The Annals of Statistics
1975, Vol. 3, No. 4, 999-1005

A NOTE ON FIRST EXIT TIMES WITH APPLICATIONS
TO SEQUENTIAL ANALYSIS!

By Tze LEUNG LAl
Columbia University

In this paper, we prove certain theorems about the first exit time N =
inf{n = 1: S, T» + Rx ¢ (—a, b)}, where S, is the partial sum of i.i.d. ran-
dom variables with zero mean and finite positive variance, and Ra, T, are
two sequences of random variables satisfying certain conditions. Such exit
times arise in the analysis of the stopping rules of invariant sequential
probability ratio tests, and our theorems are then applied to study the
stopping rules of these tests.

1. Introduction. In recent years, the sample size distribution of invariant
sequential probability ratio tests (SPRT) of composite hypotheses have been
studied by a number of authors. Wijsman’s papers [8], [9], [10] contain an
extensive list of references on the subject. Asymptotic approximations for the
moments of the stopping rule N have been explicitly evaluated in particular
cases. For the rank-order SPRT in the two-sample problem of testing
H:F =G versus K: F = G4, where 0 < 4 # 1 is a known constant, Savage
and Sethuraman [6] have shown that given ¢ > 0, there exists 0 < p < 1 such
that

(1) P[|n=, — S(4, F, G)| Z ¢] = O(p")
where /, is the log likelihood ratio of the rank-order at stage n and
2) S(4, F, G) = log44 — 2 — { log (F(x) + AG(x))(dF(x) + dG(x)) .

Since we stopassoon as/, ¢ (—a, ), it is easy to see from (1) that if S(4, F, G) + 0,
then Ee'” < oo for t < 6(6 > 0) and as min (a, b) — oo,

3) ENF ~ (b/S(A, F, G))? if S(4,F,G)>0
EN? ~ (af|S(A, F, G)|)* if S(4,F,G) <0
for any 8 > 0.
Now let X, X,, --- be i.i.d. random variables with a common distribution

P. To test the null hypothesis H, that P is N(, ¢*) with {/¢ = 7, versus the
alternative hypothesis H, that P is N({, ¢®) with /o = 7, (7, # 7,), the sequential
r-test stops at stage N = inf{n = 1: log L, ¢ (—a, b)} where L, is the likelihood
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ratio of the maximal invariant at stage n. Define

“4) f) = 3u+ @+ 4, 9(u) = 3uf(n) + log f(v)

) Y(y) = 9(r1y) — 9(roy) — 311 + 4710

(6) X,=n'3rX, vl=n'%iX}.

Then there exists a constant d such that

(7 llog L, — n¥(X,/v,)| < d, n=12,...

(cf. [4], [9]). Letting 2 = EX/(EX’)}, we obtain from (7) that if 0 <
E| X |*#*) < oo, then as min (a, b) — oo,
8) EN¢ ~ (b/¥(R))* if T@)>0
EN? ~ (a/T(2))*? if ¥A)<O0
(cf. [4]).

The asymptotic approximations considered above require the assumption that
W(2) + 0 for the sequential t-test and that S(4, F, G) # 0 for the rank-order
SPRT of Savage and Sethuraman. In Section 3 below, we shall examine the
situations when W(2) = 0 and S(4, F, G) = 0. We recall that for Wald’s SPRT
which stops as soon as T[7 (fi(X;)/fo(X:)) & (4, B) in testing a simple null f,
versus a simple alternative f;, Wald’s lemma for squared sums can be applied
to find an asymptotic approximation for the expected sample size when
Elog (fi(X)/fo(X)) = 0. Unlike the case of Wald’s SPRT, the log likelihood
ratio of the maximal invariant in the invariant SPRT’s considered above fails
to be a random walk. Nevertheless, expressing the log likelihood ratio of the
maximal invariant as a random walk plus a reainder term and analyzing the
order of magnitude of the remainder term, we can obtain the asymptotic dis-
tribution and moments of the stopping rule by making use of certain results on
first exit times which we develop in Section 2.

