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UNIFIED LARGE-SAMPLE THEORY OF GENERAL
CHI-SQUARED STATISTICS FOR TESTS OF FIT!

By DAvID S. MooRE AND M. C. SPRUILL
Purdue University

We present a unified large-sample theory of general chi-squared tests
of fit under composite null hypotheses and Pitman alternatives. The sta-
tistics are quadratic forms in the standardized cell frequencies, and we
allow random cells, k-variate observations from not necessarily continuous
distributions, and quite general estimates of unknown parameters. Gener-
alizations of published results on a number of specific chi-squared tests
follow. .

1. Introduction. The original Pearson y* test for goodness-of-fit to a fixed
distribution is based on observed cell frequencies in a set of fixed cells. In
practice we are often interested in testing the composite null hypothesis that
the observations come from a parametric family F(x|6) of distributions. To
obtain estimated cell frequencies for a y* test we must then estimate the parame-
ter @ (which is often a vector). If the estimator used is the maximum likelihood
estimator (MLE) of @ based on the cell frequencies (or another asymptotically
equivalent estimator), the resulting test is the Pearson-Fisher y? (see Cramér
(1946), Section 30.3). If instead the MLE based on the original data (or asymp-
totically equivalent estimator) is used, the resulting Chernoff-Lehmann (1954)
x* does not have a limiting y* null distribution. What is worse, the limiting null
distribution usually depends on the (unknown) true value of 4.

This unpleasant situation (and attempts to model the procedures often followed
by experimenters) leads to the use of cells which are themselves functions of the
data. We call these random cells. Watson (1959) and Roy (1956) independently
studied the random cell version of the Chernoff-Lehmann y?statistic and observed
that if F(x|6) is a location-scale family and the cells are chosen in the proper
manner, then the limiting null distribution does not depend on the true 6.
Random cells can of course be employed in the Pearson-Fisher statistic as well:
after obtaining the cells we “forget” that they are functions of the data and
calculate the usual MLE based on cell frequencies. Witting (1959) studied the
case in which cell boundaries are sample quantiles and multivariate generali-
zations. The univariate case of this random-cell y? statistic was further investi-

gated by Bofinger (1973).
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Large sample theory for fixed-cell y* statistics is based on the multinomial
distribution and does not depend on the dimension of the observations. Witting,
in his particular case, used the theory of statistically equivalent blocks to give
essentially dimension-free proofs. But rigorous proofs for other random-cell
cases are more difficult. The essential technique is to show that the difference
between the random-cell statistic and a fixed-cell statistic of similar form
approaches zero in probability as the sample size increases. This was first done
by Roy (1956). Chibisov (1971) and Moore (1971) realized independently that
this fact becomes routine when the tools of weak convergence of probability
measures are applied. Chibisov obtained the limiting distributions of the random-
cell versions of the Pearson-Fisher and Chernoff-Lehmann statistics under the
null hypothesis and also under sequences of Pitman alternatives. He gave proofs
only for univariate observations. Weak convergence results for empiric processes
in R* must be used if the observations are k-dimensional. This was done by
Moore (1970, 1971) who found the limiting null distributions of these random-
cell tests for rectangular cells in R*.

Several other authors have proposed “non-standard” y* goodness-of-fit statistics.
Kambhampati (1971) gave a quadratic form (not the sum of squares) of observed
minus expected cell frequencies having the property that its limiting null distri-
bution is y* when MLE’s from the original data are used. Chase (1972) studied
x* statistics of Pearson-Fisher and Chernoff-Lehmann type when the estimator
of 6 comes from a sample independent of the sample being tested for fit. Murty
and Gafarian (1970) studied the same tests when the estimator is based on both
the sample being tested and an independent sample. These three papers study
only the fixed-cell versions of their tests and obtain only the limiting null
distributions.

In this paper we follow the approach of Moore (1971) to give a large-sample
theory for a general class of y*statistics (nnd quadratic forms in the standardized
cell frequencies) which includes all statistics mentioned above and many other
variations as well. The theory allows multivariate observations and quite general
estimators of #, and considers sequences of local alternatives as well as the
composite null hypothesis. We further include some cases in which F(x|6) is
not continuous in x, in particular the case in which the set of possible discon-
tinuities is known and fixed. This covers many problems of interest, such as
testing the fit of integer-valued observations to a specific family such as the
Poisson. Example 4.1 shows that some other discontinuous F(x|@) are also
included.

The set of y? statistics studied here is limited by the method of proof, which
establishes that the difference between a random-cell statistic and a correspond-
ing fixed-cell statistic converges to zero in probability. If the number of cells
grows with the number 7 of observations at a rate faster than O(n?), this method
fails and the large-sample theory takes a different form. Thus, for example,
Kempthorne’s (1968) y* statistic cannot be studied in our framework, and has
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a normal limiting null distribution rather than the linear combination of y*
variates which is the limiting law of all statistics considered here.

