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NORMAL-THEORY APPROXIMATIONS TO TESTS
FOR LINEAR HYPOTHESES

By D. R. JENSEN' AND L. S. MAYER®
Virginia Polytechnic Institute and State University

Let {y1, ---,y~} be N independent repetitions of an experiment for
which &y = XB and &(y — XB)(y — XB) = ¢2I, where X is nonstochastic
of full rank and 8’ = [B¢/, - -+, B+/] and ¢? are unknown parameters. We
investigate some large-sample properties of N*(By — B), of ¥y = N(fn —
BoYT-X(Bx — Bo)/o?, and of

Vi = NBv; — BioyT5;(Bni — Bi)lo*; l<jsr
where ﬁN = N1TX(y; + -+ + y~) and T = [T;;] = (X’X)~1. Our conclu-
sions thus apply to problems of inference regarding 8 and {8, - -, B:}.

Given certain higher-order moments of y, we provide bounds of the Berry-
Esséen type on the rates of convergence to their limiting forms of the dis-
tributions of Né(ﬁN — B), of Vn, of {Vn1, ---, Vns}, and of the variance
ratios Uy = o2V n/6 % and {Uny, -+, Unr}, Where Un; = 02V /6% and 6 2
is the sample variance.

1. Introduction. The following aspects of linear models are standard. Let
X(m X p) be a nonstochastic matrix of rank p < m, ¢* an unknown scalar and
B(p x 1) a vector of unknown parameters, and y(m X 1)a vector-valued random
element such that &y = X8 and &(y — XB)(y — XB)’ = ¢%I,,. Define T =
[t;;] = (X’X)~*. Least-squares estimators for B are B = TX'y, in which case
“B = Band £(B — B)(B — B)’ = o°T, and the corresponding unbiased estimator
for o*is ¢* = (y — X1§)’(y — X1§)/(m — p). The variance ratio test for the hy-
pothesis H: 8 = B, utilizes the statistic

(L.1) U= (B~ ByT (B — B)ipe*
together with a rejection region in the upper tail of its null distribution. If in addi-
tion the parameters 8 are partitioned into the natural subsets 8’ = [B/, - - -, 8,']

about which inferences are to be made separately, where B, is of order (p; x 1)
and p, + --- + p, = p, then the variance ratio tests for the r hypotheses H,:
B; = By 1 £j < r, utilize the statistics

(1.2) U; = (B; — B T5)B; — Bio)lpid*, 1
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together with upper-tail rejection regions, where the arrays X, T = [T,,], 8 and
B, are partitioned conformably with 8.
For later reference define

(1.3) Vo =¥' (L — XTX')y/o*

(1.4) V= (E - ﬁo)/T_l(E - ;30)/02

and

(1.5) Vi=(B; — BV Ti}B; — Ba)le* s Il=sj=r.

When y is Gaussian the estimators 8 are Gaussian; ¥ and V, are independent
chi-squared (y*) variates having p and (m — p) degrees of freedom; the variance
ratio test is equivalent to the likelihood ratio test; and the statistic U has the
Snedecor-Fisher F distribution with p and (m — p) degrees of freedom. Moreover,
the joint null distributions of {V,, ---, ¥,} and {U,, - .., U,} are known multi-
variate x* and F distributions [7]; these depend on the off-diagonal blocks of
T in such a way that {V), ..., V,} are mutually independent when X'X =
Diag (X,'X,, - - -, X,’X,), a block-diagonal matrix.

Under suitable moment conditions it is known that normal-theory approximate
procedures can be justified in large samples for non-normal data by virtue of
central limit theory, the approximations tending to improve with increasing
sample size. In the present study such notions are made precise. Using a con-
struction which enables us to treat at once the central and noncentral cases, we
study rates of convergence of the distributions of 4, ¥, U, {V,, ---, V,} and
{U,, - -+, U,} to their limiting normal-theory forms. Following some preliminary
developments in Section 2, our main findings are given in Section 3 for ﬁ, Vand
{¥Vs -+, V,}, and in Section 4 for U and {U,, ---, U,}.

2. Preliminaries. Bold-faced characters represent arrays with elements from
the field R* of real numbers, lower case for vectors and upper case for matrices;
R, ™ is the positive orthant of the m-dimensional Euclidean space R™. Let .7
& and .97, be separable metric spaces and {X, X,; N = 1, 2, ...} a stochastic
sequence in %, having the sequence {P(.), Py(-); N =1, 2, ...} of probability
measures. If X, converges in probability to X we write X, —, X; if X, con-
verges in distribution to X so that lim,_, Py(+) = P(.) at every continuity set
of the latter, we write £, (X,) = <£(X). Now combining Theorems 4.4 and
5.1 of Billingsley [5], we have

LemMa 1. Let {(X,c), (Xy, Yy); N=1,2, ...} be a stochastic sequence in
Sy x Ny, and g1 Ny x Ny — 7 a continuous mapping, such that

