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CONSISTENCY IN NONPARAMETRIC ESTIMATION
OF THE MODE!

By THoMAS W. SAGER
The University of Iowa

Let X be an absclutely continuous real-valued random variable with
additional restrictions to be imposed later. Venter (1967) (‘‘On estimation
of the mode,” Ann. Math. Statist. 37 1446-1455) estimated the mode of X
by a point from the shortest interval containing a specified number r = r(n)
of observations. Venter demonstrated that such an estimator is strongly
consistent under appropriate conditions on the distribution of X and on r(n).
It is the purpose of this paper to show that strong consistency actually
holds under very general conditions on the distribution of X. Convergence
rates are also obtained which are, in some cases, much faster than those
reported by Venter.

1. Introduction. Venter (1967) considered estimating the mode of a univariate
distribution by the midpoint (or either endpoint) of the shortest interval con-
taining r = r(n) observations. Under appropriate conditions on the distribution
and on r(n), Venter obtained almost sure convergence of such an estimator. It
is our purpose to obtain more general conditions which still guarantee almost
sure convergence. We shall retain Venter’s assumptions on r(n) but relax the
conditions imposed on the distribution.

In our view, the mode is a characteristic of the distribution, viz., the location
of the greatest concentration of probability. So we need to specify carefully
which version of the density function is used to define the mode.

DEerFINITION 1.1. Let F(x) be an absolutely continuous distribution function
on the real line. Define the density by f(x) = max{(DF)*(x), (DF)=(x)},
f(—o0) = f(c0) = 0, where (DF)*(x) is the upper derivate on the right of F at
x and (DF)=(x) is the upper derivate on the left of F at x.

We first consider the slightly more general problem of estimating the location
of “local modes” in a closed interval.

DEerFINITION 1.2. The subset M of [c, d] is called the modal set of F on [¢, d]
if

(a) fis constant on M, and

(b) fAIM) > f(x) for each x e [c,d] — M, and

(c) for each open set U containing M, there exists ¢ = ¢(U) > 0 such that
f(x) + ¢ < f(iM) for each xe[¢c,d] — U.
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DEFINITION 1.3. We say that an absolutely continuous distribution function
F satisfies the standard conditions on [¢,d] C [—o0, ], ¢ < d, if there is a
nonempty modal set M in [c, d] such that for some 6 ¢ M, either

(1.1) f(6) = (DF)*(8) = (DF), () , 6<d,
or
(1.2) f(6) = (DF)~(0) = (DF)_(6) , 0>c

where (DF),(0) is the lower derivate on the right of F at # and (DF)_(0) is the
lower derivate on the left of F at 6.

We shall henceforth assume that F is an absolutely continuous distribution
function which satisfies the standard conditions on [¢, d]. No other assumptions
on the distribution will be required.

Let Yy, - -+, Y, denote the order statistics corresponding to a random sample
of size n from F. Let {r(n)} be a nonrandom sequence of integers to be specified
further. For each n, let K(n) be a discrete random variable defined by the fol-
lowing: If there are at least r(n) + 1 observations in [c, d], let

(1'3) YK(n)+'r(n) - YK(n)
=min{Y, ,,, — Ysj=1,---,n—r(n),c<Y; < Y;,,,, =d}.

If [¢, d] contains fewer than r(n) + 1 observations, let K(n) = 1 (for consistency
K(n) can be chosen arbitrarily in this case).

We note that if F(d) — F(c) > 0 and {r(n)} is chosen so that n='r(n) — 0, then
the strong law of large numbers guarantees that [c, d] will eventually contain
r(n) + 1 observations with probability one. Further, since F is absolutely con-
tinuous, then K{(n) is unique and Y, 4,y — Yz > 0 with probability one.