Section 2 introduces necessary notation and assumptions. Section 3 presents
a useful association between an arbitrary distribution on R* and a continuous
distribution on the unit cube with all univariate marginals uniform. Section 4
presents the general theory, while Section 5 obtains specific results for one-sample
tests (Pearson-Fisher, Chernoff-Lehmann and Kambhampati) and Section 6
treats two-sample tests (Chase and Murty-Gafarian). Knowing the limiting
distributions of these statistics under Pitman alternatives makes possible some
power comparisons. These are discussed in Section 7.

2. Notation, definitions and assumptions. We observe Y, Y,, - - - independent
R*-valued random variables with df F(x|@, ). The parameter ¢ ranges over an
open set Q, in R™, while 7 ranges over a neighborhood of a point 7, in R*. We
write

F(x|0,n) = F(x|0)
so that the composite null hypothesis that the Y; have a df in the family F(x|6)

becomes
Hy:np=m,.

We will explore the large-sample behavior of tests for H, under the sequence of
parameter values (6,, 7,) where 0, € Q, and 7, = 7, + n~#y for fixed y e R*. H,
is the special case y = 0. (For sufficiently large n, 7, is in the neighborhood of
7, for which F(x|0, ) is defined. We will not constantly repeat the qualification
“for sufficiently large n.”) Many common alternatives are covered by this
model, for example the “contamination alternative” under which

F(x|0, 9) = (1 — n)F(x|0) + 7H(x)

for 0 < 5 < 1 and H a fixed df. Our model is that used by Chibisov (1971) in
his study of the univariate Pearson-Fisher and Chernoff-Lehmann statistics and
by Durbin (1973) in his study of the empiric process.

The cells for our y* tests are rectangles in R* with edges parallel to the coordi-
nate axes. They are functions of a variable ¢ defined on an open set Q, in R".
The resulting cells are denoted by I,(¢), ¢ = 1,2, - .., M and are understood
to be closed to the “north and east.” (Usually » = m and in the actual test
statistics ¢ is replaced by an estimator of . Thus a common choice of cells in
testing fit to the univariate normal family uses cell boundaries of the form
Y + a;s, for constants a;. In this case r = m = 2 and ¢ takes values in Q, =
{(x,y): —o0 < x < 0,y > 0}. Our formulation allows in addition boundaries
Y 4+ a;, with r =1 or cells bounded by sample «;-quantiles, in which case
r=M— 1)

In forming y* statistics the unknown parameter ¢ is estimated by 0, =
0,(Yy - -+, Y,)and the cells are chosen by ¢, = ¢,(Y;, - -+, ¥,). We will assume
that under (6,, 1,), ¢, — @, = 0,(1) for some ¢,€Q, and 8, — 0, = 0,(1). We
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will suppress arguments 0, ¢, n whenever they take the values 0,, ¢,, 1, respectively.
In particular, expected values and derivatives not otherwise identified are com-
puted under (6,, 7,).

The number of Y,, ..., Y, falling in the cell I,(¢) will be denoted by N,,(¢).
The cell probability for this cell under (@, ) is

Pa(a’ 75 gp) = SIg(go) dF(x|0, 77) M
Thus the “estimated cell probability” used in x* statistics is p,(0,, ¢,). The
standardized cell frequencies are
Nuo(9) = 1p,(0, 9> ¢)
[7po(0, 7, ©)1F

which is the oth component of an M-vector V,(4, 7, ¢).

If K0, ¢) is a nnd symmetric M X M matrix for each (0, ¢) in Q, x Q,, a
general y’ statistic has the form

2.1) T, =V, (0, ©.)K(On 0,)V (0,5 ©,) -

Standard y? statistics have this form with K(@,, ¢,) = I, (the identity matrix)
so that the statistic is ||V,(6,, ¢,|[>- The Pearson-Fisher statistic uses 6, = 6,
where 6, maximizes

vm(a’ 7 50) =

Zf:l Nna(son) logpa(a’ Son) .
The Chernoff-Lehmann statistic uses 8, = §, where §, maximizes

2iia log f(Y9)
and f(x|0) is the pdf of the df F(x|f) with respect to a ¢-finite dominating
measure which does not depend on #. We will see that the choice of ¢, affects
the limiting distributions only through its limit in probability ¢,, as was observed
by Watson (1959) and Chibisov (1971) for the cases they studied.
Our general assumptions—not all of which will always be invoked—are as
follows. Recall that 5, = 5, + n~ir.

Al. Under (0,,7,), 0, — 0, = O,(n") and ¢, — ¢, = 0,(1). Every vertex
x(¢p) of every cell I,(¢) is a continuous R*-valued function of ¢ in a neighborhood
of ¢,.

A2. For each g, p,(0, 7, ¢) is continuous in (0, », ¢) and continyously dif-
ferentiable in (0, ) in a neighborhood of (6, 7, ¢,). Moreover, > p, = 1and
P, > 0 for each o.

A3. F(x) = F(x|80,, n,) is continuous at every vertex x(¢p,) of every cell I,(¢,).
As n — oo, sup, |F(x|»,) — F(x)| — 0.

