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ON TESTS FOR DETECTING CHANGE IN MEAN

BY AsHISH SEN AND MUNI S. SRIVASTAVA!
University of Illinois, Chicago and University of Toronto

Procedures are considered for testing whether the means of each vari-
able in a sequence of independent random variables can be taken to be the
same, against alternatives that a shift might have occurred after some point
r. Bayesian test statistics as well as some statistics depending on estimates
of rare presented and their powers compared. Exact and asymptotic distri-
bution functions are derived for some of the Bayesian statistics.

1. Introduction. A problem of some interest is the following: Given one
observation from each of N independent random variables x,, - - -, x,, how can
we decide whether the means of the x,’s can be considered to be the same or
whether one needs to consider two models of the form

—_

1<ign

Xg=p+ g
x, = p* + ¢ (r+1 i< N),

where the ¢;’s are independent error terms and r is unknown? Apart from the
obvious applications to the detection of shifts in production processes, this
problem is also important in the study of impacts of treatments, since the point
when the treatment (e.g., a drug, an advertising campaign) might take effect is
usually unknown. Other applications are mentioned in Barnard (1959).

This problem was first considered by Page (1955 and 1957) and was subse-
quently explored by Chernoff and Zacks (1964; see also Kander and Zacks, 1966),
Bhattacharya and Johnson (1968), Gardner (1969) and MacNeill (1971); the
allied problem of estimating r has been studied by Hinkley (1970, 1972).

Although we present some nonparametric tests, our attention in this paper is
focused mainly on situations where each x, (1 £ i < N, N = 2) is normally dis-
tributed with mean p, and variance o2, i.e. x; is N(y;, 0?), i = 1, - -, N. The
following specific problems are considered.

Problem 1. To test the hypothesis
H:p =p,=- -+ =py=p (say)
against the one-sided alternative

Aiip=p= - =, < fPpy1= -+ = Uy
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where the change point r and the initial level p2 are unknown and ¢ is known
and therefore without loss of generality is taken as unity.

Problem 2. Same as Problem 1, except that y is considered known and is
therefore put equal to zero without losing generality.

Problem 3. To test H against

A:#:#I: “e =pr:,&‘ar+1= cee = Uy
where r and g are unknown and ¢ = 1.
Problem 4. Same as Problem 3 except that 4 = 0.

Problems 1 and 2 are considered in Section 2; Section 3 is devoted to Problems
3 and 4. In Section 4 some nonparametric tests for H against 4, are considered.
The situations where ¢ is unknown have not been studied in this paper. How-
ever, we have been working on the subject and expect to communicate our
results in the near future.

Bayesian test statistics for Problems 1, 2. and 3 are available in the literature
(Chernoff and Zacks (1964) and Gardner (1969)) and a statistic for Problem 4
can be obtained as a simple extension of Gardner’s (1969) statistic. While the
distribution of the Bayesian test statistics for Problems 1 and 2 are trivial (nor-
mally distributed), this is not the case with Problems 3 and 4. The exact distri-
butions under H of the test statistics for Problems 3 and 4 are presented in
Sections 3.1 and 3.2, respectively. The asymptotic distribution of the test
statistic for Problem 3 has been given by Gardner (1969) and that for Problem
4 is given in Section 3.3.

As an alternative to the Bayesian approach, we may base a test statistic on
an estimate of r. Statistics based on the maximum likelihood estimate of r (we
call these statistics maximum likelihood statistics) are obtained in this paper for
each problem and their powers are compared, mainly by Monte Carlo methods,
with those of the corresponding Bayesian statistics.