2. The asymptotic distribution and moments of first exit times.

THEOREM 1. Suppose X,, X,, - - - are i.i.d. random variables such that EX, = 0,
EX?=06">0. Let S, =X, + --- + X, and let R,, T, be two sequences of ran-
dom variables. Define N=inf{n>1:S,T,+R,¢(—a, b)}. Let 10,0 < v < 1.

(i) If lim, T, =2 a.e. and lim, . n"*R, =0 a.e., then as a— co and
b— oo such that af(a + b) — v, F¢*(a + b)’N converges in distribution to v =
inf{r = 0: W(t) ¢ (—v, 1 — v)}, where W(t), t = 0, is the standard Wiener process.

(ii) Suppose E|X,|**? < oo for some y > 0 and EL7(d, ¢) < oo for some y > 0,
e>0ando < §, where L(6,¢) =sup{n = 1:|R,| = r’or|T,| < ¢} (sup @ = 0).
Then EN' < oo. If furthermore lim,_,, T, = 2 a.e., then as a— oo and b — o
such that af(a + b) — v,

©) EN' ~ (||0)~¥(a + b)7Err .

Proor. LetU, = S,T, + R,. Iflim, T, = 2a.e.andlim,__rn"*R, = Oa.e.,
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then the process (r~2U, /40,0 < t < 1) converges weakly to (W(¢),0 <t < 1)
as r— oo. First assume that 4 > 0. Set ¢c =a 4+ b. As ¢ — co, we have
a=vc(l +0(1)), b= (1 —v)(l + o(1)) and so

P[N > (26)7%c] = P[max,g, Up,y-s2q < 0, il g, Upgoy-229 > —a]

— P[max,, W(s) < 1 — v, min,, W(s) > —v] = P[r > 1].
Hence (40)*~*N converges in distribution to . If 2 < 0, then a similar argu-
ment shows that (4g)*c~*N converges in distribution to z* = inf{t = 0: W(r) ¢
(—(1—v), v)}, and obviously, = and z* have the same distribution.

To prove (ii), we note that the assumption EL7(d,¢) < oo implies
P[L(J,¢) < o] =1, and so lim,_ ,»n*R,=0 a.e. Hence if lim, , T, =2
a.e., then by (i), (Ao)*c~°N converges in distribution to r as ¢ — co. We now
show that under the assumptions of (ii), the family {(c=*N)7, ¢ = 1} is uniformly
integrable. Let M, = inf{n = L(d,¢) + 1:|S,| = ¢7*(c + n’)}. Then N < M,
for a > 0, b > 0. We shall show that
(10) lim,_, SUP, 24, E(cM ) T1y,5020 = 0.

First we note that
(11) E(c™M, ) L1y 5030 = UP[M, > c*] + 7 P u~'P[M, > c’u] du .

Let k = 2 be an integer such that

(12) 3k > 7 and k3 —0)>r71.
For u = 1, defining n, = n,(u) = [ic'ulk], i=1, ..., k, =0 and S/ = §,,
S/ =8, —S,_ (2=ix k), we have
. P[M, > c’u] < P[L(3,¢) + 1 > cuf2k]

(13) + P[|S,.] < e7Xc + n°) for c*u = n = c’uf2k]

= P[L(3, &) + 1 > c'u[2k] + 1t P[IS/| < 2e7%(c + n%)] .
Without loss of generality, we can assume that » < 1. Then for # > 1 and
¢* = 4k, we have n; — n;,_, > c’u/2k > 2, and so by a theorem of Esseen [2],

P[|S;/]| < 2e7Y(c + n?)]
= Plo~}(n; — n,_)7HS/| < 2¢7'o7Y(n, — n,_)~¥(c + n%)]
= P[IN(O, 1)| < 2e7'e~(n; — n;_y)~¥(c + n,%)] + L(n; — n,_)~7?

where { is a positive constant. Since P[|N(0, 1)| < x] < x for x > 0, it then
follows that for # > 1 and ¢? > 4k,

(14) = P[ISY| < 2e7Y(c + n)]