Ad. K0, ¢) = S(0, ¢)S(0, @) for an M x M matrix S(f, ¢) with entries con-
tinuous in (0, ¢) at (6,, ¢,)

AS. Under (6, 3,)

nt(0, — 0,) = n~t 11y k(Y 1) + Ar 4 0,(1)
for some m X p matrix 4 and measurable function A(x, ) from R* X R? to R™
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satisfying
E[h(Y, 74) [ (00> 72)] = O
E[R(Y, n)R(Y )| (O0s )] = L(74)
where L(7,) is a nnd m X m matrix converging to the finite nnd matrix L =
E[R(Y)h(Y)'] as n — co.
A6. The df’s F(x|y) possess pdf’s f(x|5) with respect to a ¢-finite dominating
measure v. As n— oo, f(x|7,) — f(x|n,) and A(y, 7,) — h(y) a.e. ().

Some comments on these assumptions are in order. A2 is a familiar as-
sumption slightly generalized to include 7. Since 6, and ¢, are unknown, in
practice this and other regularity assumptions must usually be assumed to hold
for all 0 in Q, and ¢ in Q,. An exception appears in Example 4.1. A3 is used
to handle the alternative case. In the null case it requires only that each vertex
x(¢p,) be a continuity point of F(x|6,). The continuity of F(x|7) assumed in A3
allows F(x |6, ») which are continuous in x or which have mass points fixed for
all (6, ), and some other cases as well.

A5 specifies the asymptotic behavior of the estimator 6, in a form used by
Durbin (Assumption Al in [12]), who explains its motivation. In particular,
the MLE’s d, and 4, both satisfy AS in most cases. In the case of 4, arguments
of Davidson and Lever (1970) can be used to show that when strong regularity
conditions hold, we have under (6,, 7,)

2.2)  ni(@,—0)=nt Np, 0 i‘%(;'-”—) + Iy + 0(1) -

Here J is the information matrix for F(x| @) at 6,,

J— E[(@logf)(&logf)’}
a0 00
Jy, is the m X p matrix
1= £[(2180) (181,
a0 oy
and we have used the convention that dg/af is the m-vector of derivatives with
respect to the components of 6.

The representation (2.2) for §, holds in many less regular cases as well. For

example, if F(x|6, ») has pdf
f(x10,m) = (1 — p)fe=" + k(%) 7 =0

for a pdf k(x), the MLE 4, for the double exponential distribution is the median.
Even though d log f/d6 is a step function, calculation shows that (2.2) holds.

In the case of the MLE 4, based on cell frequencies, Watson (1959) observed
that under suitable regularity conditions these estimators in the random-cell
case have the same limiting behavior as in the fixed-cell case under the null
hypothesis, namely

(2.3) n¥(@, — 0;) = (B'B)B'V, + o,(1)
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where the M X m matrix B has (i, j)th entry
ap,

-+ P

Pi 30,

There is little difficulty in going on to show that in the presence of sufficiently
strong regularity conditions we have a form for 4, which satisfies A5, namely
that under (6,, 7,)

(2.4) n¥(@, — 0,) = (B'B)'B'V,(1,) + (B'B) BBy + 0,(1)
where the M X p matrix B, has (i, j)th entry
-3 0p;
pt Wi,

on;

J

The representation (2.4) also holds in many cases in which the regularity con-
ditions needed to derive it do not hold.

Assumption A6 is used to obtain the specific behavior under (6, 7,) of statistics
T, with estimators 6, satisfying AS5. It is not needed when limiting null distri-
butions are being studied. Although A6 is considerably more restrictive than
our other assumptions, it is less restrictive that the conditions on f(x|») used by
Chibisov, the only other author to obtain limiting alternative distributions for
general random-cell tests.

In general, the assumptions given become less restrictive if only the null case
is of interest. We have usually not commented separately on the null case, but
expect readers to set F(x |0, ) = F(x|6) and y = 0 to obtain null case results.

3. Preliminary results. The basic tool used to relate random-cell chi-squared
tests to fixed-cell tests is weak convergence of empiric df processes on the unit
cube E* of R*. These processes are considered as probability distributions on
the space D, of functions on E* whose only discontinuities are “jumps”. Theset C;
of continuous functions on E* is a subset of D,. The theory of weak convergence
of measures on D, equipped with a Skorohod-type topology <, is given by
Bickel and Wichura (1971) and Neuhaus (1971). Suppose G(x|8, 1) is a family
of continuous df’s on E* having all univariate marginal df’s uniform on [0, 1]
and such that G(x|6,, ) is continuous in 7 near ,. Let G, be the empiric df
after n observations from G and define the process

Ya(x) = n{Gy(x) — G(x| 0y, 74)}
where 7, is as in Section 2. Neuhaus has given a result (Satz 3.1 of Neuhaus
(1973)) of which the following lemma is a special case.

LemMa 3.1 (Neuhaus). Under the assumptions stated, y, under (,, 1,) converges
weakly on (D,, Z,) to a Gaussian process y, such that P(y,e C,) = 1.

