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THE CHARACTERISTIC POLYNOMIAL OF THE INFORMATION
MATRIX FOR SECOND-ORDER MODELS

By ALBERT T. HOKE
Armstrong Cork Company R & D Center

The characteristic polynomial is derived for the information matrix
M for those main-effect and second-order models based on fractions of the
3 factorial which render the model symmetric under permutation of the
factors. Explicit formulas for the determinant of M and the trace of M-!
result.

1. The patterned information matrix for a permutation-invariant second-
order model. Let X be the design matrix for a second-order linear model based
on some regular or irregular fraction Z of the 3 factorial. The model is

(1.1) E(y) =g+ 21 Bixy + 251 Bux® + D05 X e Buixix;
Then the matrix M = X’X arising in the normal equations may be partitioned
into ten submatrices corresponding to the general mean, linear and quadratic
components of main effects, and the first-order two-factor interactions. In (1.2),
i # Jj,
e {8} {Ba} {B:5}
My My M, My|p

Mll M12 M13 {ﬂt}
Sym. M, M, {8}

My, | {845}

The dimensions of M are N,(n) X N,(n) where Ny(n) = (n + 1)(n + 2)/2. Each
row and each column of M correspond to exactly one pairing of parameters
from 8 where 8 is the arrangement in lexicographic order of all parameters up
through two factor interactions. Thus, the element in the (7, j) position of M,
call it p(i, j), corresponds to the element in the ith and jth positions of §.

We assume throughout that Z renders M positive definite and that Z is a par-
tially balanced array of strength at least four (see [3]). This guarantees that M
is invariant under permutation of the factors and contains at most fourteen dis-
tinctelements. Forany 1 < i,j, k,I < nwhere i+ j + k = [, these elements are

(1.2) M=

P =p(es 1) P2 = p(¢s B:) = p(Bis Bui) »
ps = p(Bis B) » P = p(Bis B;) = p(» nBii) = p(Bis» ﬂii) s
Ps = p(¢ts Bi) > Ps = p(Bo Bij) » Pr = P(Biss Bis) »
Ps = P(Biws Bis) > Po = p(Bis Bij) » Pro=P(Bis Bji) »
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Pu = P(Bius Bir) » P12 = P(Bij» Bij) » Pz = P(Bij» Bu) »
Pu = P(Bijs Bu) -

For a particular design it is possible to use the frequency operator of [1]as well
as the three symbols which define the parameter set for a partially balanced
array to get explicit expressions for all the p,.

ExAMPLE. Suppose we code the three levels of a factor as 0, 1, 2 and have n
factors. Let [j;; j,; n — j, — js] denote the set of all (; ;, .%; ;) assemblies
obtained by permuting one assembly having ;0’s, j,1’s, and n — j, — j,2’s.
For n = 4, consider the design composed of the N,(n) + n assemblies [n; 0; 0],
[1;0,n — 1], [1;n — 1;0], [n — 2;0; 2], and [0; 15 n — 1].

For this design it is the case py(n) = py(n) = p,(n), so there are really only twelve
distinct p,(n). They are:

pi(n) = 0.5 + 2.5n 4+ 1, pi(n) = —0.5n> 4+ 4.5n — 7,

pa(n) = 0.5 + 1.5n + 1, pu(n) = 0.52 — 2.5n + 3,
ps(n) = 0.5 — 0.5n 4 1, pin) = 0.5 + 5.5n + 1,
pe(n) = 0.57° 4+ 5.5n — 17, Pu(n) = —0.57* + 8.5 — 28,
pu(n) = 0.57 — 2.5n, pu(n) = 0.5 + 1.5n — 1,
pu(n) = 0.5 — 2.5n 4 2, pu(n) = 0.57* — 6.5n 4 21 .

The optimality properties of this design are presented in [5] and [6]. It serves
as a good example here because it is highly nonorthogonal. Thus, without our
Theorem 2, the derivation of |M — 1|, |[M|, trace (M), etc., would be possible
only by computer analysis for fixed n and 4.