2. One sided tests for normal case: Variance known. Chernoff and Zacks
(1964) gave
(2.1) Yi(xg, — %) where % = N3V x,

as a Bayesian statistic for Problem 1. The maximum likelihood statistic for
Problem 1 is obtained in Section 2.1, and in Section 2.2 its powers are compared
with those of (2.1). Exact expressions for the cdf or cumulative density function
of the maximum likelihood statistics appear to be very difficult to obtain. How-
ever, lower and upper bounds for it are presented in Section 2.1. In Section 2.3,
the Bayesian statistic for Problem 2 (see Chernoff and Zacks (1964)),

(2.2) 2205 Xy s

is compared with the corresponding maximum likelihood statistic.
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2.1. Derivation of maximum likelihood statistic for Problem 1. Under the al-
ternative 4, with r fixed and ;2 unknown, the likelihood element is easily seen
to be

(2-3) (2r)="exp{—3[ X7 (xi — X,)" + N, (% — %-,)']}

where X, = 37, x,/rand X,_, = ¥ ., x,/(N — r). For the maximum likeli-
hood estimate of r, (2.3) must assume its largest value over all . Hence, after
simplification, the corresponding likelihood ratio is found to be

(2.4) infig, v exp{—3(Xy_, — %,)/(r* 4+ (N — )™} .
Therefore a statistic for Problem 1 is
(2.5) SUPig, sy {(Xy—r, — X,)/(r7 + (N — 1)) .

A lower and an upper bound, under the hypothesis, for the cdf of (2.5) can
be found as follows:

Under H, (2.5) may be written as sup, Y,, where Y = (Y}, --., Y,,_,) is dis-
tributed as N(0, ((¢,;))) with ¢,;, = 1 and ¢,; = {i(N — j)/j(N — i))! when i < j.
Let the cdf of Y be H(yy, - - -, yy_;). Then the cdf of sup, Y, is

F(zy =H(z, -+, 2).

min

Hence if o,,, and o,,,, were the greatest and least values respectively of o,;
(i # j), we have from Gupta (1963, page 806)

(2.6) 120 PM{[(0min)té + 2)/(1 — 0min)t}h(§) d€
< F(2) £ §20 OY{[(0max)*é + Z]/(1 — 01nax)}(€) d€

where @ and ¢ are respectively the cdf and pdf of a standard normal distribu-
tion, N0, 1) and F{(z) is the cdf of (2.5).

2.2. Comparison of powers of (2.1) and (2.5). Powers for the two statistics
were computed for each combination of levels of four factors. The first factor
is Nand the levels considered were N = 20, 50, 100. The second is r, the point
of change. When N = 20 the values of r that we examined were 1, 5, 9, 10, 11,
15,18. When N = 50 and N = 100 we let r vary from 5 to N — 5 in jumps of
5 (i.e. r=5(5)N — 5). In addition, powers were computed for r = N — 2.
Another factor is & = 1, — g, and we let A = .4(.4)3.6 except for those r and
N for which the power function (as a function of d) was very steep, in which
case we also considered 6 = .2(.4)1.8. Finally we have a, the level of signifi-
cance. The different levels taken for a were .50, .70, .80, .90, .95, .99. In what
follows, however, a will not be explicitly mentioned since the relative merits of
one test vis-a-vis the other did not appear to change with changes in a.

The powers for (2.1) are rather simple to compute directly, but this is not true
for those of (2.5). Hence we resorted to Monte Carlo methods. The “samples”
were drawn using an IBM supplied subroutine (GAUSS) based on pseudo-random
numbers. Quantiles of the simulated distributions of the statistic under the
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hypothesis H were obtained by ranking, and these quantiles were used as critical
values. Ten thousand simulations were used to obtain all the critical values and
once they were computed, the powers were calculated on the basis of one
thousand simulations when N = 20 and N = 50 and five hundred simulations
when N = 100.

For any A = p, — p,, the best powers for either test occurs when r = N/2.
For .4N < r < .6N, the Bayesian statistic (2.1) is always superior in power to
(2.5). For |[r — .5N| = .25N, (2.5) is more powerful (see Figures 1 and 2). As
noted by Chernoff and Zacks (1964) and as should be obvious on inspecting its
form, the power of (2.1) is extremely low for values of |r — .5N]| close to .5N.
For such values, the superiority of (2.5) is substantial, For those r for which

T power
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neither statistic is superior for all A, (2.1) tends to hold the edge over (2.5) for
small values of A; the situation is reversed for larger values of A.