Since Lemma 3.1 (and most other weak convergence results for processes with
k-dimensional time) refers to continuous df’s on E* having uniform univariate
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marginal distributions, we require an association between distributions on R*
and such distributions. The following lemma provides such an association.

LeEMMA 3.2. Let F be an arbitrary df on R* with univariate marginal df’s F,, - - .,
F,. Define M: R* — E* by
Mty - -5 1) = (Fy(t), -+ -5 Fi(t)) -
Then there exists a continuous df G on E* with all univariate marginals uniform on

[0, 1] such that for all t in R*
F(t) = G(M(r)) .

ProoF. Suppose X = (X, - .-, X;) is a random variable with df F. Suppose
that V,, V,, - -, ¥, are independent random variables uniform on [0, 1] and
independent of X. Define fori =1, ..., k

U= - V)F(X;—) + V. F(X))
and let G be the joint df of U,, ..., U,. It is clear that each U, is uniformly
distributed on [0, 1]. G thus has all univariate marginals uniform, and must be
continuous since all its univariate marginals are. It is not difficult to check that
forany t = (¢, -- -, t;) in R¥
PIU, = Fy(t), -+ U S F(W)] = P[X, =1, -+, X, < 1]

The G whose existence is asserted by Lemma 3.1 need not be unique. The
particular G constructed in the proof above has an additional property which is
sometimes useful but not used here: if F is replaced by a family F(z | ¢) satisfying
sup, |F(t|§) — F(t| )| — 0 as £ — &, then the corresponding family G(x| &) on
E* also satisfies sup, |G(x|§) — G(x|§,)| — 0 as & — &,

4. General y’ statistics. Both cell frequencies and cell probabilities for the
rectangular cell /,(p) can be expressed in terms of the difference operator A, (¢)

defined by
Po(®) = (1,000 dF(x) = A(p)F .

A,(p) can be expressed explicitly as a linear combination of F(x(¢)) for vertices
x(¢) of I,(¢). Define the empiric process

Wn(x) = ni{Fn(x) - F(X|7]”)} .
The troublesome error terms in assessing large sample behavior of #* statistics
arise from the difference between the random cells 7,(¢,) actually used and the
fixed cells I,(¢,) which they approach. The following lemma disposes of these
terms.

LemMA 4.1. Suppose Al, A2, and A3 hold. Then under (0,, 7,)
A,,(gD”) Wn - Aa(goO)Wn = op(l) *
Proor. Foreachn =0,1, 2, ... define
M, (t, - -5 t) = (Fu(ta] 0a)s = -5 Fi(te| 7))
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where F, are the univariate marginal df’s of F. For Y,, ..., Y, having df
F(t|9,), let H,, ---, H, be the random variables constructed in the proof of
Lemma 3.2 having df G(x|»,). If G, is the empiric df of the H,, then

W(t) = yu(My(®)
where y, is weakly convergent by Lemma 3.1. It is enough to show that

yn(Mn(x(Son))) - yn(Mn(x(¢0))) = 09(1)

for vertices x(¢) of I,(¢). But x(¢,) — x(¢,) = 0,(1) by Al, and thus M, (x(¢,)) —
My(x(gy)) = 0,(1) by A3.
Since y, converges in (D, Z,) to a continuous process and convergence in
(D, ) to a continuous limit is uniform, the usual “random change of time”
argument (see Billingsley (1968), page 145) establishes the desired result.

We can now describe the limiting behavior of the vector of standardized cell
frequencies under quite general conditions.

THEOREM 4.1. If Al, A2 and A3 hold, then under (0,, 1,)
Vm(am Son) = Vn(’?n) - Bni(a'n - 00) + Bm)" + 09(1) .
Proor. Let us use the notation

Upo(0, 1, 9) = n7H{N,,(¢) — npy(0, 1, @)} -

Uno(Ons Pu) — Upo(Nn) = Aa(¢n) W, — Aa(%) w.
+ "*{Pa(ﬂm gD,,,) - P0(0M gD,,)} .
Taylor’s Theorem and Lemma 4.1 reduce the right-hand side to

’ ’
(%) i =10 = (%) 0. = 00 + 0,01
The result of the theorem follows using continuity of p, and the usual Mann-
Wald techniques.

Theorem 4.1 permits some immediate conclusions. First, ¢, affects the large
sample theory only through its p-limit ¢,. Random-cell versions of all statistics
of form T, therefore differ by o,(1) (under both null and alternative hypotheses)
from the corresponding statistics with fixed cells 7,(¢,). (This fails when the
number of cells increases with n faster than O(nt).) Second, if ¢, is superefficient,
so that 6, — 6, = o,(n™?), the limiting behavior of V,(0,, ¢,) (and hence that of
any of our tests) is that of

Then

Vn(’]n) + Bu?’ ¢

This is the behavior we would obtain if the true 6, were known and no estimation
were required.

