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The main purpose of this paper is four-fold. First, to prove that the
best upper bound on the number of mutually orthogonal F(n, 2) squares is
(n — 1)%(m — 1), where m = n/2. Second, to show that this upper bound is
achievable if m is a prime or prime power and 2 = m*. Third, to present a
set of four mutually orthogonal F(6; 2) squares design. This latter design
is important because there are no orthogonal Latin squares of order 6 which
could be used for this purpose. Fourth, to indicate a method of composing
orthogonal F-squares designs. In addition, we have pointed out the way
one may construct orthogonal fractional factorial designs and orthogonal
arrays from these designs.

1. Introduction and summary. To save space, the reader is referred to Hedayat
and Seiden (1970) and Raghavarao (1971) for details and definitions of terms
used here. Familiarity with the algebra of statistical designs is assumed. Our
main purpose in this paper is to obtain the best possible bound on the number
of orthogonal F-squares with certain parameters and to give a construction
method for some families of orthogonal F-squares which achieve this bound.
Also, we present a set of four mutually orthogonal F-squares of order 6 based
on three symbols. This later design is important because there are no orthogonal
Latin squares of order 6 which could be used for this purpose as has been pointed
out by Hedayat and Seiden (1970). We indicate a method of composing orthogo-
nal F-squares. Finally, we will indicate under what condition a set of orthogonal
F-squares can be transformed into an orthogonal array, a structure which is
useful for factorial experimentation.

2. Maximal number of orthogonal F-squares. Analogous to the result that the
maximal number of mutually orthogonal Latin squares of order n is n — 1, we
have the following:

THEOREM 2.1. The maximal number, t, of orthogonal F-squares of the type
F(n; 2), where n = 2m, satisfies the inequality

2.1 t<(n—1)7m—1).
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Proor. Let F,, F,, - .-, F, be a set of t mutually orthogonal F-squares of the
type F(n; 2). Based on F, we define an n* X m matrix N, = (n,,;,), Where
n,ix = 1, if the kth symbol occurs in the (i, j)th cell (i=1,2, ...,n; j =
1,2, ..., n) of F, and 0, otherwise. Let

M= (N1|Nz| INt)‘

Using the property of F-squares, we can easily see that the number of independ-
ent rows in M are at most (n — 1)* + 1 and

R(M) £ min ((n — 1)’ + 1, tm),
where R(M) denotes the rank of the matrix M.

Again,
nil, AJ, .- 2,
2, nil, -2,
MM=| . .o B
A, A, -.-ndl,

where I, is the identity matrix of order m and J,, is the m X m matrix with the
element 1 everywhere. The eigenvalues of M’ M are nit, nA and 0 with respective
multiplicities 1, #(m — 1) and ¢+ — 1. Thus

tm —t + 1= RM'M) = R(M) £ min ((n — 1)’ 4+ 1, tm),

from which the required inequality (2.1) follows.
Clearly, when 2 = 1, we obtain the following:

CoOROLLARY 2.1. The maximal number of orthogonal F(n; 1) squares, that is, the
maximal number of orthogonal Latin squares of order n, isn — 1.

The method of proof of Theorem 2.1 can be applied to prove Theorem 2.2.4
of Raghavarao (1971, page 16) on the maximal number of constraints in an
orthogonal array (4s? k, s, 2).

Theorem 2.1 suggests the following definition.

DEFINITION 2.1. A set of  mutually orthogonal F(n; 2) squares design is said
to be complete if 1 = (n — 1)*/(m — 1), where m = n/A.

A reader familiar with properties of fractional factorial designs may find the
following proof of Theorem 2.1 simpler.

A set of t mutually orthogonal F(n; 1) squares design can be utilized to con-
struct an orthogonal fractional factorial design for two factors at n levels and ¢
factors at m levels in n® treatment combinations. To see this let therowsO0, 1, - - -,
n — 1 correspond to the n levels of the first factor, the columns 0,1, ..., n — 1
to the n levels of the second factor, the m symbols of the ith F(n; 1) square to
the m levels of (i + 2)th factor, i = 1,2, ..., t. Then the treatment combina-
tions corresponding to the n* cells of the superimposed ¢ squares give the required
orthogonal fractional factorial design. Such a fraction can provide unbiased
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estimators for general mean and the main effects if we associate a usual linear
additive model with these n? treatment combinations. Therefore the n* degrees
of freedom can be partitioned as 1 + 2(n — 1) + #(m — 1), which implies ¢ <
(n — 1)}/(m — 1).