2.3. Test statistics for problem 2. Replacing X, and % in (2.4) by zero, we get
as the maximum likelihood statistic for Problem 2

(2.7) sup, {(N — nNixy_.}.

On computing powers as in the case of Problem 1, we found that both (2.2)
and (2.7) achieved their greatest power when r = 1. From this value of r to
about r = .4N, (2.2) is superior to (2.7). When r > .75N, the reverse is true
(see Figures 3, 4, 5). As in the case when g is unknown, (2.7) was found to be
better for small sizes of the jump A when neither statistic was uniformly superior
in power.
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3. Two sided tests for normal case: Variance known. Gardner (1969) de-
rived the following Bayesian statistic for Problem 3:

(3.1) U = N2 5 (B3 (g — X))
Furthermore, he showed that under the hypothesis H, (3.1) is asymptotically
equivalent to Smirnov’s w’-criterion. It may be noted that the limiting cdf of
Smirnov’s w’-criterion as given in von Mises (1964) is incorrect. A correct
expression and tables are given in Anderson and Darling (1952). An exact
expression for the cdf of (3.1) is presented in Section 3.1.

Using procedures similar to those in Gardner, we can establish that

(3-2) U= N 325N (EE %)

is a Bayesian statistic for Problem 4. In Sections 3.2 and 3.3, we obtain exact and
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asymptotic cdf’s of (3.2) under H, and also show that under H, E(U)/E(U*) — 3
as N — co. In Section 3.4, the powers of (3.1) and (3.2) are compared with
those of correspondig maximum likelihood statistics.

3.1. Exact cdf of (3.1) under H. Gardner has shown that under H, (3.1) may
be written as
U* = Y01 2,2, where 2, = (2Nsin (kx/2N))~?
and the z,’s are independently identically distributed as N(0, 1) i.e. z, are i.i.d.
N(0, 1). The required cdf then follows from Theorem 1 below.

THEOREM 1. Let 2y, ---,Ay_, be any numbers satisfying A, > 2, > -+ >
Ay_y > 0. Then the cdf of > 57} 2,22 with z, i.i.d. N(0, 1) is
(3.3) FZ)y=1—n" 55, (—1)k Si“’:"i A7 (—D(R))~t exp(—2z/2) d2

2k—1

forz = 0, where D(2) = []¥=! (1 — 2, 2) and n is the largest integer contained in
N/2 and 2y~ = oo.

Theorem 1 was used to generate tables of F(z) for U* when N = 10, 20, 50
and z = .21(.01)1.0. None of the entries in the tables differed from correspond-
ing asymptotic values (generated using Anderson and Darling’s (1952) expres-

sion) by more than 10-3. That the convergence to the asymptotic cdf is rapid
has been pointed out by Gardner (1969). ‘

Proor oF THEOREM 1. Using contour integration (as in Plackett (1960), pages
20-22), we may readily show that

(34) 1= F@) = 5 Dia (“ 1) 35 27— D)) exp(—iz/2) dd

In order to complete the proof of the theorem, we must show that the quantity
within the absolute value signs, call it G(z), is always positive. For N < 3, G(2)
is trivially positive. For any set of 2,’s it can easily be seen that each term on
the right of (3.3) is bounded above by some constant M. Hence when N = 4

G(z) > exp(—2z[24;) §221 27 (—D(2))t dA — (n — 1)M exp(—2z[245) > 0
by choosing z large enough. Further, since
|G(2) — G(2')| £ = sup, |exp(—A2z/2) — exp(—1Z'[2)|,
G(z) is continuous. Hence if G(z) were negative, G(z’") = 0 for some 2. This,
by (3.4), implies F(z"”) = 1, which is impossible. Hence G(z) is positive and the
theorem follows.