2. The characteristic polynomial and associated quantities. Now, let M be
the information matrix for a complete main-effects plan involving the first
Ny(n) = 2n + 1 terms of (1.1). Then

My, M, M,
2.1 M= M, M,
Sym. M,

where only the first eight p, are involved. Some expressions in the p, needed
later are:

ay =ps+ (n—1)p,, Oy = Ps — Pa>
(2.2) ay =py+ (n— 1)ps, 01y = Ps — Pe> and
Ay = pr + (n — 1)pg, 0y = Py — Ps -
Then we have proved

THEOREM 1. The characteristic polynomial of M may be written

(2.3) M — 2| = (=& 4+ ¢,2 — ;2 + ¢)(& — ¢, A + ¢)*
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where

¢ =P+ ay + Ay,

€ = py(ay + ay) + apay — afy, — n([’z2 + P52) s
(2.4) ¢ = pi(ayay — aly) + 2“12”[’2,”5 — aynp — azznpzz ’

¢, = 0y + 0y, and
€y = 03,0, — 0, .

Proor, (Sketch only). Upon suitable rearrangement of the rows and columns
in M, we have

Mll Mm M12
2.5) M* =M, M, M,
M21 M20 M22
Let
M = [Moo Mm] ,
MZO M22

Then the characteristic polynomial for M equals the characteristic polynomial
for M* and the latter is

(2.6) |M* — Al| = My, — AL| - |M} — Al,,, — p(3)|
where p(4) is the (n + 1) x (n 4 1) product of matrices

M
[ ] [My — 211" [ My, Myy] .
M,

Each of the factors of (2.6) can be shown to be the determinant of a well-known
patterned matrix (see [4], page 185) and the coefficients {c;,, i = 1, - . -, 5} follow
by some tedious algebra.

COROLLARY 1. For the same M as in (2.1)

2.7 M| = ¢,c?

and

(2.8) trace (M) = LS (n—1) &,
Cs s

Proor. Having assumed M to be positive definite, none of its characteristic
roots can be zero. Thus, letting 2 = 0 in (2.3) we get (2.7). In order to get
the characteristic polynomial of M-!, change 4 to 1/2 in (2.3), divide both sides
by | M|, and acquire
2.9) M —al| = {_za R R l} {12 T _1_}”'1.

Cy Cs Cs Cs Cs
The trace of a matrix equals the sum of its characteristic roots. From (2.9) we
see that three of the five roots, 4,7%, 4,7 and 2,~, are of multiplicity one each;
while the remaining two, 2,~'and 4,~*, are of multiplicity n — 1 each. Therefore,

(2.10)  trace (M™Y) = (4, + 4 + A7) + (n — (41 4 470 .
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However, in a monic polynomial x" 4 b, ,x"~' + ... + b,x 4 b, the term
—b,_, is the sum of its roots. Thus, we get

A A+ A4 = and AT 4 AT =S
c3 c5
which, with (2.10), proves (2.8).
Now, in the rest of this section, let M be the information matrix (1.2) for a
second-order model involving all Ny(n) terms of (1.1) and all {p,, i =1, ..., 14}.
In addition to the expressions at (2.2), some other needed expressions in the p;

are
7= (0 — 1)pg + ("3)Pw0 72 = (n — Dpy + (*3)Pu >
Ty = pu + 2(n — 2)pis + ("3)Pu>
Ty =py, + (n — 4)p, — (n — 3)pu> and
Ty = P1y — 2P13 + Pua -
Then we have proved
THEOREM 2. Let n’ = n(n — 3)/2. The characteristic polynomial of M may be
written
(2.11) M — 2| = (2 — ¢, + ¢,/ — ;A +¢)
X (=& 4 2 — g + ¢)" (my — )™

where x denotes continuation of a product between lines and

¢, =7 + P1 + Gy + Ay
Co =T Py — ;L)P42 + (7, + p)(an + Qyg) + Uy Ay — afz — n(P22 + Pnz)
2
_n—1T¥3_n——TT§3’
¢ = (mp, — (%) 'P42)(a11 + @) + (7 + p)(an @ — al,) — nﬂ'-l(P22 + P52)
+ nQay,p, ps — 0‘11P52 - a’zszz) + 2np,p,i1s + 2npyp,ras

2
Tas

’

2
+ 4a,, Tl _ 2(p, + Qyy) s _ 2(,”1 + ay,)
n—1 n—1 n

1
¢, = (mp, — (;L)Pf)(auazz — aly) + nm(2a, pypy — Cl'111752 — “zszz)
+ 2np,(py sy — PsC13)T1s + 2np,(psan — P2%13)7 3
2 2
n—1 n—1

4

- (npsps — P1@1) 71572 »
n—1

¢y = Ty + 0y + Oy s
g = o0y + Op) + 0105 — 0% — (1 — 2)(Ps — pro)* — (0 — 2)(ps — pu)s
¢; = o030y — %) — (1 — 2)(ps — Pr)*0m — (n — 2)(ps — 1)’