() Lu(Xy) = LX),

(ii) Yy —pc, a point in 7.
Then 2. [9(Xy, Y)] = Z[9(X, o)]-

We review some known bounds of the Berry-Esséen type on rates of con-
vergence for sequences of independent identically distributed (i.i.d.) random
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vectors in R™. Included are bounds due to Esséen [6] on probabilities assigned
to the ball of radius #; bounds on multidimensional distribution functions; and
bounds due to various authors on probabilities assigned to more general convex
sets. Let W () be the cdf of the central y* distribution having v degrees of free-
dom, and denote by ,; = &|x,|* the hth absolute moment of the jth component
of x’ =[x, -+, x,,] e R™. From Esséen [6] we have

LEmMMA 2. Let {y,, ---, yy} be a sequence of i.i.d. random vectors in R™ whose
elements have zero means and unit variances, are uncorrelated, and have finite moments
0,5 1 <j < m. Definey(N) = N"¥y, + - -- +yy) and G,(z) = Pp(y'(N)y(N) £ 2),
where Py(+) is the measure associated with y(N). Then for all N =1,2, ...,

c(m)0,}
sup, [G4(2) — W(@)] < LW
where 0, = 0,, + --- + 0,,, and c(m) is a finite positive constant depending only on

m.

Bounds on the rate of convergence of the cdf of y(¥) itself also are available
(cf. Bergstrom [2] and Sazonov [8]) as follows.

LemmA 3. Let {y,, ---, Yy} be an i.i.d. sequence with typical member y c R™
such that £y = 0, £yy’ = Z (a definite matrix), and 0,; = Ly > < oo for 1 <
J = m. Let Fy(+) be the cdf of y(N) = N}y, + --- + yy) and ®(.) the m-
dimensional Gaussian cdf having zero means and the second-moment matrix %. Then
forallN=1,2, ...,

m 30
SquGR""' |FN(X) - @(X)l é cO(m) Z]:\;;l ViV

where T' = [r,;] = Z~* and c,(m) is a finite positive constant depending only on m.

More general results are available. Let & ™ be the class of all measurable
convex sets in R™. The following result is in a form due to Sazonov [8], [9]; it
also follows upon modifying a proof due to Bergstrom [3], who assumed that
0;; < o0, 1 < j < r, or upon specializing some findings of Bhattacharya [4],
who assumed that 4,,, . < oo for some positive dand 1 < j < r.

LemmA 4. Let {y,, - - -, yy} be an i.i.d. sequence in R™ having zero means, the
nonsingular second-moment matrix X, and finite absolute third moments 0;;, 1 <
J = m. Let Py(+) be the probability measure associated with N~¥(y, 4+ -+ + yy)
and let P(+) be the limiting Gaussian measure having the parameters 0 and Z. Then

foreach N=1,2, ...,

m .3
SUPgeem |PN(A) — P(A)l < ¢,(m) Z]\zle 7405

where T' = [r,;] = Z7* and c,(m) is a finite positive constant depending only on m.

ReMARK. It follows from Bergstrom’s [3] development that ¢,(m) can be re-
placed by a function of m and X and a constant not depending on m as follows.
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Let {4, 22, = --- = 4, > 0} be the eigenvalues of Z and define 9* = 4,/4,.
Then foreach N=1,2, ...,
e*m? m 40y

SUPgeem IPN(A) - P(A)I é SN?

where ¢, * is a finite positive constant not depending on m, X, 6,, or N.

We recall some notions of convexity. Following Berge [1], let C be an open
convex set in R". A real-valued function f{(+) is said to be convex in C if, for
each pair of points x, ye Cand eacha = 1 — a€[0, 1], we have f(ax 4 ay) <
af(x) + af(y). Moreover, if f(+) is bi-differentiable in C, it is convex in C if
and only if the matrix [ f7;] of second partial derivatives is positive definite. If
[ is convex, then f is quasi convex, i.e. the set 4(z) = {x|f(x) < z} is convex for
each ze R

DerINITION. Let x e R™, v e R,}, and se R,* — u; then 27 is the natural
product space 27 = R™ x (R,' — u) in R™*.

LEMMA 5. Let xe R™and se R,* — u. If M(m X m) is a fixed positive semi-
definite matrix of rank m' < m and T a fixed element of R™, then the function
f(x,5) = (x — v)YM(x — 7)/(s + u) is convex in 2.

Proor. From invariance considerations we inquire whether (x, - .-, x,,, y) —
[(x, — 7)* + +++ + (X, — 7,)"]/y is convex in R™ x R,*. Evidently it suffices
to determine that (x, y) — (x — 7)*/yisconvexin R' x R,*. Upon differentiating
twice, we find that convexity follows from the nonnegativity of the matrix

[ 2/y —2(x — f)/yz]
=20 =)y 2(x =)y
of second partial derivatives, which completes the proof.