Choose the estimator §(n) so that Y, < 0(n) < Yg(mysrm-

2. Consistency.

THEOREM 2.1. Let F(x) be an absolutely continuous distribution function which
satisfies the standard conditions on [c, d] C [— o0, 0], ¢ < d, with associated modal
set M. Suppose

2.1) n='r(n) —» 0 as n-—oco,

(2.2) e nAT™ L oo , forall 2, 0<KikKl;

then inf M < lim inf,_, 6(n) < lim sup,_,, 0(n) < sup M with probability one.
Proor. We give the proof when (1.1) holds. The proof for (1.2) is similar.

Choose and fix § € M which satisfies (1.1). For each n, let J(n) be a discrete
random variable defined by the following: If [6, d] contains at least r(n) 4 1
observations, let

(2.3) Yisroy =min{Y; 3 j=1,--sn—r(n); 0 < Y; < Yy < d}

If [0, d] contains fewer than r(n) + 1 observations, let J(n) = 1.
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Consider the following events:

Q, = [lim, o, Y,y = 0, lim, Yy =0],
Q1 = [limn_m {F(Y_J(n)w(m) - F(YJ(n))}nr(n)_l = 1] ’
(2'4) 92 = [limn_m {F(YK(m+r(m) - F(YK(n))}nr(n)‘l = 1] ’
Qa = [lim infn-m {F(YJ('n)+r('n)) - F( YJ(n))}/( YJ(n)+r(n) - J(m) = f(ﬁ)] ’
Q, = [liminf, o {F(Ygm srm) — FXxm) Y (Ymaroy — Yrm) = fO)]
Q, = [inf M < lim inf,_, 6(n) < lim sup,_,, O(n) < sup M].
The method of proof will be to show that Q, N Q, N Q,NQ, c QN Q, < QN Q
and that P(Q,) = P(Q,) = P(Q,) = P(Q,) = 1.
We first establish the containment relationships. Let w € Q, n Q, n Q,. Using

(2.4) and the fact that (eventually) 0 < Yiiirim — Yam = Yrmirm — Yoy
we have

lim inf [F(Y;4rm) — F(Y)l Yo srm — Yom)
Lim inf [F(Ygm+rm) — F(Yg))/(Yem+rem — Yiim)

é lim sup YK(n)+r(n) _ YK(n)

J(n)+r(n) YJ(m
lim Sup [F( YJ(n)+'r(n)) - F(YJ(”))]n : r(n)_l
lim inf [F(Yg a1 rm) — F(Yg)In - r(n)~

IA

This implies

f(g) < lim inf F(YK(n)+r(n)) — F(YK(n))
YK(n)

K(n)+r(n) —

< lim inf S[YK(n)vYK(n)+r(n)]f(0) dx — f(g) X

Kn)+r(n) — YK(n)
Thus Q, n Q, n Q, < Q,.

To show Q, n Q, ¢ Q, n Q,, it suffices to show Q, N Q,° C Q, N Q.. Letwe
Q, n Q. Thus there is a subsequence {n(j)} such that 6(n(j)) lies outside of
(inf M — 24, sup M + 2§) for all j, for some 6 > 0. Since weQ, then
Yemysram — Y converges to zero. SO0 [Yx(uij» Yacniin+rmiin] lies outside of
(inf M — g, sup M + 9) for all large j. By Definition 1.2(c) this implies

F(Yg(niiy 4rniin) — ‘F(YK(n(.'i))) < fl0) — e

YK(n(j))+r(n(i)) - YK(n(i))

for all large j, for some ¢ > 0. But this implies » € Q,°.

We now establish the probability statements.

Since (DF)*(f) > 0, then F assigns positive probability to every interval [6,
0 +¢], e > 0. So by (2.1) and the strong law of large numbers, Y., and
Y, converge almost surely to 4.

It remains to show that P(Q,) = P(Q,) = P(Q;) = 1. To this end, we need
the following lemma.
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LeMMA 2.1. Let S,, S,, -+ +; Ty, T, - - - be sequences of random variables such
that S, < T, for each n and [S,, T, contains r(n) + 1 observations. Then {F(T,) —
F(S,)HF.(T,) — F,(S,)}* converges almost surely to one, where F, denotes the em-
pirical distribution function.