+ 2(n — 2)015(py — P1o)(Ps — Pu1) -

+ (nps — praa)ris + (nps’ — p1an)rss
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Proor. Let M,/ = [M,, M,,, M,] of dimensions () X (1 + 2n). Then the
characteristic polynomial is

(2.12) |M — 2| = |My — |- p(2)
where the factor
(2.13) p(A) = |M* — AL, ., — M{M,; — 2I}7'M /| .
Here
MOO MOl MOZ
(2.14) M* = M, M,
Sym. M,

is the information matrix for that portion of the model involving main effects
only. Algebraic analysis will reveal to us that M* — M {M,; — AI}"'M has a
form exactly the same in its general structure as that for M*.

First, it is shown in [2], page 162 that M; can be written

(2.15) My = puBg + puBf + puBR
where B’ (j = 0, 1, 2) is the association matrix for jth associates in a PBIBD
with two associate classes and a triangular association scheme. It follows from
previous work on such PBIBD’s that
(2.16) |Myy — 2| = (7, — A) (7, — A" N7y — D)™ .
Next, it is proved in [7] that

Qs = (M, — A} = q1(A)BF + 9(DBE + qu(A) B3
where ¢,,(2), 415(4), ¢..(A) are expressions in the reciprocals (r, — 2)~' (i = 1, 2, 3).
By means of certain identities among these g¢,(4), those block submatrices
My Q4 - M,; (i,j =0,1,2) that comprise M,Q,; M, can have their entries
written out in manageable form. Finally, after considerable algebraic simplifi-
cation the difference matrices

DM,; = M,; — M,QM,; (i,j =0,1,2)

that comprise M* — M,Q,, M, can be written out in full. These are
DM,, = scalar = (m; — D) [ p(m, — ) — (3)p] -
DM, = (p, — aw)l,’ where p, —ay = (71, — )7 [ps(m1 — 2) — patsa] -
DM, = &1, + ¢u(J, — I,) where' J,=1,1, and

= (m— A7 [“11(771 —A) — 2 7’33] )

7

n—1
Cu = (mg — A)70u(ms — ) — (n — 2)(ps — Pr)*] -
DMy, = (p; — ap)l,’ where py — ay = (71, — )7 [p(m1 — A) — pavasl -
DM, = §,1, + Cu(J, — 1,) where
2
§y = (”1 - 1)_1 [“12(771 - '2) - w1 T137"23] ’

G = (my — D)7 [0(my — A) — (n — 2)(Ps — Pro)(Ps — P)] -
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DMy, = &1, + C0(J, — 1,) where
2

§p = (1, — A7 |:a22(7r1 —A) — Pa— Tga] )

Lo = (T — )7 [0u(my — &) — (n — 2)(ps — p0)’] -

[DM,;] is now exactly in the form of the information matrix for Theorem 1
and by appeal to that theorem the factor p(4) of (2.12) may be evaluated. One
problem here is that the resulting expression involves many powers of the re-
ciprocals (z, — 2)~* and (m, — 2)~'. By properly distributing the factors of
|M,, — 41| throughout (2.12), however, we have proved that all those parts of
polynomial coefficients from Theorem 1 which involve powers of reciprocals
now sum to zero. Finally, after going through algebraic simplification involv-
ing the grouping of terms according to powers of 2, one gets the expression for
|M — A1 as given at (2.11).

COROLLARY 2. For the same M as in (1.2),

(2.17) |M| — C4c7”_1n’3"’

and

(2.18) trace (M%) = &2 4 (n — 1) S 4 n
(N [ Ty

The technique of proof is identical with that of Corollary 1.
In our example, the seven c; of (2.11) become for any n = 4
cy(n) = 0.25n* — 2.5n° + 25.25n — 64n + 71,
cy(n) = 3n® — 47.75n° 4 388.5n* — 1541.25n° + 3298.5n* — 3633n + 1798,
¢y(n) = 8n® — 170n” 4 1605n° — 8176.5n° + 25392n* — 50668.5n° + 64564n’
— 47506n 4 15624,
c(n) = 81n" — 36n° — 3492n° + 18342n* — 44721n* + 61974n" — 46044n
+ 13896,
¢(n) = 4n* — 23n 4 70,
cg(n) = 156n* — 930n 4 1728 and
¢(n) = 1476n* — 9036n + 13896 .
These polynomials were computed in double precision arithmetic on a 32-bit

word computer and are exact. Utilizing (2.17) and (2.18), explicit expressions
for the determinant and trace result for any n = 4.
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