LEMMA 6. Let xeR™, 7eR™, ueR,' and se R,* — u, and partition X' =
[x/, -+, X, and ' = [z, ---,7,'] such that X; and T; are of order (m; X 1)
andm, 4+ ... +m, = m. Let {M(m, X m); 1 < i < r}bean arbitrary collection
of positive semidefinite matrices. Then the set

A@zy o 2) ={(X )X —T)MEX, —7)/s+u) Sz 1 i< r}
is convex in & for each z = [z}, ---,2,] e R,".
Proor. Let {4,, - .-, 4,} be cylinder sets in 2~ defined as
A(z;) = {(x, 9) [ (x; — T)M(X, — 7)/(s + ») = 2}, I1<igr.

These sets clearly are convex in cross section: Let M = Diag (0, M,, 0); observe
that f,(x, s) = (x, — 7,;)’M(x, — 7;)/(s + u) is convex in 27 by Lemma 5 and
thus quasiconvex. The proof is complete upon noting that A(z,, - - -, z,) is the
intersection A(z,, -+ -, z,) = [i-; 4;(z;) of convex bodies in 2 and thus is
convex.
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COROLLARY 1. The set
B(zyy oy z,) = {x|(X;, —TIMx, — 7)<z 1 S i <1}
is convex in R™ for each [z, - -+, z, ] e R,".

For later reference we introduce special notation as follows. Let u =
[ul’ , - -+, u,’]" be a partitioned Gaussian vector of order (v x 1) having the means
= [g/, - -+, g,']’ and the second-moment matrix X = [Z,;], where u, and g,

are of order (v; x 1) and Z,; is of order (v; x v;) such thaty, + ... 4+ v, = .
We take Z to be definite. Upon defining W; = w/Z;lu;, 1 < j < r, we denote
by W(., .-+, e;v) the r-dimensional cdf of {Wl, <o, W}, wherey = [y, .-+, v,].
As each one-dimensional marginal distribution of W, is y* having v, degrees of
freedom, central or noncentral according as g, = 0 or g, + 0, we refer to
W(., ..., ;) as a multivariate y* distribution. An expression for its probability
density function is available in the central case as a series in Laguerre polynomials
of vector argument (see [7]) apart from scale. Under Gaussian theory the joint

cdf of {V}, -+, V,}is (e, - -+, +; p), Where p = [p,, - - -, p,].

3. Some large-sample results. We now examine large-sample properties of (i)
the least-squares estimators for 8 and (ii) the quadratic forms Vand {V}, - - -, V,}.
Although more general developments can be formulated, considerable simplifica-
tion follows upon assuming N independent repetitions of the same experiment.
This assumption is natural when designs are subject to experimental control,
e.g. randomized complete block experiments having equal numbers of observa-
tions per cell. Accordingly, let {y,, - - -, y,} be a sequence of i.i.d. random vectors
with typical member y = [y;, - -+, y,]' € R™ Let {B., - -+» By} be the corre-
sponding sequence of least-squares estimators, one from each experiment, where
{B; = TX'y; 1 <i < N}. A typical member of the latter is designated as B =
TX'y. Upon defining

52 = y/(L, — XTX)y,/(m — p) , I<i<N
we find that, based on N repetitions, the least-squares estimator for B is
(3.1) By = N"TX'(y, + -+ + ¥y)

= N—l(ﬁl R .gN)
and the corresponding estimator for ¢* is
(3.2) iy = N_l(6'12 4o 6y
Throughout this section, however, we consider ¢* to be known.

For later reference we itemize assumptions as follows. We invariably assume
Al and A2, and at times we adopt one or more of A3, A4 and AS.

ASSUMPTIONS.

Al. &y = X8, where X’ = [x,, - -+, X,,] (p X m) is a non-stochastic matrix
of rank p < m and B(p x 1) is a vector of unknown parameters;
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A2. Z(y — XB)(y — XB)' = ¢’I,,, where o® is a positive constant;
A3 &y —x/BP < o0, 1 <i<m
Ad. E(y, —x/B) < o0, 1 i < m

AS. E(y; —x/B)P < o0, 1 < i< m.

A IA

We first consider the large-sample properties of the standardized variables
Ni(ﬁN — B). From (3.1), together with the assumptions Al and A2, it follows
that EN¥B, — B) = 0and €N(B, — B)(By — B)' = o*T. The limiting distribu-
tion of Ni(8, — B), and a bound on the rate of convergence to this limit, are
given in the following theorem under the assumptions Al, A2 and A3. We have

THEOREM 3.1. Let {y,, - - -, yy} be a sequence of i.i.d. random variables with
typical element y ¢ R™ satisfying Al, A2 and A3. Define B = TX'y and By =
NTX'(y, + -+ + yy). Let Fy(+) be the cdf of N¥B, — B) and ®(.) the p-
dimensional Gaussian cdf having zero means and covariance matrix o*T. Then

) limy ., Fy(e) = ©(+)
and, for each N = 1,2, ...,

.. C v v3 0,

(i) UP.cs [Fn(2) — D(z)] < AP BEa il
where 0, = E|B, — B < o0, 1 i< p; T =[r,;] = T% and c|(p) is a finite
positive constant depending only on p.

