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LOCALLY MOST POWERFUL RANK TESTS FOR
INDEPENDENCE WITH CENSORED DATA

BY SHINGO SHIRAHATA
Osaka University

In this paper locally most powerful rank tests for independence with
censored data for a one-parameter family are derived. The statistic derived
has discrete score functions and its asymptotic normality follows from a
theorem essentially given by Ruymgaart [6].

1. Introduction. Let (X), Y,), - - -, (X,, Y,) be a random sample of size n from
a population with bivariate continuous distribution function (df) H(x, y) having
continuous marginal df’s F(x) and G(y). We want to test whether the first co-
ordinate variable X and the second coordinate variable Y are independent or not
when H, F and G are unknown and yet, for some reason, we cannot wait until
observations are performed for all sample units. Such situations may occur, for
example, when we treat efficacies of two different drugs or lifetimes of two
physical systems.

There are many censoring types in multivariate analysis; for example Wat-
terson [8] subdivided censoring into three distinct types. In this paper we con-
sider the censoring scheme of type A in [8] in which only the first n, ordered
observations in the first coordinate and only the first n, ordered observations in
the second coordinate are available for some fixed integers n, and n,. In the
special case n,(n,) = n, the scheme reduces to type C(B) in [8].

Let us denote the ith order statistics among (X}, - --, X,) and (Y3, --., ¥,) by
X,, and Y, respectively. The censoring scheme amounts to using only the ranks
R; of the X; < X, , and the ranks Q, of the ¥; < Y, ,. In this way we obtain
apair (R,, Q,) = (Ryy, -+ -5 Ry, Quys - - -5 Qy,) of lacunary rank vectors, where
we put

(1.1) Ry =#{j|X; <X} for X,<X,,, Ry=x for X,>X,,,
Qu=#JlY;S Y} for V,<Y,,, Qu=x for ¥,>7,,,

i = 1, LI ( B

These lacunary rank vectors may be completed by replacing each x by an

appropriately chosen natural number. Given (R,, Q,) we define an arbitrary

completion (R, Q) = (R,, - -+, R,, 0, - -+, 0,) to be a pair of permutations of

the numbers (1, - -, n) such that moreover R, = R,, for i with X, < X,,» and

Q; = Qy, fori with Y; < Y, ,. The set of all possible completions of the pair
(R, Q,) will be denoted by

(1.2) C(Ry4, Q4) = {(R, Q)| (R, Q) is a completion of (R,, Q,)} -
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For any (R,, Q,) the set C(R,,, Q,) contains (n — n,)! (n — n,)! elements. For
later use we shall introduce in an unambiguous way one special completion of
(R4, Q). This special completion will be denoted by (R’, Q') = (R/, ---, R/,
Q1" St Qn’) € C(R*’ Q*)’ where

Ri' = R*i for Xl < ann s

(1.3) R/ =n +#jlX; > X,.,j =i} for X;>X, .,
Q) =0, for v, < an ,

Q' =m+#jlY;> Y, .j<i} for ¥,>7,,.

In Section 2 we shall derive the locally most powerful rank test (Imprt) which
is based on (R,, Q,) against the alternative H(x, y; ¢), # > 0, having a density
function A(x, y; 6). The score functions (sf’s) prove to be discontinuous when
observations are censored. In Section 3 asymptotic distributions of linear rank
statistics including the important special case in Section 2 will be given by the
Theorem 2.1 in [6].

2. Locally most powerful rank tests. Suppose the df’s H(x, y; §), § = 0, have
density functions A(x, y; 6). Assume that H(x, y; 0) = F(x)G(y) for some df’s F
and G. Furthermore, assume that there exists a nonconstant function

(2.1) lim,_, ¢(x, y; 0) = lim,_, (0/06) log h(x, y; 0) = ¢(x, y)

satisfying

(22) 0 < limy,§§ |6(x, y; )] dH(x, ; 6) = §§ |$(x, y)| dF(x) dG(y) < oo .
Introduce the score constants

(2.3) a,(i,]) = n(2)(32) §§ 906 MIFC)I L — FH" G

X [1 — G(y)]*~ 9 dF(x) dG(y) , i,j=1,.--,n, and

a,/(i,]) = a (i ]) for i < n,j<n,

(2.4) =(n — nm)7 ien41 @alls J) for i>n,j<n,,
= (n — ny)™! Z?=n2+1 a,(i,J) for i< n,j>n,,

= (n — m)™H(n — ny)~* 2iimng41 2ag=ngt a,(i, J)
for i > n,j>n,.