Proor. Let 0 < ¢ < 1. If Zis a I'(m, 1) variable, then the well-known in-
equalities P[Z > m(1 + ¢)] < E(e*?)e~"+® and P[Z < m(1 — ¢)] < E(e~t%)etmi~2
with = ¢/(1 4 ¢) and t = ¢/(1 — ¢), respectively, yield
2.5) P[Z > m(1 4+ ¢)] < {(1 + e)e~*}™ < exp(—ime?),
and

P[Z < m(1 —¢&)] < {(1 — e)e}™ < exp(—3me?) .
Thus, if Z,, ..., Z, are I'(m, 1) variables, (2.5) implies
(2.6) P[max{Z,, ---, Z,} > m(l + ¢)] < nexp(—ime’),
and
P[min{Z,, ..., Z,} < m(1 — ¢)] < nexp(—ime®).
If, additionally, Z is I'(j, 1) then the inequalities 1 — 4e < (1 — ¢)/(1 + ¢) and
(I + ¢)/(1 — &) < 1 + 4¢ together with (2.5) and (2.6) imply

P[max{_zzl, ,_Z_"} >M, or

Z J
(2-7) mln{%,,%}<in_(l__]i__4_i)_:l

< 2nexp(—ime?) + 2exp(—%je?) .

Now if Y,, - .., Y, are the order statistics from a continuous distribution, it
is well known that the coverages F(Y,,,,,) — F(Y,),i=0,1, ..., n + 1 —r(n)
(with Y, = —o0, Y,,; = co0) can be represented as ratios W,/W where W, is
I'(r(n), 1) and Wis I'(n 4+ 1, 1). Thus, if I(n) is a random variable assuming
values in {0, 1, ..., n + 1 — r(n)}, we have from (2.7) that
@8) 1= P[[(F(Yrurim) = F(Yr)) DD 1 < e

r(n)

< 2(n 4+ 1)exp(—ir(n)e’) + 2 exp(—%(n + 1)¢) .
Thus {F(Y ;) 4rm) — F(Ym)Hn + 1)r(n)~! converges almost surely to one by
the Borel-Cantelli lemma, since Y 2_, {2(n + 1) exp(—31r(n)e’) + 2 exp(—(n +
1)e*)} < oo by setting 2 = exp(—2¢?) in (2.2).
Now specialize I(n) so that Y, ,,_; < S, < Y £ YViyerim = To < Yiny 4rimy+1-
We have
F(Yiarm) = F(Yiw) o F(T) — F(S,)

(r(n) =+ 1)/” = n(Tn) - Fﬂ(Sﬂ)
< F(Y mrme1) — F(Ym-1) .
- r(n)[n

Thus {F(T,) — F(S,){F.T,) — F,(S,)}~! converges almost surely to one.
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From this lemma we immediately have P(Q,)=P(Q,)=1. To see that P(Q,)=1,
let Un = (YJ(n)+r(n) - 0)/[F(YJ(n)+r(n)) - F(0)] and Vo= (Y.nn) - 0)/[F(YJ<n)) -
F(6)] and write

YJ('IL)+1’(‘M - YJ(‘n)

F(YJ(n)+r(n)) - F(YJ(n))

(2.9) =U, LF(Ystmy+rm) — F(O)]nr(n)~"

[F(YJ<m+r(m) - F(YJ(n))]nr(n)-]

+V,—-V, [F(YJ(m+r(m) - F(0)]nr(n)'1 .