Proor. Under assumptions Al and A2, conclusion (i) follows immediately
from a multidimensional version of the Central Limit Theorem (cf. Varadarajan
[10]). Conclusion (ii) follows directly from assumption A3 and Lemma 3, to-
gether with the fact that A3 implies 0, < o0, 1 < i < p.

We next consider the large-sample properties of particular quadratic forms in
the elements of 3,. Define

(3.3) Vy = N(B‘N - ﬂo),T_l(.éN — By

and

(3:4) Vs = NBy; — B T53(By; — Bilo* l<jsr
in terms of the partitioned vector ﬁN’ = [‘é‘;“, cee ‘é;”], The limiting central

distribution of ¥, under assumptions Al and A2, and a bound on the rate of
convergence under the further assumption A4, are given in

THEOREM 3.2. Let {y,, -+, yy} be a sequence of i.i.d. random vectors with
typical member y e R™ satisfying Al, A2 and A4. Define B = TXYy, B‘N =
NZTX(y, + -+ + ¥y), and Vyy = N(By — BYT-(B, — B)jo*. Let G,(-) be the
cdf of Vyy and W (+) the cdf of the central y* distribution having v degrees of freedom.
Then

@ limy_o, Gy(+) = ¥,(¢)
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and, for each N =1,2, ...,

(i SUPren 61(2) — 1) = iR
where 0, = Y7, 0,,,0,, = £[b/(B — B)* < o0, B’ = [by, - - -, b,] is a nonsingular
(p X p) matrix such that BTB' = 1, and c(p) is a finite positive constant depending
only on p.

Proor. Clearly V), is a definite quadratic form of the type V, = z,/Z-'z, in
the elements of z,, where &z, = 0, Zzyz,’ = X, and z, is asymptotically
Gaussian by Theorem 3.1. Conclusion (i) of the present theorem now follows
upon applying Lemma 1 together with the continuity of ¥, asa function of z,.
Choose B(p X p) to be nonsingular such that BTB’ = I,, and define w, =
N%B(EN — B). Then &w, =0, Zwyw,’ = ¢’,, and V, = w,'w,/o*. Assump-
tions Al, A2 and A4 assure that the conditions of Lemma 2 are met, and con-
clusion (ii) now follows from that lemma.

The next theorem and its corollary are concerned with the central and non-
central distributions of ¥, and {V,,, - -+, Vy,}. Let ¥ (+; 2) be the cdf of the
noncentral y* distribution having v degrees of freedom and noncentrality pa-
rameter 4; this arises as the limiting nonnull distribution of ¥, under a sequence
of local alternatives, i.e. a sequence {8,; N=1,2, ...} such that 8, = B, +
O(NY). For fixed N, however, 4 is bounded without recourse to local alternatives,
which fact we exploit for computing bounds. In what follows we refer to the
noncentral distributions ¥ (+; 4) and ¥(., ..., «; v), the particular assumptions
regarding their noncentrality parameters becoming clear in the context.

THEOREM 3.3. Let{y,, - -+, yy} be ani.i.d. sequence with typical member y ¢ R™
satisfying Al, A2 and A3. Define B = TX'y, 8y, = N7'TX'(y, + -+ + Yyy), and

Vyi = N(lézvj - ﬂjo)'T?jl(‘éNj — Bi)lo* l=sj=r

and let Gy(s, -+ -, +) be the joint cdf of {Vy,, - -+, Vy,}. Then under suitable local
alternatives we have

(1) limN—vooGN('9""'):1F(',"'9';p)
where p = [p,, -+, p,] and, foreach N=1,2, ...,

. ?_ rd 0,
(i P, [Gy(2) — Wiz ) < AP BTl

where T = [r,;] = T, 0,, = &|B, — B, and c¢,(p) is a finite positive constant
depending only on p. Alternatively let {4, = 4,--- = 4, > O} be the eigenvalues of
T and define 6* = 2,/2,. Then for each N = 1,2, ...,

) < &P D hs
(iii) SUP.ex,r [G(2) — W(z; p)| = LGl Ti

where c¢,* is a finite positive constant not depending on p, T, 0y, or N,
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Proor. Define 7z, = N¥(B, — B); let w, be the normalized sum w, =
N*(B‘N — B) and P,(.) its probability measure. Let P(.) be the p-dimensional
Gaussian measure having zero means and the second-moment matrix ¢°T.
Clearly the forms {Vy,, ---, Vy,} are quadratic, thus continuous, functions of
wy, and the latter is asymptotically Gaussian by Theorem 3.1. Lemma 1 estab-
lishes under local alternatives that lim__, Gy(+, - -, ) is the joint distribution
of quadratic forms in Gaussian variables whose joint cdf is (., - -, +; p), and
conclusion (i) now follows. Conformably partition w,’ = [W},, -, W,] and
Ty = [Ty -5 Th,]. In terms of Py(.) and P(.) we write the cdf of {Vy,, - - -,
Vy,} and its normal-theory approximation as Gy(z,, - - -, z,) = Py(A(zy, -+ -, 2,))
and ¥(z,, .-+, z,;p) = P(A(z,, - - -, z,)), respectively, where

Azyy oo z,) = {Wy [(Wyy — Tx) T Wy —Ty) S 251 S i 1)

The set A(z) is convex in R? by Corollary 1; the assumptions Al, A2 and A3
assure that the conditions of Lemma 4 are met; and conclusions (ii) and (iii)
now follow from Lemma 4 and the remarks immediately following it.