= {2e 707N (Puf2k)H(c + c?u®) + {(cPu/2k)~72k
From (12), it is clear that
(15) lim,_,,, SUp,az {t7(c?t)**(c + c?10)* - 17(c) 72

+ S ur ()" (c + c*u’)* + (cu)""**]du} = 0.
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By assumption, EL7(d, ¢) < oo, and therefore

(16) lim, ., sup,., {"P[L(3, ¢) + 1 > c*/2k]
4+ 7§ uwP[L(d, ¢) + 1 > c*uf2k]du} = 0.
From (11), (13), (14), (15) and (16), (10) follows immediately. []

THEOREM 2. Let X, X,, - - - bei.i.d. random variables such that P[ X, # 0] > 0.
Let S,, R,, T, and N be defined as in Theorem 1, and define L,(A, ¢) = sup{n = 1:
|R,J=Aor|T,|<e(sup@ =0),4,¢c>0.

(i) Suppose there exist @ > 0, A > 0 and ¢ > 0 such that E exp (0L,(4, ¢)) < oco.
Then N is exponentially bounded, i.e., P[N > n] = O(p") for some 1 > p > 0.

(ii) Lety > 0. Suppose EL'(A, ¢) < oo for some A > 0,¢ > 0. Then EN" < oo.
Suppose furthermore that EX, = 0, EX;* = ¢*and lim T,, = A a.e., where 4 is a non-
zero constant. Then (9) holds as a — oo and b — oo such that aj(a + b) — v, where
O<y <.

Proor. Without loss of generality, we can assume a > 0, # > 0 and let
c=a+b. Since NS inf{n = L,(A,¢) + 1:]S,| = ¢*(c + A)}, we have

P[N > n] < P[L(A, ¢) + 1 = 4n]
(17) + P[|S;| < e (c + A) forall in <j < n]
=A4,+ B,, say.
Since P[X, # 0] > 0, we obtain by an argument due to Stein [7] that B, = O(p")
for some 0 < p < 1. Hence N is exponentially bounded if L,(A, ¢) is expo-
nentially bounded, and EN7 < oo if EL7(A, ) < co.

Now suppose that EX; = 0 and EX;? = ¢ > 0. For ¢ > 0, define M, =
inf{n > L,(A,¢) + 1:[S,|] = c}. By the central limit theorem, we can choose
¢, > 1 such that for all ¢ = ¢,, P[Sy,5 = 2¢] = p > 0. We shall now show that
forn=1,2, ... and ¢ = ¢,

(18) PIM, =z 2c¢n] < (1 — p)» + P[L(A,¢) + 1 = n].

Forn = 1and ¢ = ¢, define n, = [¢*n] + i[¢}],i = 1,2, --. and set S’ = S5
S =S8, —S,_,- Wenote that
(19) P[|S;| < ¢ for ¢n <j < 2cn] < P[|S!| < 2¢ for i=1,.--,n]

= I PSS <2¢] = (1 — p)».
Since P[M, = 2¢'n] < P[Ly(A,¢) + 1 = n] + P[|S;| < ¢ for ¢’n < j < 2¢*n] for
¢ > 1, (18) follows easily from (19). From (18), it is clear that if EL;7(A, ¢) < oo,
then the family {(c=*M,)": ¢ = ¢} is uniformly integrable, and so if lim,_, T, = 4
a.e., then the asymptotic formula (9) holds. []

3. Applications to invariant sequential probability ratio tests. For the se-
quential z-test described in Section 1, we stop at stage

(20) N=inf{n=1:logL,¢(—a,b)}
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where L, is the likelihood ratio of the maximal invariant based on the first n
observations X;, - - -, X, and satisfies (7). Let # = EX,, o> = EX}?, 2 = p/p and
suppose that W(1) = 0. We note that ¥ is of class C* and ¥’(y) + O for all
y (cf. [9]). Therefore

nU(X,[v,) = n(X, v, — HT'(4,) = (52 X, — ndv,)¥'(1,)[v,
where 1, lies between X, /v, and 2. Furthermore,
v, = (DI XA = p + (' 51 XA — 0926,
with g, lying between v, and p. Hence
n¥(X,0,) = (VL)1 X, — np) — A(T: X2 — np*)[2p,}
= (WA (P2 ) ou(Z3 X — npt) — JA(T7 X — npY)
= T{(Z1 Y: — nEY)) + (b, — o)(21 X; — np)}

where T, = W'(1,)/(3,7.), Y: = pX, — $AX;? and so EY, = }pp.
Hence letting

we have
(22) logL, =T, (Y, — EY,) + R, .

