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ON THE MINIMAX ESTIMATION OF A RANDOM PROBABILITY
WITH KNOWN FIRST N MOMENTS

By V. M. JosH1
Economics and Statistics Bureau, Maharashtra Government

X and © are random variables; for given © = ¢, the conditional
distribution of X is binomial with parameters N and 6; the first N moments
of © are known. An estimate of © is made based on the observed value of
X, the risk being defined in terms of squared error loss. It is shown that
as conjectured by H. Robbins, the ratio of the Bayes risk to the minimax
risk for all possible distributions of ® uniformly tends to unity when

N — co.

1. Introduction. In this paper we prove a conjecture of H. Robbins (cf.
Skibinsky (1968) page 501), relating to a minimax problem. The problem has
been dealt with by Skibinsky (1968) and has the following structure. X and ©
are random variables defined on a measurable space (Q, %); X is distributed
on the set of integers 0, 1, 2, ..., N where N is fixed, and © on the unit interval
[0, 1]; further for given © = ¢, the conditional distribution of X is binomial
with parameters N and 6; Zis the class of all probability distributions on .~
which give rise to the above structure; any real function ¢ = 7(X) of X is an
estimate of ©; the risk of an estimate ¢ relative to a probability distribution P is
defined as

(1) Ry(t, P) = Ex((X) — O).
The Bayes risk is obtained by minimizing the risk over the class of all estimates
t, i.e.
(2) Ry (P) = inf, E,(#(X) — ©)*.

The first N moments of © under P (which for brevity we shall hereafter refer
to as the ‘first N moments of P’), have known values ¢;, ¢, - - -, ¢y; i.€.
(3) E, 0 = {(0'dP = ¢,, i=1,2,...,N;

¢ denotes the vector (¢, ¢,, - - -, ¢y) and _;(c) the subclass of all probability
distributions P € &, for which (3) holds. The class _#(c) is not empty if and
only if there exists a probability measure Q on the Borel subsets of [0, 1], such
that

(4) ¢ = S0y X1 dQ , i=1,2,...,N.

We assume throughout the following that (4) is satisfied so that the class _#;(c)
is not empty. Then by standard game-theoretic results (Remarks (6) and (7) in
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[2]), ~#;(c) contains a (least favourable) distribution P* for which

Ry(P*) = Ry(P) for Pe _#4(c),
and
Ry(P*) < SUPpe_, (o) Ry(t: P) for all ¢.

R,(P*) is thus the minimax risk over the class _#;(c). It depends only on c,
i.e. the first N moments of P. Hence we put

Wy(P) = Ry(P*) — Ry(P) .

W,(P) is the excess of the minimax risk over the Bayes risk. Skibinsky [2] has
shown that

(%) Wy(P) < 27ry for all Pe &7,

where r,, is a constant whose value is determined by the first N moments of P,
and which satisfies 7y < 4-¥. The conjecture of Robbins is

(6) limy e, SUPp e (Wy(P)/Ry(P)) = 0 .
We note that the supremum in (6) has to be taken over only those P ¢ &°for

which R,(P) and W,(P) do not both vanish, as otherwise their ratio becomes
indeterminate.

2. Lower bound for Bayes risk. We first outline the argument. It has been
shown by Skibinsky [2] that the Bayes risk R,(P) attains its minimum either for
P = Pt or for P = P-, these being distributions for which the (N 4 1)st moment
of P is respectively maximized and minimized for P e _+(c). Hence a lower
bound for the Bayes risk is obtained by obtaining lower bounds for R,(P*) and
Ry(P~). Defining &, ;(P) as in (7), it follows from (13) that a lower bound for
Ry(P-) is obtained by taking an upper bound for 3., ;..(P7)/éy,,(P~) and cor-
respondingly for R,(P+). We next consider the (N + 2)nd moments of P* and
P~ which depend only on c. Denoting their difference by 4,, we obtain mainly
by using Schwarz’ inequality, the upper bound in (21) for &%, ;..(P)/éx,(P7)
which involves 2. An upper bound for 2, is obtained by defining the conjugate
prior distribution in (22), and it is shown in (31) that either 2, < (N + 2)ry
or for the conjugate prior 2,’ < $(N + 2)r, where r, is the difference between
the maximum and minimum values of the (N + 1)st moment. Using these upper
bounds, we obtain an upper bound for &%, ;,,(P7)/§y, ;(P~) by (21) and then a
lower bound for Ry(P~) by (13). A similar calculation gives a lower bound for
Ry(P*). Combining the two we get a lower bound for Ry(P). This combined
with the upper bound for Wy(P) in (5) gives an upper bound for the supremum
in (6). The final result is obtained by taking limits as N — co as in Section 3.
Throughout the calculation ¢ is assumed to be an interior point of _#;(c). If ¢
is a boundary point, then Wy(P) =0, so that for such points also the result
holds.