CoROLLARY 2. Let {y,, - - -, yy} be an i.i.d. sequence satisfying A1, A2 and A3.
Define B, By, and Vy = N(By, — B.)YT By — Bi)/o® as before, and let Fy(+) be
the cdf of V. Then under suitable local alternatives we have

(i) limy_, Fy(+) = W,(+; 2)
and, for each N = 1,2, ...,

. ¢ v rdé,,

(i) Pt 103(2) — (23 4y)| < SB) BTkl
where 2y = N(B, — B)YT-YB, — B)/s* and the bound on the right is defined as in
Theorem 3.3.

REMARKS. Theorem 3.2 and Corollary 2 provide bounds on the rate of con-
vergence of the distribution of ¥V, to its limit under various moment conditions.
Observe that bounds of order O(N-#/»*+1) are provided in Theorem 3.2 for the
central case under a fourth-moment condition, as compared to bounds of order
O(N~*) under finite absolute third moments in Corollary 2. The referee has
pointed out that Esséen-type bounds of order O(N-#/»+V) cannot, in general, hold
in the noncentral case. For it is necessary (but by no means sufficient) that the
second term in the formal Cramér-Edgeworth expansion vanish in order that
the error of the Gaussian approximation to the probabilility of some set B be
of order smaller than N-:, When evaluated over a ball whose center is not the
origin, such expansions do not have a vanishing second term unless the underly-
ing distribution exhibits further special Symmetries, e.g. the vanishing of all
moments of third order.

4. Conyergence rates for variance ratios. We relax the requirement that ¢?
be known. From assumptions Al and A2 we have &4} = ¢?, where §2 =
y/(I, — XTX")y;/(m —p), 1 i < N. Under the further assumption that



NORMAL-THEORY APPROXIMATIONS 437

{¥s> - -+, ¥y} are i.i.d. random vectors in R™, it follows that {d,%, - -, 6,7} are
i.i.d. random variables in R,*. Thus by one of Kolmogorov’s strong laws of
large numbers we infer that ¢, = N-%(é,> -+ - .. 4 d,°) converges almost surely
(a.s.) to ¢* and we write

4.1) 0y —y5. 0" as N—ooo.

We specifically consider the variance ratios U, and {Uy,, - - -, Uy,} given in
(42) Uy = NBy — B T(By — BoIoy
(4.3) o= MByi — BT3By — Bu)ldx 1<jsr.

Their limiting distribv .ions are ¥ (+; 1) and ¥(., ---, +; p), respectively. These
limits, however, can be considered the end results of two limiting processes,
namely, the convergence in distribution of ¥ and (Vy,, - -+, Vy,}, and the a.s.
convergence to unity of 6,%/¢%. In order to study these processes together, our
construction employs Berry-Esséen type bounds on the rate of convergence of
the joint probability measure associated with N*(ﬁ v — B)and N¥(é,* — ¢°). This
construction is valid under further assumptions, for the existence of sixth-order
moments of y assures the third absolute moments of ¢* = y'(I, — XTX')y/(m — p).
We first consider U,. In terms of the typical experiment y we write

(4.4) &=[B-8) (-]
and €88 = Z, of order (p + 1) x (p + 1), where
“9) 2=["g &)
Define

(4.6) & = [(By — B, (35" — )]
(4.7) E =By — B): 6T

i.e. éN = &,* + [0, ¢°]', and observe that §,*ec R? x (R,! —¢%), while
€. eR” x R,

We identify probability measures as follows. With the standardized sums
Nt&, * we associate P,*(+) and, for N < oo, we associate P(+) with N*SN
Clearly P,* and P, are identical apart from shift. Let ®* ,(+) be the (p + 1)-
dimensional Gaussian cdf, and Q¥,,(+) the corresponding Gaussian measure,
having zero means and the covariance, matrix X at (4.5). Similarly let @ *()
be the joint marginal cdf of the first p components and Q,*(+) the corresponding
Gaussian measure. ,

Let M(p X p) be positive definite and symmetric, let = € R?, and suppose
y > 0. Define

(48)  A%2) = [(W5) € R x (R} — 7)| (W — ©YM(w — ©)/(s + 7) < N"'2)
(4.9) A(z) = {(w, ) e R? x R,!|(W — z)M(W — 7)/u < N~#z}
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and
(4.10) B(z) = {weR?|(W — o)M(w — 7)/d* < z}.