3. Construction of a complete set of orthogonal F-squares design.

THEOREM 3.1. A complete set of mutually orthogonal F(n; 2) squares design exists
if m = n|2 is a prime power and A = m".
ProoF. By construction. Consider a symmetrical factorial design in 24 + 2

factors, each factor being at m levels and let the m*** treatment combinations
be arranged in an m**! X m*+! square array, 4, such that between the rows the

effects or interactions corresponding to pencils P, P,, - - -, P, and their gener-
alized interactions are confounded; and between the columns the effects or
interactions corresponding to pencils P/, P,/, --., P}, and their generalized

interactions are confounded. The pencils, which are not confounded either
between the rows or columns, are s = (m*** — 1)’/(m — 1) in number and let
them be Q,, Q,, - - -, Q,. Each of these determine an F-square. We construct
F, from Q, by mapping the treatment combinations of 4 to the number of the
(m — 1)-flat of Q, to which that treatment combination belongs. Since the
pencils Q;, Q,, - - -, Q, belong to orthogonal contrasts, F;, F,, - .., F, are mutu-
ally orthogonal F-squares and that set has the maximal number of orthogonal
F-squares.

The above construction method will be elucidated with the following example:

ExaMpLE 3.1. Let m = 2 and 2 = 2 so that we want to construct nine mutu-
ally orthogonal F-squares of the type F(4; 2).

Consider a 2* factorial experiment in factors a, b, ¢ and d and let the treatment
combinations be written in a 4 X 4 array 4, confounding the interactions 4, B
and AB between rows and C, D and CD between columns. Such an A is ex-

hibited below:

1 ¢ d cd
A= a ac ad acd
| b bc bd bcd

ab abc abd abcd

The interactions which are not confounded between rows and columns of 4 are
9 in number and they are AC, BC, AD, BD, ABC, ABD, ACD, BCD, ABCD.
Now by mapping the treatment combinations of 4 into 1 or 0 according as it
has a plus sign in the interaction AC, or not, we have

1010
F, =

—_— O =
S = O

1
0
1

S = O
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Analogously, from the other interactions, we obtain the following F-squares

1 010 1 100 1100

F,:l 0 1 0, Fs=0 0 1 1, F,=1 1 0 0,
01 01 0 01 1 0 0 1 1
01 01 1 100 0 011
01 01 0 0 11 0110

F5:1 0 1 0, Fs=1 1 0 0, F,:l 00 1,
1 010 1 100 0110
01 01 0 011 1 0 01
0110 1 0 0 1

F,= 0110 , F, = 0110 )
1 0 01 0110
1 0 01 1 0 01

It can be verified that {F,, F,, ..., F,} forms a complete set of mutually or-

thogonal F-squares of the type F(4; 2).

4. On mutually orthogonal F-squares for a composite order. Let F, be an
F(n; 4y, - -, 4,) and F, be an F(m; §,, - .-, &,). Then the following proposition
can be easily verified.

ProrosiTION 4.1. F, ® F, is an F(mn; ayy, - - -, ,,) where a; = A&,
ProrositioN 4.2. If F, | F,and F, | F,, then F,® F, | F,®F,.

However, the above propositions or the method described in Section 3 will
not hold to get the maximal number of mutually orthogonal F-squares. Even
for the smallest possible n, i.e., n = 6, the problem is complicated. However,
from the orthogonal array (36, 13, 3, 2) constructed by Seiden (1954) four mutu-
ally orthogonal F(6; 2) squares were obtained and are exhibited below.

001122 002211 021012 012102
001122 120120 212100 221010
112200 110022 102120 120210
112200 201201 020211 002121
220011 221100 210201 201021
220011 012012 "101022 110202

It is not known at this stage whether the above set of mutually orthogonal
F(6; 2) squares can be embedded in a larger set. It may be noted that the above
set of F-squares has a special structure and this might be the reason for the dif-
ficulty in extending the set.

Closing remarks. 1t is well known that the existence of a set of ¢ mutually
orthogonal F(n; 1) squares is equivalent to the existence of an orthogonal array
(n’s t + 2, n,2). Therefore, it is useful to find out what relationship, if any,
exists between arbitrary orthogonal F-squares and orthogonal arrays or partially
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balanced arrays. It may be noted that the existence of a set of s mutually
orthogonal F(n; 2) squares implies the existence of an orthogonal array
7 t + 2,n/2,2).
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