By making use of Theorem 1, we can then obtain the asymptotic distribution
and moments of N.

THEOREM 3. Suppose X,, X,, - - - are i.i.d. random variables such that EX, = p,
EX? = p? and
(23) PlpX; — $4X.* = $pp] < 1

where A = p/p and suppose that W(2) = 0 with W defined by (5). Assume that
E|X,|* < oo for somep > 2. Let N be defined by (20), and let @ denote the distribu-
tion function of the standard normal distribution. Set o = E(pX, — $AX* — lop)®.
Then for any 0 < v < 1, we have as a — oo and b — oo such that af(a + b) — v,

Vi>0,  P[N> (op~W'(2)a + b)¥]

(24) — N {2k + 1 — ) — O(rH(2k — v))
— Ot 42k + 1 + v)) + O(#(2k + v))}
=U(@), say;

(25) EN? ~ B(a + b)*p*|aW'(2)|~% (¢ t#72U(t)dt  for 0 < B<p—1.
LeMMA (cf. [1]). Let Z,, Z,, - - - be i.i.d. random variables such that EZ, = 0
and E|Z|P < co. Let M(a,¢) =sup{n=1:|27Z]| = en°} (sup @ = 0). Then
EM?*Y(a, ¢) < oo forall ¢ > 0 and all « > § with pa > 1.
Proor orF THEOREM 3. First note thate® = Var Y, > 0by (23)and E|Y,|? < oo
with p > 2. Let My(e) =sup{n=1:|v,2—p? = ¢ or |X, — p| = ¢}. Then
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since E|X,|** < oo, EM?7Y(c) < oo for all ¢ > 0 by the preceding lemma. It
then follows that EM,"~'(¢) < oo for all ¢ > 0, where M,(¢) =sup{n = 1:
|T, — p~W'(A)| = ¢}. For 0 < B < p—1, we can choose @ > § such that
B<pa—1landa < 1. Lety =1 — a and choose 0 < { < 7. Define

Myy,e) =supf{n = 1: v, — p*| Z en 7} =sup{n = 1: |1 X;? — np’| = en}.
Since E|X||* < oo, it follows from the preceding lemma that EM;»*~(y, ¢) < co

and so EMy(r; ¢) < ¢ for all ¢ > 0. Therefore EM (7, ¢) < co for all e > 0,
where we define

Mr, ) = sup{n 2 1: |p, — p| = en1};
My, e) =sup{n = 1: |1t X, — np| = ent+¢}.

By the preceding lemma, we obtain that EM»%+9-Y({ ¢) < co and so
EM#(,¢) < oo for all ¢ >0. Let 6 =44+ —y. Then 6 < 4. Define
M) = sup{n = 1: |R,| = n’}. Using the finiteness of EM,*(c), EM,(y, ¢) and
EM#(L, ¢), we obtain from (7) and (21) that EM#(0) < co. From (22), Theorem
1 is applicable to N, and noting that P[z > ] = U(¢) (cf. [3], page 329), where
7 is as defined in Theorem 1, we obtain the asymptotic formulas (24) and (25)
from Theorem 1. []

Theorem 1 can similarly be used to study the stopping time of the rank-
order SPRT of Savage and Sethuraman in the case when S(4, F, G) = 0, where
S(4, F, G) is defined by (2), since here we again have the representation of the
log likelihood ratio /, in terms of the partial sum of i.i.d. random variables
plus a remainder term whose order of magnitude we can analyze. This repres-
entation, which is a special case of a more general representation theorem for
generalized Chernoff-Savage statistics, together with related results on other
sequential rank tests, will be treated in [4].
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