We now give the detailed proof. For any integers n, j, j < n, let

™ €n.i(P) = Ex{0i(1 — B)"i}.
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If my, m;, m, - . . denote the successive moments of P for P ¢ &%, i.e. m, = E, 0! =
(0©dP,i=1,2, ..., then

(®) §ni(P) = D1 (= 1)ym,y; .

We now introduce a restriction on the values of ¢. Let & denote the class of
all probability measures on the Borel subsets of [0, 1], and let

(9) Mn = {(Cls Car =0y cN): ¢ = S[o,ll xidQ(x)’ i=1,2,..-,N,0Q eﬁ} .

If ¢ is a boundary point of M,, then by Remark 6 in [2], W,(P) = 0. In the
following therefore we make

ASSUMPTION 2.1. ¢ is an interior point of the set M, in (6). Then (see
equation (3) in [2]),

(10) Evi{(P)>0, all j<N, and all Pe._#(c),

Now by (1) and putting #(X) = ¢, for X = j, we obtain as shown in Remark 4
of [2],

(11) Ry(t, P) = ¢, — Fiieo (N2t38041,50a(P) — 15, 4(P)} -

As &y,(P) > 0 by (10), the right-hand side of (11) is minimized by putting

(12) t; = En,in(P)/En,(P) 5

so that we obtain the Bayes risk

(13) Ry(P) = ¢ — 2iiao (1)Eh+1,01(P)/ S, 5(P) -

(12) and (13) are given in Remark 5 and formula (4) in [2].

We now use the following results given in [2], (equations (11) and (17) of [2]):
When the first N moments of P have fixed values, its (N ++ 1)st moment has a
maximum value, say v#,, and a minimum value vy,, which are respectively
attained for some probability distributions P+ and P-, and
(14) A R
where r, depends only on the first N moments of P and is the same constant
as that which appears in (5). Hence for Pe_#(c), P* and P~ e _#;(c) and
Vi1 V4 and ry depend on c only. Further, if ¢ is an interior point of the set
M, in (9),

(15) ry>0.

Also (Remark 6 in [2]) the distributions of © induced by P+ and P~ are uniquely
determined, so that the (N + 2)nd moments of P+ and P~ have unique values
v4i, and vy3, say, which depend only on the first N moments of P, so that for
P e _#(¢), v}, and vy7, depend on ¢ only. Let

(16) Vs — ViTa = Ay -

We next obtain a lower bound for R,(P-) by using (13). By the second equality
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in formula (23) in [2], ‘
EN+1,j+1(P+) - £N+1,i+l(P‘) = (=1)"iry .
Hence by (15), if (N — j) is an even number:

(17) $N+l,f+1(P_) < €N+1,:i+1(P+) ;

also since P~ and P* € _#,(c), using the expansion in terms of moments in (8),
we have

(18) €, i(P7) = En o(PY);
next by an application of Schwarz’ inequality and using (10), we have

(19) Srnin®) g ), for all Pe #(c),
Ex,4(P)

and in particular for P = P+; lastly by (8), (14) and (16)

(20) Evinira(PY) = Eypaina(P7) — (N = jry + Ay .

Combining equations (17) to (20) we obtain that for even values of (N — j)

(1) ¥+1,541(P7)Ex i (P7) = Eyaa,ia(P7) — (N — )ry + 4y .

We now obtain an upper bound for 1, by using a device of ‘conjugate’ prob-
ability distributions. For any df F(f) of © we define its conjugate distribution
to be F’(¢) where

(22) F'(0) = F(1 — 0) .

If P e Zinduces the df F and P’ ¢ Zthe df F’ in (22), then we say that P’ is
conjugate to P. From (22) it follows that for any function ¢(0)

(23) E,$(®) = End(1 — ©).

Next consider the relationship between the Bayes risks of P and P’. We have
from (1) and (23)

(24) Ry(t, P) = E,[t(X) — OF = Ep[1(X) — (1 — O)]
= E,[—1(X) + O] = Ry(¢', P')

where we have put '(X) = 1 — #(X).
From (24) and (2), it follows that

(25) Ry (P) = Ry(P") for all Pe .