The generality of Theorem 4.1 is best appreciated by example. In the example
below we consider only the large-sample behavior under the null distribution,
and therefore take y = 0 and F(x |8, ) = F(x|6).
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ExaMPLE 4.1. Consider the family of translated geometric distributions with

mass function
fxlp ) =p=(l—p)  x=cctlet2 0.
Here 6 = (p, c¢) and

Q={pe):0<p<1l —o0<c< oo}
The MLE is é” = (pn, 67;) where
Y-min Y,

¢, =min,_,_, Y, b= m '

We will use random cells with boundaries x(c,) where

X(p)=¢—%+
and 0 < j, < j, < ++- < jyy < oo are integers. This example has several
pathological properties: ¢, is superefficient, while p,, is not, and the support of
f(x|p, ¢) changes with c. Yet when random cells as above are used, Theorem
4.1 applies.

First, ¢, eventually equals the true ¢, with probability 1 and from this it
follows that p, — p, = O,(n"*) as required. The cell boundaries are always
distance  from mass points of the distribution and so are continuity points of
the df. The cell probabilities p,(6, ¢) are continuous in (¢, ¢) in a neighborhood
of (6,, ¢,) and are all positive at (6,, ¢,). (They are not continuous for all (4, ¢),
but we did not require that.) Thus Al, A2 and A3 are satisfied and Theorem
4.1 holds. Applied to this example that theorem states that under (p,, ¢,)

e (g, — pi) + o)
P

vnv(én’ 907») = (npa)_k{NM - npa} - Pa_&

where by convention p, = p,(p, ¢;). Thus the Chernoff-Lehmann statistic
|V (8,» ©.)||* with random cells as above has the same limiting null distribution
as the statistic with ¢, known, fixed cells with boundaries ¢, — % + j,, and p
estimated by
s Y —c
Y¥—¢+1°

n —

That this should be so is “obvious”, but inclusion of such examples is a test of
purportedly general theorems.

To describe the limiting distribution of general y* statistics of the form T,
given in (2.1) requires additional assumptions and more notation. In what
follows, A, h and L are as in AS, S is as in A4 and B and B,, are as defined in
Section 2. Define also

¢ = [By, — BA]y (M-vector)
to =Sy
q’ — (Pl&’ . .,PM‘))
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x.(y) indicator function of [I,(p,) and W(y) the M-
vector with gth component [x,(y) — p,l/p.t
3 =1, — q¢ + BLB' — BE[K(Y)W(Y)]
— E[W(Y)h(Y)B' (M X M matrix)
Z, = 8ZS.

THEOREM 4.2. If Al through AS hold with 5 = n,and y = 0, then under (0,, 7,)
the statistic T, has as its limiting distribution the distribution of

2V A1

where 2; are the characteristic roots of X, and the y3; are independent y* variables
with 1 degree of freedom.

If Al through A6 hold, T, has as its limiting distribution under (0, 1,) the distri-
bution of

2220 403505 A5) + Diagmo¥s

where y3,(v;*/4;) are independent noncentral y* variables with 1 degree of freedom
and noncentrality parameter v?|4;, and v; are the components of the M-vector v =
P’y where P is an orthogonal matrix such that P'Y, P is diagonal.

Proor. We prove only the second part. By Theorem 4.1 and AS, under

(00> 74)
Vn(a'n’ Son) = Vn(vn) - Bn_é Z?=1 h(Yt’ vn) + [" + op(l) .
The first two terms on the right are n~* times the sum of the n M-vectors

W,(Y,) — Bh,(Y;) where W,(Y) has gth component (y,(Y) — p.(7.))/P.(7.)* and
h,(Y) = h(Y, 7,). Each such vector has mean 0 and covariance matrix

2, = E[(W,(Y) — Bh(Y))(Wu(Y) — Bh,(Y))'| (60> 7)]

= Iy — 4(7:)9(14)" + BL(74)B" — BE[R, (Y)W, (Y)'| (60> 7)]
— E[W(Y)h(Y)' | (00 7)]1B" -

Now as n — oo, Z, converges to X. The first two terms in X, clearly approach
the corresponding terms in Z by A2 and A5. To establish convergence of the
last two terms it is sufficient to consider terms of the form

4.1) § 92N 1) d(3)

where g,(y) is one of the m components of #,(y). (We denote by v the
common dominating measure. This integral exists because A5 states that
§ 9.9 f(¥|na) dv(y) = 0.) The absolute value of the integrand in (4.1) is
dominated by f,(1 + g,%), where f,(y) = f(y|7.). By A6, this converges a.e.
(v) and
V(1 + 9.7 du(y) = § (1 4 g) du(y) <

where f and g correspond to 7, This is sufficient for convergence of (4.1) to
§ 90)2.(»)f(») dy, which completes the proof that X, converges to Z.
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The usual characteristic function proof of the multivariate central limit
theorem (see e.g. Breiman (1968), page 238) is not affected by the presence of
covariances varying with n but approaching a limiting covariance matrix. So
under (0,, 1,.), V(0. ¢,) converges in law to N(z, X), and hence S'(0,,, ¢,)V (0., ¢,)
converges in law to N(g,, %,). Now

r,= ”S,(en’ )V (0> SDn)IFx .
If P is orthogonal and P'X P = A is diagonal with diagonal entries 4,, - - -, 4,
the sum of squares of the components of N(y,, Z,) is well known to have the
distribution stated in the theorem. This is therefore the limiting distribution
of T,.