The foregoing construction supports the following conclusions. From the in-
variance of the measure of a set to translation of both the measure and the set,
it follows that

(4.11) Py*(A4%(2) = Py(A(2)) -
Upon identifying w = N*(ﬁN — B), T = N¥B, — B) and M = T, we find that
(4.12) Q,*(B(2)) = Q,*(N(By — B) T By — By)/o" < 2)

= WP(Z; ZN)

where 2, = N(B, — B)'T~*(B, — B)/s*. Upon making the further identification
u = N¥é¢,%, we find that

(4.13)  Py(A2)) = Py(N(By — BT By — By)[Nidy* < N-iz)
= Py(Uy = Z) = GN*(Z)

where G, *(+) is the cdf of U,. Finally let y = N%¢® and define
(4.14) Hy(2) = QF,,(4*%(2)) -
Then we have

THEOREM 4.1. Let {y,, -, yy} be an i.i.d. sequence in R™ satisfying Al, A2
and AS. Define§ = [(B — By, (3* — o)]; let Uy = N(By — By TBy — B)I6’
and denote its cdf by G,*(+). Then under suitable local alternatives we have

(1) limy ., Gy*(+) = W, (+; 4)
and, for each z ¢ R, and for each N =1,2, ...,

1.3
(i) 16, @) — Wz 4| £ SLH DIET b o) — W, (23 2y)

where 2 = N(B, — BYT7(B, — B)0*, T =[r;;] = 27, 0 = R, < 00, e(p + 1)
is a finite positive constant depending only on p, and Hy(z) is defined at (4.14).
Alternatively, if {A, = 2, = -+ = 2,,, > 0} are the eigenvalues of Z and if 5* =
A,41/21, then

i) 16y() — Wy 2] = SR A DRIy 11 o) — w4,

where c,* is a finite positive constant not depending on any of the remaining parameters.

A

Proor. Use (3.3) and (4.2) to write Uy = o*V,/d,*. Because ¢’/ —, ; 1
as N - oo it follows from Lemma 1 that &, (U,) = £(U), where U has the
distribution ¥ ,(+; 2) under appropriate local alternatives. Upon applying (4.13),
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(4.12) and (4.11), then the triangle inequality, we write
IGy*(2) — ¥, (25 Ay)|
= |Py(A(2)) — Q,*(B(2))| ,
= [Py*(4%(2)) — Q7(4%(2)) + QFa(A*(2)) — Q,*(B(2))|
= [Py*(A%(2)) — QR4 ()] + 1Q5::(A4%(2)) — C,*(B(2))| -

Now the second term following the inequality is
105:(4¥(2)) — Q,*(B@)| = [Hy(2) — W,z )|

from (4.12) and (4.13). Moreover, P,*(+) converges to Q¥,,(+) from assump-
tions Al, A2 and A4 (the latter implied by AS5). We now invoke the assumption
AS directly, together with the fact that, for all z, 4*(z) is convex on R? x
(R,* — Nig?), the domain of N*§,* as defined at (4.6). This fact was established

in Lemma 5. Clearly for each z € R, we have
|Py*(A%(2)) — QFa(A*(2)] = SUPgeern [Py*(C) — QF:a(C)|

and the right member in turn is bounded as in Lemma 4 and the remarks fol-
lowing it. The proof is now complete.

Observe that |H,(z) — ¥ ,(z; 4y)| is the difference between definite integrals
over multivariate Gaussian densities depending on N. Some attempts toward
bounding this difference are given after the next theorem.

Our next developments treat the joint distribution of {U,,, ..., Uy,} using
arguments parallel to those employed in the proof of Theorem 4.1. Let
{My(p; X p;); 1 £ i < r} be positive definite symmetric matrices; let = € R? and
r > 0. Partitionwand zasw = [w/, ..., w,/]and 2’ = [z/, - .-, 7,/] such that
w, and 7, are (p; X 1) and p, + ... + p, = p, and let 27, = R” x (R, — 7)
and 2, = R? x R, Define 4*(z) = A*(z,, -- -, z,) and A(z) = A(z, - -+, Z,)
as

(4.15) A*(z) = {(W, 5) € 27| (W; — T, )My(w; —7)/(s + 1) = N7z
1<j=n

(4.16)  A(z) = {(W, u) e 2| (w; — T YMy(w, — 7)lu < Nz 1 <j < 1),

respectively, and B(z,, - - -, z,) as

417)  B@) = {weR*|(W; — t)My(w, — 7))0* S N"z3 1 < < 7).
From the foregoing construction we conclude immediately that

(4.18) Py (A%(2y, + + -5 2,)) = Py(A(zy, -+, 2,)) -

Upon identifying w; = N8By, — B,), 7; = N¥B,; — B;) and M; = T;}, we fur-
ther conclude (compare (4.12)) that

(4.19) Q,*B(zp, ++52,)) =¥(z -+ -, 2,5 D) .
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Corresponding to (4.13) where u = N%G,*, we have

(4.20) Py(A(zy, -+, 2,)) = Gy*(zy -+, 2,)

where G,*(+, - - -, +) is the joint cdf of {Uy,, ..., Uy,}. Finally let y = Nio* at
(4.15) and define

(4.21) Hy(zp, -5 2,) = Qp(A*(2 - - -5 2,)) -

The limiting form of the joint distribution of {Uy,, - - -, Uy,}, and a bound on
the rate of convergence to this limit, are given in the following theorem.