Under the above conditions we can obtain the following theorem.
THEOREM 1. If (2.2) holds, the test with critical region
(2.5) S, = 2Nkaa/(R/, Q) = k

is the lmprt at the respective level to test the hypothesis of independence against the
alternative H(x, y; 6), @ > 0, on the basis of the n, smallest observations on X and
of the n, smallest observations on Y where (R’, Q') is given in Section 1. This com-
pletion (R’, Q') may be replaced by any other completion of (R, Q).
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Proor. First observe that
(26) Py(Rys Qi) = D@ ccrnan S@a 1= A, yi; 0) dx; dy,
so that in particular
2.7 PRy, Qi) = (n — ny)! (n — ny)! (n!)72.

Since the differentiation of (2.6) with respect to ¢ at § = 0 can be performed
under the integral sign by (2.2), we obtain
(9/80)Py(R s Qi)lo=0 = X Ed e ctrmen 2im1 VED P(Xe ¥i) 171 dF(x;) dG(y;)
= (n)? D D @aeor,en W(Ri 00
= (n—m)! (n — n)! ()2 X1, a/(R/s Q).
The conclusion follows from the fact that the Imprt has critical region
[(3/06)Py(Ry> Qu)/Po(Rs Qi)llo=o = k- [

In most of the models proposed so far, for example bivariate normal, the
general model due to Farlie [2], or Konijn [5] if restricted to one-parameter
families, the function ¢(x, y) is of the product form
(2.8) B(x, y) = ¢y(x)Px()) -

This is also the case with Hé.jek—éidék’s model [3], although the sf does not have

the form (2.1) since —oo < 6 < oo there. When (2.8) holds, let us put

(2.9) a,(i) = n(i21) § $OF)] 1 — F(x)]"* dF(x) and
b,(i) = n(i2) § MG — GU)I"~* dG(y) -

Then the statistic S, reduces to

(2.10) S, = Lt a/(R)b,(Q)
where
a,(i) = a,(i) for i <n,,
(2.11) = (n— m) L0t aa()) for i > n,,
b,'()) = b,(i) for i < n,,
= (1 — ny)™ 2 3nu1 ba()) for i > n,.

This result is similar to the two-sample case obtained by Johnson-Mehrotra [4].

3. Asymptotic distribution. In this section our arguments concern the as-
ymptotic normality of

(3‘1) S’n = Z?:l an(Rt)bn(Qt) 4

which has just been suggested to be important in many applications. The as-
ymptotic distribution of

(3-2) T, = ni[§§ J.(F.)K,(G,) dH, — {§ J(F)K(G) dH] ,

a standardized version of S,, has been given by Bhuchongkul [1] and Ruymgaart,
Shorack and van Zwet [7]. Here F,,, G, and H,, are the empirical df’s of (X}, - - -,
X,), (Yy -+, Y,) and ((X,, Y)), - -+, (X,, Y,)) respectively and J,(x) = a,(i),
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K,(u) = b,(i) for ue[(i — 1)/n, i/n) and yet lim,_, J,(¥) = J(u), lim,_, K, (4) =
K(u). They imposed continuity upon the sf’s J and K. In our case, however,
it is required to delete the restriction of continuity. In fact, assume that the
uncensored scores have sf’s ¢, and ¢, and assume that »,/n — p and n,/n — g for
some 0 < p, g < 1, then in view of (2.11) the sf’s in the censored case are

J(u) = ¢,(u) for 0<u<p,
3.3) =1 —p) 'y, ¢(u)du for p<u< 1, and
K(u) = ¢y(u) for 0<u<yg,

=(1 -9 i gmadu  for gsu<l,
which are discontinuous. For discontinuous sf’s, Hajek-Sidék [3] proved as-
ymptotic normality of T, under the null hypothesis, but they did not prove this
under fixed alternatives.

Recently Ruymgaart [6] proved that T, is asymptotically normal under fixed
alternatives and local alternatives for sf’s with a finite number of jumps. His
conditions on the sf’s seem to be quite general.

Here we give a theorem which is an important special case of [6].

AssumpTION 1. There are points 0 < 5, < --- < s, < 1 such that J is con-
tinuously differentiable in (0, 1) — {s,, - - -, 5;}. A similar condition is imposed
on K with respect to {t,, - - -, £,}.