3.2. Exact cdf of (3.2) under H. We show that under H, (3.2) may be written
as
(3.5) TV Azt where 2, = [2Nsin {(2k — 1)z/2(2N — 1)}]?
and z, are i.i.d. N(0, 1). Then by Theorem 1 we easily obtain the cdf of U under
H. The columns for N = 10, 20 and 50 in Table 1 were generated in this way.
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TABLE 1
The cdf’s of U under H
z F(z)

N=10 N=20 N=50 N=o
0.66 0.787 0.773 0.765 0.75973
0.72 0.810 0.797 0.788 0.78359
0.78 0.830 0.817 0.809 0.80466
0.84 0.847 0.835 0.828 0.82334
0.90 0.863 0.852 0.845 0.83998
0.96 0.877 0.866 0.860 0.85485
1.02 0.889 0.879 0.873 0.86818
1.08 0.900 0.890 0.884 0.88015
1.14 0.910 0.901 0.895 0.89093
1.20 0.918 0.910 0.904 0.90065
1.26 0.926 0.918 0.913 0.90942
1.32 0.933 0.926 0.921 0.91737
1.38 0.940 0.932 0.928 0.92456
1.44 0.945 0.938 0.934 0.93109
1.50 0.950 0.944 0.940 0.93701
1.56 0.955 0.949 0.945 0.94240
1.62 0.959 0.953 0.950 0.94729
1.68 0.963 0.957 0.954 0.95175
1.74 0.966 0.961 0.958 0.95582
1.80 0.969 0.965 0.962 0.95952
1.86 0.972 0.968 0.965 0.96290
1.92 0.975 0.971 0.968 0.96598
1.98 0.977 0.973 0.970 0.96880
2.04 0.979 0.975 0.973 0.97138
2.10 0.981 0.977 0.975 0.97373
2.16 0.983 0.979 0.977 0.97588
2.22 0.984 0.981 0.979 0.97786
2.28 0.985 0.983 0.981 0.97966
2.34 0.987 0.984 0.982 0.98131
2.40 0.988 0.986 0.984 0.98283
2.46 0.989 0.987 0.985 0.98422
2.52 0.990 0.988 0.987 0.98549
2.58 0.991 0.989 0.988 0.98666
2.64 0.992 0.990 0.989 0.98773
2.70 0.992 0.991 0.990 0.98871
2.76 0.993 0.991 0.990 0.98961
2.82 0.994 0.992 0.991 0.99044
2.88 0.9%4 0.993 0.992 0.99120
2.94 0.995 0.993 0.993 0.99190
3.00 0.995 0.994 0.993 0.99254

Define the following (N — 1) x (N — 1) matrices: B = ((b;;)) withby_, y_, =1,
b,=2wheni < N—1,b,,,=>b,,,= —1andb; = 0otherwise; I' = ((7;;))
with y,; = 1 wheni = j, r,; = 0 otherwise; A = ((d,;)) withd,; = 1, 9, , = —1,

d,; = 0 otherwise; and 4 = I'l". Now we can easily verify that

NU = (xl,

ey, xN—l),A(xl’ ..

oy Xy_q) -
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Furthermore, A’A = B and AT = /, and hence B = A~'. That under H (3.2)
may be written as (3.5) follows from the fact that the eigenvalues of B are
4 sin® (a/2) with a = (2k — 1)z/2N — 1), (k = 1,2, ---, N — 1), which may be
established following von Neumann (1941, Section 3).

3.3. Asymptotic cdf of U under H.
THEOREM 2. The asymptotic cdf of U under H is
F(z) = 2 X3, () erfe {3 + 2)/(22)})
where erfc (x) = 2z74 {2 exp(—A*) dA and (3) = (—1)T'(} + j)/T@))!

A form for the asymptotic cdf of U could have been found from Theorem 1
by letting n — oco. However, the chief reason for the use of asymptotic cdf’s is
that they are easier to compute than the corresponding exact cdf’s. The form
given in Theorem 2 meets this requirement very well and was used to construct
the last column in Table 1.

Proor oF THEOREM 2. Following a procedure given in Gardner (1969, pages
118 and 125) we may easily show that the asymptotic characteristic function of
Uis
(3.6) lim,_,, T]721 (1 — 8ui/(2k — 1)*z*)~% = cos~* (2ui)t .