[F(YJ(nHr(n)) - F(YJ(n))]nr(n)_l

Since P(RQ,) = 1 and in view of (1.1), we have U, — f(6)~* with probability one
and V, — f(0)~! with probability one. Thus by setting S, = 6 and T, = Y,y r(m
in Lemma 2.1 and using P(Q,) = 1, we conclude that (2.9) converges to f(6)*
with probability one. Thus P(Q;) = 1. The proof of the theorem is complete.

COROLLARY 2.1. If the mode is unique, i.e., M = {6}, then 6(n) — 6 with prob-
ability one.

It is worthwhile to note some of the gains embodied in Theorem 2.1. Venter
(1967) imposed the following conditions on the distribution:

(a) The density f(x) is continuous and strictly positive on its support, which
is an interval (a, b) containing the mode; and
(b) a(3,2,2) > 1 for all small positive 4 (see Definition 3.1 of this paper).

Theorem 2.1 does not require continuity of the density; the distribution func-
tion may even be nondifferentiable on a set of Lebesgue measure zero (possibly
including the mode). Other distributions included in the purview of Theorem
2.1 are those with gaps in their supports and those whose modes occur at the
boundary of their support (e.g., the exponential: f(x) = exp(—x + 6), x > 0).
Condition (b) is unnecessary for consistency; thus many highly asymmetric
densities are also included (e.g., (3.1) of this paper).

Finally, we remark that Corollary 2.1 implies Theorem 1 of Venter (1967).

3. Rates of convergence. In this section, we retain all of the background and
assumptions of Section 2, except that we suppose the modal set of F on [c, d]
is a singleton, M = {#}. Additionally, we impose a condition similar to (4.1) of
Venter (1967).

DEerFINITION 3.1. For ¢ <0 —Rd6< 0 —35<6 andjor 6 <0 +0<0 +
R,0 < d, define a(3, R,, R;) = min{r=(d), 1-(6)}/max {r*(R,d), 1*(R,0)}, where
r~(0) = inf{f(x); 0 < x < 6 + 6},
r+(R,0) = sup{f(x); ¢ + R,0 < x < d},

1-(0) = inf{f(x); 6 — 0 < x < 0},
1*(R,0) = sup{f(x); ¢ < x < 0 — R,d}.
Also let r(d, R,0) = r=(8)/r*(R,0) and 1(d, R,0) = 17(0)/1*(R,0).



ESTIMATION OF THE MODE 703

The assumption to be employed in this section will be that a« > 1 4 pd* for
all small § and for some R, > 1, R, > 1, p > 0,k > 0. We remark that Venter
(1967) employed the same assumption about a but with R, = R, = 2. As we
have seen in Section 2, no such assumption is necessary for consistency. Addi-
tionally, such an assumption with fixed R, and R, rules out of consideration
many highly asymmetric densities. For instance, consider the densities

(@) f()=%x+4%, —1<x<0
= —ix+ 3%, 0<x<3
3.1) =c, x=0

®) fix) =cen/(n+ 1), @n+ D2n(n + 1) < |x] < 1n
=cn/(n 4+ S,), I/(n + 1) < |x] < (2n + 1)/2n(n + 1)
where in (b) {S,; n = 1, 2, ...} is a sequence of positive integers with S, tending
to infinity and S, /n tending to 0 and c is determined to make f(x) a density on
[—1,1].

For (a) we compute a(d, 2,2) = (1 — d)/(1 — 28/3) < 1 for all small §. How-
ever, a(9, 2, 6) = (1 — 9)/(1 — 26) > 1 4 ¢ for all small §. Example (b) is sym-
metric about its mode x = 0, and therefore a(d, R, R) = (3, RJ) for any R > 1.
Now r=(6) = em/(m + S,,) where 1/(m + 1) < ¢ < 1/m. Hence R/(m + 1) <
R < R/mso that r*(Rd) = cK(K + 1) with K approximately m/R. For all small
d, we have S,, > R so that r=(d) < r*(Rd). Hence r(3, R3) < 1 for all small 4.
Thus example (b) fails to satisfy the hypotheses of Theorem 3.1 for any R, and
R,. However, it is easy to verify that (b) satisfies the standard conditions. So
Theorem 2.1 gives consistency in (b), but we cannot say anything about a con-
vergence rate.