THEOREM 4.2. Let {y,, ---, ¥y} be an i.i.d. sequence in R™ satisfying Al, A2
and AS. Define & = [(B — B, (6* — o%)] and let G *(s, - - -, +) be the joint cdf
of

Uy; = N(By; — ﬁjO)IT:)le(ﬁNj — B3y l<j=sr.
Then under suitable local alternatives we have
(i) limN_mGN*(.,...,.):lIf(.,...,.;p)

and, for each z ¢ R." and for each N =1,2, ...,

(i) 16 @) — Y@ p) = P DBE | @) — v p)

where T' = [1,;] = Z7%, 0, = &|&,]P < o0, ¢,(p + 1) is a finite positive constant
depending only on p, and H,(z) is defined at (4.21).

Proor. The proof parallels that of Theorem 4.1. Combine (3.4) and (4.3) as
Uy; = 0®Vy;/é, 1 £ j < r. Conclusion (i) now follows from (4.1) and Theorem
3.3 by a standard argument. Proceeding as in the proof of Theorem 4.1, but
now using (4.15)—(4.21), we have

1Gy*(2) — ¥(z; P)| = [Py*(4%(2)) — QFa(A*(2))] + |Hi(z) — ¥(z;p)| -

It follows from Lemma 6 that A*(z,, - -, z,) is convex on R? x (R,! — Ni¢?),
the domain of N*§,*, and thus Lemma 4 applies to the rate of convergence of
the measure P,*(+) to QF,,(+) over convex sets. For each zeR,” we clearly
have

|Py*(A*(z)) — Q5a(A*(2))] = SUPgegrir [Py*(C) — Q5,i(C)l
and the expression on the right in turn is bounded as in Lemma 4.

ReMARk. The first expression on the right of conclusion (ii) can be given
the alternative form of conclusion (iii), Theorem 4.1. In both instances we use
the work of Bergstrom [3] outlined earlier.

Our final undertaking is to study the difference
|Hy(2) — W, (2; 4y)|

along lines suggested by the referee. We consider the central case for a single
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statistic only, as more general cases appear to require different methods. Assum-
ing first that 8 and ¢° are uncorrelated (¢ = 0 at (4.5)), we have

THEOREM 4.3. Let B and * be uncorrelated. Then
[Hx(2) — Wy(2)] < c*(p)/N?
uniformly over z € R, where c*(p) is a finite positive constant depending only on p.
Proor. When ¢ = 0, the conditional distribution of
NBy — BYT By — Bl
given 6,%, is W (+) under the probability law Q% (). Upon writing ¢, (x) =
xt?-le~= and

Wy (2) = eo(p) §57 Py(x) dx
we apply conditional arguments to obtain
Hy(2) = ¢(p) §2us €550+ 77 §(x) dx] du
and thus
[Hy(2) — Wy(2)] < e(p) §2ws e ¥(SIAHTH7 () x| d
+ (2r)H { Nt et du
Now partitioning [ —N%, co) = [—N%,0) U [0] U (0, N*¥] U (N%, o0) and taking
signs into account in each interval, we find that
(Cyre” iuz[Sz(HN tu)/2 ¢p(x) dx] du = S'I)VQ e—%uz[S:g—N—%w/z ¢p(x) dx] du
from which it follows that
(4.22) Hy(2) — Wy(2)| < 0:(2) + 94(2) + (27m)73 {20 e du
where
0,(2) = e(p) §§* e [VANLA 0(x) dx] du
and
9x(2) = ex(p) 5 e HTIETNTIO G (x) dx] du
Clearly the latter expression satisfies
94(2) < (27)7* {Fy et du
and upon taking # — —u we combine terms to obtain
(4.23) |Hy(z) — ¥,(2)| < gx(2) + 2(27) (¥ e ¥ dlu .
Now considering z fixed and making tile change of variables y = x/z, we have
0x(2) = e(p) W e IS ENINA (p2)treviy Tt dy] du < gy(N)
where
95(N) = ei(p) W3 e[SV InA v~ dy] du
and the inequality stems from the fact that (yz)}*e~** is bounded when p > 1.
Now letting w = N~*u in g4(N) and evaluating the inner integral, then letting
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w = — N~ty in the final term of expression (4.23), we infer that
(4.24)  |Hy(z) — ¥,(2)]

< %(fz {83 Ne~#¥v? log [%:]:—:%] dw + cy(p) {7 Netv+* dw} .