Next consider the variation of P’ as P varies on _#(c). Let ¢/, i=1,2, ...,
N be the first N moments of P’. By (23),

(26) ¢/ = Ep 0 = E(1 — 60) = Yi_o (—=1)())e,

where ¢, is taken to be unity.
Let ¢’ = (¢/, ¢/, - -+, ¢y'). As P varies over .#,(c), P’ varies on _#(c’). If
¢ is an interior point of the set M, in (9), there exists more than one induced
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distribution of @ for Pe_#(c) (Remark (6) in [2]). Consequently by (22),
there exists more than one induced distribution of © for P’ ¢ _#;(c’); hence ¢’
is also an interior point of My(c’). Let

r+ ’— + - P+t r—— ’ ’
VNi1s VYatio p+, P, Yvias VYyias Ty s ZN

have the same meanings for P’ e _#,(c’) as corresponding undashed symbols
have for P e _#;(c). For any P e _#,,(c) let the (N + 1)st moments of P and
P" be vy, Viy,, Tespectively. By (23),
27) Vi = Ep Ot = E (1 — ©)7+!
= Zia (=1 (e, + (1) vy

Hence if N is an odd number v}, is maximized (minimized) when v, is maxi-
mized (minimized). (This result is contained in Theorem 4 in [3].) Thus P'*,
P'~ are the conjugate probability distributions to P+ and P- respectively. Similar-
ly if N is even, P'*, P'~ are respectively conjugate to P~ and P*. Further, by
(27) and (14),
(28) ry = Vi — Vi = Vi — Yy =Ty -
(Note: (28) is an immediate consequence of Theorem 4 and formula (1.2) [3].)

Next consider 4,'. Using the remarks below (27) we obtain that if N is an
odd number

ZN, — P'+®N+2 _ EP’—®N+2
(29) = Epu(l — O — E, (1 — Q)+
= (N4 2)ry — 2.

If N is an even number then in the second step in (29), P* and P- are inter-
changed, so that the same final result holds. Hence for all N

(30) Ay + Ay = (N + 2)ry .
Thus one out of the following alternatives must hold:
(31'i) ZNéN—Zl_2rN,
(31-ii) 2, = N;f L

Suppose (31-i) holds. Substituting for 2, in (2i) by (31-i) and combining the
resulting inequality which holds for even values of (N — j) with (19) which
holds for all j, we obtain for j =0, 1, ..., N,

(32) Ev1,501(P7)/ 6w i(P7) S EyiaaP7) — 3(N — 2 — 2)*Cy 1y

where (x)* = x or 0, according as x = or < 0 and {, = 1 or 0, according as k
is an even integer or not.
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Note further that for P e _#;(c),

(33) §=0 (NEwsa,i4(P) = E{ L1 ()01 — ©)7=7}
= EP@)“ =Cy.

Put

(34) Ky- =3 2'(N—2 = 2)(§)27",

where )}’ denotes summation over values of j for which (i) (N — j) is an even
integer and (ii) 0 < j < 4(N — 2). Multiplying both sides of (32) by (¥) and
summing over j = 0, 1, ..., N, we obtain

=0 D€V 41, 10(P7)[Ex,i(P7) = ¢ — 2y Ky~ .
Hence by (13)
(35) Ry(P-) = 2YKyry .

By an argument exactly similar to that from (16) onwards, except that we con-
sider odd values of (N — j) for which (20) holds with P+ and P- interchanged
we obtain that

(36) Ry(P*) =z 2"Ky*ry ,
where K+ = 1 31*(N — 2j — 2)(¥)2-¥ and };* denotes summation over values
of j for which (i) (N — j) is an odd integer and (ii) 0 < j < 4(N — 2).

It is shown by Skibinsky [2] that R,(P) attains its minimum either for P = P+
or for P = P-. Hence putting

37 Ky = min (K-, K,*),
we obtain from (35) and (36) that
(38) R, (P) = 2°r,K, for Pe #y(c) .

We have derived (38) by assuming that the alternative (31-i) holds. If (31-i)
does not hold then (31-ii) holds. Hence the whole of the argument from (32)
to (38) applies to the conjugate probability distributions P’, and using (28) we
obtain that

(39) Ry(P') = 2%ry Ky .

But since Ry(P’) = Ry(P) by (25), it follows from (39) that (38) holds always,
whether (31-i) holds or (31-ii).