THEOREM 3.1. Let F(x) be an absolutely continuous distribution function which
satisfies the standard conditions on [c,d] C [— oo, ], ¢ < d, with modal set M
in [¢,d]. Let r(n) be of the form An**/+*® for some A >0 and let d(n) =
n-Y+W(log n)V* ( for k specified below). Let 0(n) be as before.

(1) If M = {c} and there are positive constants R > 1, p, k such that r(3, Ro) =
1 4 pd* for all small positive d, then 6(n) = ¢ + o(d(n)) with probability one.

(2) If M = {d} and there are positive constants R > 1, p, k such that 1(, Ro) =
1 + pé* for all small positive 3, then 6(n) = d + o0(d(n)) with probability one.

(3) If M = {0} with ¢ < 6 < d and there are positive constants R, > 1, R, > 1,
0, k such that a(d, Ry, Ry) = 1 + p0* for all small positive 3, then (n) = 6 - o(d(n))
with probability one.

Proor. First we need a convergence rate in Lemma 2.1 when 7(n) has the
above form.

LemMA 3.1. Let S,, S,, ---; Ty, Ty, - - - be a sequence of random variables such
that S, < T, for each n and [S,, T,] contains r(n) 4 1 observations where r(n) is
of the form An*, 0 < v < 1. Then {F(T,) — F(S){F.(T,) — F.(S,)}7' =1+
o(r(n)~*log r(n)) with probability one.
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Proor. In (2.8) replace ¢ with er(n)~* log r(n) to obtain

G2 1= P[[(F(Tamrrw) = F(Yrat "L — 1] < dertoy+ og () |
)

< 2(n + 1) exp(—f(log r(n))’’)
+ 2 exp(—4(n + 1)r(n)~*(log r(n))%?) .
Since the series
(3_3) Z:=1 {2(n + 1)(Anu)—}s2u1og(ml/v) + 2(Any)—}e2('n+l)(4n“)"1 log (An”)}

is finite for 0 < v < 1, then the Borel-Cantelli lemma implies that {F(Y ;) 1 m) —
F(Y)nr(n)=' = 1 4 o(r(n)~*log r(n)) with probability one. Thus by specializing
I(n) as in the remarks following (2.8) we obtain the desired conclusion.

Now suppose that the hypothesis of part (1) of the theorem holds. Define
J(n) by (2.3) (with 8 = ¢).

LEMMA 3.2. Y, 4pm) = € + 0(6(n)) with probability one.

Proor. First, we assert that r+(Ré) — f(c) as d — 0. If not, then from the
definition of r+(Rd) we have that f(x) + ¢ < f(c) for some ¢ > 0 and for all x,
¢ < x < d. But this cannot be, for it implies (DF)*(c) 4 ¢ < f(c).

Hence, since r(d, Rd) = 1 + pd*, there is a positive constant B such that
B < r*(Ro) < r~(0) = r~(ed) for all small § and for each ¢, 0 < ¢ < 1. Thus
F(c 4 ed(n)) — F(c) = S, cresm I (e6(n)) dx > Bed(n) for 0 < ¢ < 1 and for all
large n. Therefore,

(3.4) liminf, ., {F(c + ¢d(n)) — F(c)}/(Bed(n)) = 1.
By Lemma 2.1, we have
3.5) {F(Y ;nyrimy) — F(c)}ur(n)=' — 1 with probability one.

But n~'r(n)/(Bed(n)) — 0 as n — oo; so by (3.5) we have
(3.6) {F(Y jny4rny) — F(€)}/(Bed(n)) — O with probability one.

From (3.4) and (3.6) we deduce that F(c + d(n)) > F(Y () 1,) for all large
n with probability one. And since ¢ is arbitrary, this implies Y, . = ¢ +
0(d(n)) with probability one.