Our proof is complete if we can demonstrate that each integral is bounded above
uniformly in N, i.e. if positive constants 7,, r, and r, can be found, not depend-
ing on N, such that

(i) {5 Ne-#ve? log (1 + w) dw < 71,
(if) {5 Ne=#vwi[ —log (1 — w)]dw < 7,
(iii) {2 Nem#¥* dw < 7,.

The conclusion (iii) is immediate; to demonstrate (i) we use the bound
log (1 4+ w) < w together with the change of variables v = Nw’/2 to obtain
(i Ne=#¥+*log (1 + w)dw < (3 Nwe V" dw
(F2e=vdy =1 — e ¥
1.

A IIA

To demonstrate (ii), let ¢ € (0, 1) be small enough to satisfy

(a) if 1 —e < x <1, then —log(l — x) < (1 — x)74
(b) if 0 < x < ¢, then —log(l — x) < x;

and consider the integral (ii) in three parts. Using (a), then lettingy =1 —w,
we have

1, Ne-tvei _log (1 — w)] dw < {1, Nems"}(1 — w)h dw
= Ne~#¥ (¢ e tVwi-my—idy < Ne~i¥ (ceNvy~tdy .
Let t = Ny; then
Ne~t¥ (e eVvy=t dy = Nie~dV (Ve eit=1 dt
< Nie-¥W[{le't~tdt + ({eetdt] = Ky,

say. Since K, is finite for each N and Ky — 0 as N — oo, there is a constant
7.1 such that K, < 7,, for all N.
Similarly we have

{1-¢ Ne=#¥’[ _log (1 — w)]dw < Ne~#"[—loge] = Ly,

say, where L, is finite for each N and Ly — 0 as N — co assures a constant 7,
such that L, < 7,, for all N. Finally we have

§o Ne=t¥w’[ _log (1 — w)] dw < {5 Ne~#¥*w dw ,
= (2 Ne¥dyu=1—e"" <1

where we have used # = w?/2 and condition (b). Now combining the results
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for case (ii), using 7, = 7y + 7 + 1, We have

(@) = @)1 = AP+ 7+ 1)

and our proof is complete.
Using simpler arguments of the type of Slutsky, the referee has removed the
requirement that ¢ = 0 and has supplied the following bounds.

THEOREM 4.4. For each N = 1,2, ... we have
(4.25) SUP, ¢ r,1 [Hy(2) — ¥, (2)| £ c(p, w) logt N/N*

where o* = &(5* — ¢%)* and c(p, ) is a finite positive constant depending only on p
and o.
Proor. Let Pr(+) be the measure appropriate in context, and write
Hy(z) = Pr(Y'T'Y/X < zo%)
¥, (z) = Pr(Y'T'Y < z0%)

where [Y,, - - -, ¥,, X] is a Gaussian vector having the means [0, -- -, 0, 1] and
the dispersion matrix
$H _ [ o’T N‘%p]
N-tp' N-74?

where p = ¢/o® and * = ?/o*. For all ¢ > 0 it follows that
(4.26) W (z(1 —¢)) —Pr(X <1 —¢)

< Hy(z) ¥, (2(1 +¢)) + Pr(X < 0) + Pr(X > 1 +¢).
Now taking ¢ = (2!w/s?) logt N/Nt we have, for p = 2,

(4.27) Tzl +¢) = T2 = co(p)e~*[z0%(1 + €)]t*'z0%
= c(p)e

uniformly for z > 0. In the case p = 1 we compute

(4.28) T(z(1 + €)) — Wy(2) < c(1)e*7*(20%)"1z0% < cifl)e

uniformly for z > 0. Moreover, we have
(4.29) Pr(|X — 1] > ¢) = Pr(|Z]| > eo’Nt/w)
— Pr(|Z| > (2log N)}) < (2/n)¥2 log N)~#/N .
The estimate (4.25) now follows from (4.26)—(4.29), and the proof is complete.

REMARKS. In the special case that ¢ = 0 the bounds are of smaller order than
those otherwise available at present; compare O(N-t) with O(N-tlogtN) in
Theorems 4.3 and 4.4, respectively. The condition ¢ = 0 does not follow from
the fact that ,§ and the residual errors are uncorrelated; nor is the stronger as-
sumption that B and 4* be independent a tenable one, for this is tantamount to
assuming a Gaussian model at the outset. However, as pointed out to the authors
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by Professor Bickel, it does follow that ¢ = 0 if y — X is distributed sym-
metrically about 0, i.e. if (y — XB) and —(y — Xp) have the same distribution.

Acknowledgment. The authors are grateful to Professor Peter Bickel and a
referee for providing so generously their insights into this study. The present
proof of Lemma 5 is due to Professor Bickel, and Theorem 4.4 and its proof
are due entirely to the referee.
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