing functions at any point

of decrease of z(F). At a point of increase of z, ¢, increases by its definition.

4. Risks for the case X unknown and other noncanonical situations. So far
the covariance matrix X of X has been taken to be proportional to the identity.
All of the results of Sections 2, 3 are shown here to apply to the more general
assumptions about X described below because no new risk functions are en-
countered, provided the loss is redefined as the invariant loss

(4.1) L(6,6) = (@ — 0yz-(6 — )

and n and F are redefined properly. Three cases are considered.
(i) Z > 0 of general form and known.

Set F = X'Z'X,2=6'%2"0/2,n = o0, D= 1.

(i) £ = DG, G known, D an unknown constant, D ~ Dy,}/(n + 2), inde-
pendent of X.

Set F = X'G-'X/D, 2 = 0'G-'0/2D, n and D as given.
(iii) X completely unknown, W ~ Wishart (Z, k, n*), independent of X.
Set F'= (n* — k + 3)X'WX, A =60'202,n=n*—k 4+ 1, D =1.

Note that (ii) arises in multiple regression problems, X then being the usual
Gauss-Markov estimator [12]. Cases (i) and (ii) also include the situation with
X diagonal, having unequal diagonal elements. Although they are minimax,
we think that these estimators are less appropriate for most applications than

rules suggested specifically for the unequal variance situation, such as those of
[6, 8].
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In each case invariant estimators have the same form as estimators considered
in the preceding sections,

(4.2) 6 = (1 — (k — 2)c(F)[F)X

with F defined in (i), (ii), (iii). The risk R,(+) of (4.2) is exactly the same func-
tion as that defined in Sections 2, 3 with Z proportional to the identity. The
unbiased estimate of R,(2) therefore is given for these cases by R,(F) (2.2).
Consequently, the minimax theorems of Section 3 also apply to these covariance
situations.

These assertions are easily established for cases (i), (ii) by making the usual
transformations X = Z-*X and X = G-#X to reduce (i), (ii) to the situation of
Section 2. To deal with case (iii), it can be shown with n = n* — k 4 | that
(n 4+ 2)D = X'ZX/X'W-X ~ x,? independently of X’2-'X. But then F =
X'Z-'X/D, a situation identical to case (ii) with D =1, G = Z.

REMARK 11. The minimax theorems of Section 3 applied to case (iii) generalize
the theorem of Lin-Tsai [10].

Until now, “shrinking” of estimators like (4.2) has been toward the origin
6 = 0, but it is well-known that shrinking may be toward any linear subspace
or linear variety ([13], Section 4, [6], Section 7). When this is done, the same
class of risk functions R,(4) and unbiased estimates R,(F) arise after redefinition
of F and k.

ExaMPLE 6. Let £ = DI and D ~ Dy, */(n + 2). Suppose a d-dimensional
(d < k — 3) linear variety is defined by a k X k orthogonal projection matrix
P and ashift 8, each element of the variety being of the form P» + #°. Shrinking
toward this variety is accomplished by decomposing X = (I — P)(X — 6°) +
[P(X — 8°) + 6°] and @ = (1 — P)(@ — 6°) + [P(@ — 6°) + 6°] and applying
(4.2) to (I — P)(X — 6° only to estimate its mean (I — P)(X — 6°). With F =
(X — 6°Y(1 — P)(X — 6°/D, the resulting estimate is

43) 6 =[(1 = (k—2e(F)[F)1 = P)(X = 6°)] + [P(X — 6") + 6°].
The risk of @ is R,(3) + d with 2 = (6 — 6°)Y'(I — P)(@ — 6°)/2 and R,(2) com-

puted as in Section 2, except k is reduced to k — d. The unbiased estimate of
the risk of @ is therefore ‘

(4.4) R(F) + d

and @ is minimax if ¢ satisfies the conditions of Theorem 3, k being replaced
there by k — d.
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