Theorem 4.2 appears unwieldy, but we should recall that for the usual y*
statistics S is the identity matrix so that £, = X and g, = #. We will see in the
next section that when @, is , or , the general form given for I simplifies
immediately. Finally, the characteristic roots 4, corresponding to nonzero v,
are strictly positive in most problems, so that the constant term in the limiting
alternative distribution is usually not present.

A primary motivation for using random-cell statistics is to obtain statistics
whose null distribution does not depend on the unknown parameter ¢ in location-
scale cases. We will give a general result of this type by noting that under as-
sumptions to be stated the statistic T, is unchanged by linear transformations
of the observations Y,. This method is due to Dahiya and Gurland (1972), who
use it in a special case. Here are our assumptions. (For the remainder of this
section we will denote the jth component of a vector x by x7.)

1_ g k __ gk-1
BI. F(yl,---,y"lﬁ):F(y - LW)

for —co < i '< c0cand * >0,j=1, ..., k.
B2. If Z= (2" ..., Z*% where Zi =a;Y? + B, for any —oo < a; < oo
and 8, >0, =1, ..., k then 6, satisfies
0,25 NZy, +++5 Z,) = a;0,2 Yy, -+, Y,) + By
0,5(Zyy s Zy) = a;0,25(Yy, « -+, Y,) j=1,.., k.
B3. r = m = 2k and each vertex x(¢) and ¢, satisfy
Xpu(Zys - v+ Z,)) = a;jxi(pn(Yys -+ -5 Vo)) + B
forj=1,.--,k.
B4. KO.Z, -+, Z,), 0u(Zys -+ Z,)) = K(0,(Y1s -+ -5 Ya)s 0u(Yes -+ -5 Y,)) -

THEOREM 4.3. If Bl through B4 are sattsﬁea’ the statistic T, has a distribution
which does not depend on the true 0.

Proor. It is easy to see that under B1 through B3 p,(4,, ¢,) is unchanged by
transforming Y to Z. Moreover, the number of Z, - - -, Z, in I (¢,(Z,, - - -, Z,))
is the same as the number of Y;, ..., Y, in the cell I (¢ (Y3, -+, ¥,)). So
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V(0,5 ¢,) is invariant under all linear transformation of the Y,’s. If B4 holds,
this is also true of T,, which must therefore have a distribution not depending
on the location-scale parameter 4.

Theorem 4.3 is quite general. Note that B3 is satisfied when the vertices have
components xi(¢) = ¢*~' + a,;¢* and ¢, satisfies B2, whether or not ¢, = 4,.
Thus Theorem 4.3 covers the Dahiya-Gurland result, as well as (for example)
the use of sample quantiles as cell boundaries in testing fit to a univariate location-
scale family as long as 6, satisfies B2. Since B2 holds for the MLE’s 4, and 4,
and it can be checked that Kambhampati’s choice of K satisfies B4 (as the
identity matrix obviously does), all the one-sample statistics discussed in Section
2 are covered. Notice, however, that Bl demands that F be continuous in x
in order to be continuous in #, so that Theorem 4.1 on limiting behavior and
Theorem 4.3 can be applied together only when F is continuous. The usual »?
tests for discrete families are not parameter-free.

5. One-sample »* tests. Theorem 4.2 facilitates a unified derivation of the
limiting distributions of the (multivariate, random-cell) one-sample statistics

Ty = [|[Va@,s @)\ (Pearson-Fisher)
Ty, = ||[Va(0,s 0| (Chernoff-Lehmann)
Ton = Vollas 02Q0r 92)Vo00s 02)

0@.,, ¢,) = (I, — B,J,”'B,)"*, B, =B, ¢,) J,=J@b,).
T,, is Kambhampati’s statistic. Kambhampati (1971) used
Q(én’ 5%) = IM + Bn["n - Bn,Bn]_an,

which may be verified to be equal to our Q. Our expression for the normaliz-
ing matrix is more convenient for the theoretical work below.
As n — oo, Q(8,, ¢,) approaches

Q =, — BJ'B)™!
in probability. Clearly T, is defined (for sufficiently large n) and the remarks

above are valid only if J/ — B’B, which is always nnd, is pd. Here are the re-
gularity assumptions we now make.

Cl. Al, A2, A3 and A6 hold.

C2. m £ M and the matrix with entries dp,/d6; has rank m.

C3. (2.4) holds, so that 8, satisfies A5 with 4 = (B'B)"*B'B,, and h(y) =
(B'B)7B'W(y).

C4. log f(x|0, ) is differentiable with respect to (8, ) at (6,, ,). The matrix
J is pd and J,, is finite. (9/00)F(x|¢) may be evaluated by differentiating f(x| )
under the integral sign for all x and 6 = 6,.