Hence the Laplace transform of F is (see Theorem 6.6.5 of Chung (1968)),
L(F) = ¢ exp(—uz)F(z) dz = u™' {§ exp(—uz) dF(z)
= u~'cos™# (—2u)t = u~Y(cosh (2u)t)~*
= 24t exp(—(2u)}/2){1 4 exp(—2(2u)t)}~*
= D50 207G exp{—(20)}(F + 2))} -
The above series can easily be seen to be uniformly absolutely convergent for

Reu = p > 0 and hence can be inverted termwise. The theorem therefore
follows from (see tables, e.g. Erdelyi, et al. (1954))

s~texp(—Ast) = {5 exp(—st) erfc (A4/2tt) dr .
COROLLARY. Under the hypothesis H, as N — oo E(U)/E(U*) — 3.

Proor. From Gardner (1969) and from (3.6) we see that U* and U respec-
tively converge in distribution to random variables

2i= (km) =7z, and 2i-142k — 1)7'n7z,
where the z,’s are i.i.d. N(0, 1). Hence as N — oo
E(U)|E(U*) = (X 4kn)™ — T (ko)) L5 (k)™ = 3.

3.4. Comparison of powers. From Section 2.1 it can easily be seen that the
maximum likelihood statistics that correspond to (3.1) and (3.2) are, respectively,

(3.7 SUPigrgn-1 (By—r — %, )/(r7 + (N = 1)7)



DETECTING CHANGE IN MEAN 107

and
(3.8) SUPy<,cx—1 (N — DX, .

Powers of (3.1), (3.2), (3.7), (3.8) were computed for the same values of N,
r, A and a as described in Section 2.2. Except for the critical values of (3.1)
and (3.2), all computations were by Monte Carlo methods. The procedure used
was much the same as that described in Section 2.2. On computing powers we
found that the relative merits of (3.1) vis-a-vis (3.7) and of (3.2) vis-a-vis (3.8)
were very similar to those for their one-sided counterparts (see Sections 2.2 and
2.4). The magnitudes of the differences between powers of (3.1) and (3.7) or
between those of (3.2) and (3.8) (regardless of which was superior) were, how-
ever, more pronounced than in the one-sided situation.

4. Nonparametric tests. The maximum likelihood statistics considered in the
preceding sections are of the form sup, S, where §, is a usual two-sample test
statistic. By analogy, using two-sample nonparametric test statistics, we can get
nonparametric statistics for testing for H against 4,. Two such statistics are

(4' 1) suplgréN—l (S, - EST)/(Val' (s'r'))é
and
(4.2) SUPy<, sy (5, — Es,")[(Var ()}

where 5, = YIY, ., H{(x; — med (x)) > 0}, 5," = D, i I(x; £ x;), med (x)
denotes the median of the x,’s and 7 is the indicator function. The correspond-
ing statistics given by Bhattacharya and Johnson (1968), who were essentially
working in the Bayesian tradition of Chernoff and Zacks, are

4.3) 275 5
and
(4.4 ML

We computed the powers of (4.1) through (4.4) using entirely Monte Carlo
methods. In the case of (4.1) and (4.3), the x,’s were drawn from the double
exponential distribution and for (4.2) and (4.4) from the logistic distribution.
The values of N, r, A and a were as in Section 2.2, and the procedure for com-
puting powers was also much the same. However, the numbers of simulations
used were considerably less. For critical values we used 2500 simulations, and
for the powers this number was always 500.

The statistic (4.1) was found superior in power to (4.3) for all N, rand A and
this superiority increased with |[r — Nj2| and A. (4.2) was found to be superior
to (4.4) for all N and r except for a very few values of rand A close to N = 20,
r = 10and N = 50, r = 25. Even for these last mentioned cases, the superiority
of (4.2) appeared to be very slight and in fact (4.4) was superior for those A for
which the power of either statistic was .95 or more. All in all, therefore, the
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test statistics (4.1) and (4.2) were superior to the corresponding statistics given
by Bhattacharya and Johnson.
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