We have thus obtained a lower bound for the Bayes risk. We next consider
the behaviour of K-, K,* for large N.

3. Limits for K-, K,*. We shall next show that
(40) lim, ., (N~!Ky) = 3(27)"t.

The limit is proved by using a standard result regarding the approximation of
the binomial probabilities (¥)pig¥~7 by the Normal probabilities for j such that
JPN-t 0 as N— co (cf. Feller [1], Theorem 1, page 170). In applying the
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theorem we put throughout p = ¢ = 1. We have from (34)

(41) N4y~ = N4 S (N — 2))§)27 — 0,
where

(42) 0<dy—0 as N—oo.

Next as in Feller [1], put

(43-i) h = 2N-%,

(43-ii) X, = <g - j) h=(N— 2j)N*.

(Note that the definition of x; in (43-ii) differs only by a change of sign from
that in [1].) Consider values of x; such that x; < N¥, so that xN-* — 0 as
N — oo. Let ¢ be any given positive number which may be arbitrarily small.
By the result (2.11) in [1], page 170, there exists Ny(¢) such that for N = Ny(¢),

(44) ()27 — 2N"Hg(x,)| < 2eN~Hg(x;)

where ¢(x) = (27)~t exp(—x?*/2).
For convenience of notation put

(45) Cy = N},
It follows from (44) and (45) that
| 2% js0n X727 — 2N7H 205 <o X, 9(%))|

(46) = Dljsoy [X(F)27Y — 2N7hx; 6(x,)|
< 2eN-# 2ijsoy X H(X5) -

Since in the summation };'j assumes either even or odd values, the successive
values of x; in (43-ii) have a common difference of 4N-i. Hence
4N-* 2iz;soy X $(x;) is a Riemann sum for the integral {{¥ x¢(x)dx. Hence as
N — oo in (46)

(47) INTH P o X 9(%5) = & 17 xg(x) dx = $(2m)7¢.

Thus the right-hand side of (46) can be made arbitrarily small by taking N

sufficiently large. Hence the two terms in the left-hand side of (46) are asymp-
totically equal. It therefore follows from (47) that

(48) limy o, 3N7* 3% coy (N = 2)(F)277 = §(27)7F.

For x; > C,, we have from the theorem on page 178 in [1] (relation 5.2),
using (45)

(49) Doy (0277 ~ (2m)7tN"Hexp (—§N¥)

where ~ denotes asymptotic equality. Since N — 2j < N it follows from (49)
that for sufficiently large N

(30) 2oy (N — 2)(F)27" < 2(27)IN¥exp(—NY)
which — 0 as N — co. Combining (42), (48) and (50), we obtain (40).
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A similar argument holds good for K, * and hence (N~* K,*) and consequently
by (37) (N-*K,) have the same limiting value, i.e.

(51) lim,._., (N"tKy) = 1(27)* .

Let k be any arbitrary positive and fixed number less than unity, i.e. 0 < k < 1.
By (51), there exists N, such that

(52) Ky = % (27)-*N* for N= N .
Substituting for K, in (38) by (52) and then combining with (5) we obtain
(53) W,(P)|Ry(P) < % 4(27)PN-t for Nz N,.

(53) is proved on the Assumption 2.1 that ¢ is an interior point of the set M, in
(9). As observed in the remark following (9), if ¢ is not an interior point of
M, then Wy(P) = 0.

Thus (53) holds for all P € &, excluding P for which W(P) and R,(P) both
vanish. The result in (6) follows from (53). This completes its proof.

4. Boundedness of W, (P)/R,(P). It is observed in [2] that for N = 1, and
N = 2, the ratio W (P)/R,(P) is unbounded on .&”. We consider for what values
of N the ratio is bounded. From (37) and (38) it follows that R,(P) is bounded
away from zero if K,~ and K,* are both positive. One of these involves
summation over even j, and the other over odd j. Hence in order that each
summation should contain at least one term, the values j = 0 and j = 1 must
at least be admissible. Since the summation is over j such that j < N/2 — 1, it
follows that we must have 1 < N/2 — 1, so that N = 5. Hence for all N = 5,
the ratio W,y(P)/Ry(P) is bounded on &. Thus, for example, for N =5, it is
easily seen from (34) and (36) that K,- = 3, K,;* = 32-° so that by (38) and (5)
the upper bound for the ratio is 64/3. Similarly for N = 6, the upper bound is
32. Thus the question of the boundedness of the ratio remains unsettled only
for the two values N = 3 and 4.
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