C5. (2.2) holds, so that @, satisfies AS with 4 =J-J,, and A(y) =

J=(9 10g f(y 10, 7)/30)| .5,
C6. J — B'B is pd.

where
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Let us denote by 2,_,,, - -+, 4,,_; the m roots of the determinantal equation
|BB —(1—-2)J=0,

which always satisfy 0 < 2; < 1 and satisfy 0 < 2; < 1 when J — B'B is pd.
Finally, let ’
C = B(B'B)™'B’ = [l — ClByr .

The following lemma will be applied both here and in Section 6. Denote by e
the M-vector with all components 1, so that if 4 is any M X M diagonal matrix,
the jth component [Ae]; of Ae is the jth diagonal element of 4.

LemMA 5.1. If C2 holds, J is pd and all components of q are positive, then there
exists an orthogonal matrix P which simultaneously diagonalizes qq', C and BJ~'B’
and which satisfies

() [P'gq'Pe]; =0 j=1,.--,M—1
=1 j=M,
(2) [P'CPe]; =0 j=1L .- M—m—-1,M
=1 j=M-m ..., M—1,
(3) [P'BJ'B'Pe]; =0 j=14L.--- M—m—-1,M
=1—]] j:M—m,---,M—l.

Proor. Routine matrix manipulation shows that g¢’, C and BJ~'B’ are com-
muting symmetric matrices, so that an orthogonal P exists which simultaneously
diagonalizes them. Moreover, g¢’ and C are orthogonal projections having ranks
1 and m respectively, so that by proper choice of basis we can take P to satisfy
(1) and (2). BJ~'B’ has rank m and range contained in the range of C. It
follows that the characteristic roots of BJ='B’ are 0 except for those associated
with characteristic vectors in the range of C. That these are 1 — 2; follows

easily from the fact that they are roots of the determinantal equation
|BJ7'B’ — BI| = 0.

THEOREM 5.1. When C1, C2 and C3 hold T,, has limiting distribution
Xor—m—1 under (60, )
Yir-m-a(||all’)  under (65, 7,) .
When C1, C2, C4, CS and C6 hold, T,, has limiting distribution
Yoreme1 + 2 t—m A5 255 under (64, 1)
Yi-ma(|all’) + Zi5t-m 4 215(v5*2;)  under (0o, 7,) .
When C1, C2, C4, C5 and C6 hold, T,, has limiting distribution
Xir-1 under (60’ )
Tl + 235-nvi’(2;)  under (65, 7,) .

Proor. Referring to the notation of Theorem 4.2, we have using C* = C and
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¢'B = 0 that for T,
Z,=I—q¢ - C

th=[Iy — Cl]By7.
For T,, we see that L = J-! and hence
Z, =1, —q9 — BI7'B' Uy = [Byy — BI7Wy]r .
Lemma 5.1 now applies. Further, if v, = P’'y#, and v, = P'y, we see that y,; =

v forj=1,...,M—m—1, Mand v,; =0 for j =M —m, ..., M. The
theorem now follows from Theorem 4.2, taking v; = v,;.

6. Two-sample y* tests. The two-sample statistics of Chase (1972) and Murty-
Gafarian (1970) require only minor modifications of the arguments already given,
as do the k-sample analogs which we will not consider. Chase considers the case
in which 0, = 6,(Y,41, - - *» Yopymw) Where Y, 1, -+, Y, ., is a sample from
F(x|0, n) independentof Y3, - .-, Y,. Weallow ¢, = ¢,(Yy, - -+, Y, my) a5 Well.
Theorem 4.1 continues to apply to V,(4,, ¢,) and Theorem 4.2 is modified only
by the fact that in A5 n must now be replaced by m(n) since 6, is based on a
sample of size m(n). Combining this version of A5 with Theorem 4.1 and as-
suming that as n — co, m(n) — co and n/m(n) — 7 = O establishes that under

(00’ %)

where

Vn(ﬁ'n’ SD'IL) _)_7 N(qu" Zr)

Yo = [Byy — t*BAJy
X, =1I,—qq + tBLB'.
Theorem 4.2 then applies with , I replaced by y,, =.. For the special cases §

and @ we therefore have the following generalization of Chase’s result, to which
we have added a two-sample version of Kambhampati’s statistic.

THEOREM 6.1. Suppose that as n — oo, nfm(n) — z. If C1, C2 and C3 with n
replaced by m(n) hold, then

T, = IIVn(ém(n)’ gon)”2
has limiting distribution
Lir-m-1 + (1 + 7)tu’ under (0o, 1,)
Yir-m—a(llall) + (1 + Ol — wll’)  under (0o, 71,) -
If C1, C2, C4, C6 and CS5 with n replaced by m(n) hold, then

T, = IIVn(ém('n)’ eI
has limiting distribution
Xir-m-1 T 225 i—m X215 under (0o, 1,)

Lr-m—a(leall) + ZiS-m @208 a;)  under (6o, 7,)
a, =1+ (1 —2)r

J

ng;;}_m ‘Bj2 = ||lg. — -

where
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If Cl, C2, C4, C6 and CS with n replaced by m(n) hold, and Q, =
(I + (nfm(n))B,J,”B,')* then

Ty, = n(ém('n)’ ¢n)'Qn(ém(ﬂ)’ gDn)Vn(ém(n)’ ¢n)
has limiting distribution

X1 under (0o, 7o)
Bea(llell® + 25w B[a;)  under (05, 7,) -
ProoF. When 0, = 0,,,,(Yui1s - +» ¥,

n

+mm) Calculation shows that
Z. =1y —qq +C
fre =+ (1 — T)CByr .