LEMMA 3.3. Y, = ¢ + 0(d(n)) with probability one.

Proor. Let Q, be the event where Lemma 3.4 holds. Let Q, be the event
where Lemma 3.1 holds with S, = Y, ,,and 7, = Y (. srm)- Let Q, be the event
where Lemma 3.1 holds with S, = Y,,,and T, = Y, ., LetQ,be the event
where Lemma 3.2 holds.

To prove Lemma 3.3, it suffices to show that Q, N Q,NQ, N Q° = @. Suppose
0wenQnQnQe. Since we Qy, then there is an ¢ and a subsequence {n( )}
such that

3.7) Yy > ¢ + Red(n(j)) for all j.
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Using the hypothesis of (1), Lemma 3.2, (3.7), and Lemma 3.1, we have

1 4 p(ed(n(f)))* = r(ed(n(})), Red(n(j)))

< r=(ed(n()))) . Yiwun+rmon — Yoman
= r*(Red(n()))  Yrmin+raon — Yrmon
LF(Y s iniin 4rinein) — F(YJ(m'j)))]”(j)r(”(j))—l
F(Ygmoin+ramin) — F(Ygman)In()r(n(j))=
1 + o(r(n(j))~* log r(n(j)))
=1+ o(n(j)=*™ log n(j)) .

However, 1 + o(ed(n(j)))* = 1 + pekn(j)~**+* log n(j), which contradicts the
above inequality for large j.

Part (1) of the theorem now follows easily since 0(n) — ¢ < Yymsrm — € <
Y miry — Yom + Yrm — ¢ = 0(d(n)) with probability one by Lemmas 3.2
and 3.3. The proof of part (2) is similar to that of part (1).

Suppose the hypothesis of part (3) holds. Since a(d, R,, R,) < min {r(d, R,0),
1(9, R,0)}, then r(d, R,0) = 1 + pdé* and 1(3, R,0) = 1 4 pd* for all small 4.
Thus parts (1) and (2) of the theorem are applicable.

Define I(n) and J(n) by the following:

If [c, 6] contains at least r(n) 4 1 observations, let

(3'9) YI(n)+r(‘n) - YI(n)
=min{Y, ,, — Ysj=1,.---,n—r(n),c<Y; <Y =46}.

J+rin) =

(3.8)

IA

If [c, 6] contains fewer than r(n) 4 1 observations, let I(n) = 1.
If [0, d] contains at least (n) + 1 observations, let

(3'10) YJ(n)+r(n) - YJ(n)
= min{YJ‘+r(n) - .1;.] = 1’ ceh— r(n)’0 = YJ' = Yj+'r(n) = d} .

If [0, d] contains fewer than r(n) + 1 observations, let J(n) = 1.
By parts (1) and (2) of the theorem, we have

(311) YJ(n)+'r(n) = 0 + 0(5(”)) W]th Pl‘Obabll]ty one,

and
Y = 0 + 0(d(n)) with probability one.

Now 1.f[YK(n)’ YK('n)+r(n)] C [C, 0]’ then YK(n) = YI(n) and YK(n)+r(n) = YI(n)+'r(n);
lf [YK(n)’ YK(n)+r(n)] c [0’ d]’ then YK(n) = YJ(n) and YK(n)+r(n) = YJ(n)+'r(n); if
Y = 0 = Yemaray then Yo < Yoo = Yemysrm = Yrmsrm. Considera-
tion of these cases together with (3.11) shows that Yy, = 6 + o(é(n)) with
probability one and Yy, ., = 0 + 0(d(n)) with probability one. The proof

of the theorem is complete.

ReMArRk. For k < }, the convergence rates given above are a substantial
improvement over those reported by Venter (1967). As k tends to zero, with
r(n) of the form An**/+% the convergence becomes quite rapid indeed.
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