AssuMpTION 2. The functions J,, K,, J and K satisfy |J,| < Dre, |K,| < Dr?,
|J®] £ Dreté, |K®| < Drt+ifori = 0, 1 where defined on (0, 1) for some positive
constant D, a, b and for r(u) = [u(1 — u)]*. The constants a and b satisfy either
(i) a = (3 — 9)/py b = (3 — 9)/q, for some 0 < & < } and some p,, g, > 1 with
p0—1-|—q,,-1:lor(ii)azbz%—é.

AssumpTioN 3. For F,* = [n/(n + 1)]F, and G * = [n/(n + 1)]G,,

B, = n} SS [Jn(Fn)Kn(Gn) - J(Fn*)K(Gn*)] dHn = op(l) .

AssuMPTION 4. Denote a probability measure with df F(x | G~'(#)) by p,. Then
lim,_, sup, |#(4) — p(A)| = O0fori=1,...,2. A similar condition holds for
G(y | F7Xs))-

AssuMpTION 5. The condition dG(y|x) < D dG(y) holds in a neighborhood
of x = F~Y(s,) and the condition dF(x|y) < dF(x) holds in a neighborhood of
y = G7I(t).

Let us introduce the sets of bivariate df’s 2#” = {H|H is continuous on the
plane} and 57, = {H € ¢ |dH < C[r(F)r(G)]’”* dF dG}, where 4 is the same
number as in Assumption 2, and C = 1 is a fixed constant. For any real number
v we define the function d, by

o,u)y=0 for u<w, o,)=1 for uz=w.
The conditional expectations in the theorem below are supposed to be obtained
by integration with respect to the conditional probability measures considered
in Assumption 4,
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THEOREM 2. If H e 57 and Assumptions 1, 2 (i) and 3-5 are satisfied or H € 52,
and Assumptions, 1, 2 (ii) and 3-5 are satisfied, then the asymptotic normality

3.4 T, —4 N0, a%) as n— oo
holds. Here
(3.5) o = Var[J(F(X)K(G(Y)) + § (Orx(s) — HEK(G(Y))| F(X) = 5)d(s)
+ 5 Gacr (1) — HEU(F(X)) | G(Y) = 1) dK(1)] -
Moreover, the asymptotic normality in (3.4) is uniform on each subclass "' of

& or S#, for which Assumptions 3-5 hold uniformly and on which ¢* = o*(H) is
bounded away from zero.

.

REMARK 1. The above theorem is essentially a special case of Theorem 2.1
[6] and the differences between our assumptions and those in [6] are due to the
absence of a density in our Assumptions 4 and 5.

REMARK 2. If we introduce the sets S, = [F~)(s, — n~4f), F~(s; 4+ n~*p)],
Q,,, = {o|ntsup |F, — F| < g} and S,,,, Q,,, similarly defined for G, we can
simplify the proof of Theorem 2.1 in [6] by avoiding the technical Lemmas 4.2,
4.3in[6]. Thisis because the introduced set Q,,, has the property that for any
¢ > 0, P(Q,) > 1 — ¢ uniformly in » and F for large § and that by integrating
over S,,, the factor n* cancels out.

Acknowledgment. I wish to thank Professor M. Okamoto for his helpful
guidance. I also wish to thank the referee for his relevant comments and for
drawing my attention to Ruymgaart’s paper.

REFERENCES

[1] BHUCHONGKUL, S. (1964). A class of nonparametric tests for independence in bivariate
populations. Ann. Math. Statist. 35 138-149.

[2] FArLIE, D. J. G. (1960). The performance of some correlation coefficients for a general
bivariate distribution. Biometrika 47 307-323.

[3] HAsex, J. and §1DAK, Z. (1967). Theory of Rank Tests. Academic Press, New York.

[4] Jounson, R. A. and MEHROTRA, K. G. (1972). Locally most powerful rank tests for the two-
sample problem with censored data. Ann. Math. Statist. 43 823-831.

[5] Konnn, H. 8. (1956). On the power of certain tests for independence in bivariate populations.
Ann. Math. Statist. 27 300-323.

[6] RUYMGAART, F. H. Asymptotic normality of nonparametric tests for independence. Ann.
Statist. 2 892-910.

[7] RUuYMGAART, F. H., SHORACK, G. R. and vAN ZWET, W. R. (1972). Asymptotic normality
of nonparametric tests for independence. Ann. Math. Statist. 43 1122-1135.

[8] WATTERSON, G. A. (1959). Linear estimation in censored samples from multivariate normal
populations. Ann. Math. Statist. 30 814-824.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE

KyusHU UNIVERSITY
HigasHI-kU, HAKOZAKI
FUKUOKA, 812, JAPAN