When 6, = 6, (Vi1 - - +» Y,

n+m(n)

), we see that
2. =1, —qq + tBJ7'B’
te =ty + (1 — T)BJI Yy .
Applying Lemma 5.1 and Theorem 4.2 as in Theorem 5.1 completes the proof.
Note that when r = 0 the limiting distribution of T,,, T;, and T, is
xi—1(||Bia7|)?) since g, = B,y then. This is the same as the limiting distribution
of ||V,(60s @0)||% the statistic when 6, is known and no estimation is required.
Murty and Gafarian consider the case in which 6, = 0,(Yy, -+ -5 Yopmw) I8
based on both samples and again only Y, -- -, Y, are tested for fit. Let N(n) =
n + m(n) and assume that n/N(n) — ¢ as n — co. Note that 0 < z < 1 always.
Arguments similar to those employed in Theorem 6.1 show that the mean g,

of the limiting distribution of ¥,(d,, ¢,) is as above and establish the following
theorem.

THEOREM 6.2. Suppose that as n — oo, n/N(n) — ¢. If Cl, C2 and C3 with n
replaced by N(n) hold, then

Tm = ”V'n(élv'('n)’ son)“2
has limiting distribution

Xit-m-1 + (L — O’ under (0o, 1)
Lar-maa(llea]?) + (1 — Ogu’(|tte — ll’)  under  (6o; 7,) -
If C1, C2, C4, C6 and CS with n replaced by N(n) hold, then

Ty, = “Vn(él\’(n)’ son)”2
has limiting distribution

Xi-m-1 + 2 55t-m 0521 under (0o, 7o)
Lir-m—([|l]") + Z-m 0;214(8,°/0;)  under (60, 1)
0, =1—(1—=2)r
and the f; are as before. If C1, C2, C4, C6 and C5 with n replaced by N(n)

where
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hold and

-1
=(1, - " B,,J,,-lB,/) , then
e (” N(n)

T9n = n(éN(n)’ gDn)IQn(éN(n)’ Son)Vn(éN(n)’ Son)

has limiting distribution

X1 under (6,, 1)
L]l + Zi-m B5°/0;)  under (0o, 7,) -

When 7 = 0, these distributions are again the same as the case in which 6,
is known. When r = 1, we have no additional information (in the limit) from
the second sample and as expected T, is asymptotically equivalent to T,,, Ty,
to T,, and T,, to T,,.

7. Comparison of y* tests. The limiting null and alternative distributions
which we have presented can be used computationally to obtain critical points
of #* tests and power against various alternatives. Methods of computation and
results in this direction are given by Moore in Section 4 of [16] and especially
by Dahiya and Gurland (1972, 1973). Explicit computation is unfortunately
somewhat complicated.

Some general comparisons of these statistics are possible in special cases, as
Chibisov (1971) noted for T,, and T,,. Chibisov displays examples of each of
the following special cases.

Case 1. ||p|* = 0, but some v/?/2; > 0.

H, H,
Ty Xar-m— Xir—m—1
Ton Lor-m—r + DHm 4005 Lrem—r + D4 4204005 25)
Ty A3 Xar-1( DM =w v i 45) -

In this case, the T, test of (limiting) size & has power « so that T,, and T,, are
both more powerful.

Case 2. ||| > O butall vy, = 0.
H i

H, ) H,
Ty XAi-m— X%l—m-l(”ﬂl”z)
Tow Xir-m-1+ D0m A0l Lr-m—a(lleall’) + 285 4521
Ty X3 X?lf—l(“#l”z) .

Here the unique most powerful size «a test of H, vs. H, based on T,, is the size
a upper tail test. Each of T,, and T, has the distribution of T, 4 V, where V'
has the same distribution independent of T;, under both H, and H,. Thus the
upper tail T,, and T, tests can be reproduced as randomized tests based on T,
and are less powerful than the T, test.
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We see that T, can be either more or less powerful (limiting power against
Pitman alternatives) than both 7,, and T,,, so that no uniform dominance exists
involving T,,. When T,, and T,, are compared by means of approximate Ba-
hadur slope against non-contiguous alternatives, Spruill (1973) shows that T,
is uniformly at least as good as T,,. The analogous result for power against
Pitman alternatives is not apparent.

One further comparison is possible. When ||x|]* > 0 and 7 = 1 in T,, (both
samples are of equal size in the limit), then ¢, = p, and reference to Theorem
6.1 shows that T,, is more powerful than T,, by the argument used is Case 2
above.
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