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A QUADRATIC MEASURE OF DEVIATION OF
TWO-DIMENSIONAL DENSITY ESTIMATES
AND A TEST OF INDEPENDENCE!

By M. ROSENBLATT
University of California, San Diego

This paper considers estimates of multidimensional density functions
based on a bounded and bandlimited weight function. The asymptotic be-
havior of quadratic functions of density function estimates useful in setting
up a test of goodness of fit of the density function is determined. A test of
independence is also given. The methods use a Poissonization of sample
size. The estimates considered are appropriate if interested in estimating
density functions or determining local deviations from a given density
function.

1. Introduction. Let X, ,X,---, X, .. be independent and identically distri-
buted random two vectors with continuous density function f(x), x = (x,, x,).
We consider a class of estimates f, (x) of f(x) determined by a bounded weight
function w with finite support

1 " x — ;X
(1) fn(x) = W =1V <“W—>
1 X —3S5
= —b(T)z— w <W> dF,(s) »

where F, is the sample distribution function determined by ,X,j =1, ..., n.
Here b(n) is a bandwidth such that 5(n) | 0 and nb(n)* — oo as n — oo.

The object of this paper is to describe the asymptotic behavior of quadratic
functionals of density function estimates that are useful in setting up a test of
goodness-of-fit of a density function and a test of independence. The methods
are different in part from those used in [1] and involve a Poissonization of the
sample size used because of the multidimensional context. Remarks will be
made later in contrasting the type of test of goodness-of-fit obtained here with
a typical example of such a test making use of the sample distribution function.
The methods employed here can be used in the general multidimensional case;
the two-dimensional case examined being typical. The statistics proposed here
are plausible in situations in which one is specifically interested in estimating
the density function or in local departures from a given density function (see
[3] and [6]).
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2 M. ROSENBLATT

It is convenient at this point tostate certain assumptions which we shall refer
toasal, a2, a3, a4:

al. The weight function w is bounded and equal to zero outside the square
%, 3]*. Further
) §wx)dex=1.

a2. The probability density function f is bounded and either positive on all
of R?, or else positive on [0, 1]* and zero outside the unit square. Also f is
continuously differentiable up to second order with bounded derivatives in the
interior of its domain of positivity.

a3. The weight function w is symmetric (w(x) = w(—u)) so that the first
moments of w, w? are zero, and the matrix of second moments of w
3) § x;x, w(x)dx, Jok=1,2

is positive definite.

a4. The function aq is a bounded integrable function whose set of disconti-
nuities has two-dimensional Jordan content zero.

A number of the more important results of the paper are stated below. The
proofs will be given later on.

THEOREM 1. Under assumptions al, a2, a3, a4
@) ) nb(n) § [fu(x) — f()Pa(x) dx — § f(x)a(x) dx - § w(u)* du)
is asymptotically normally distributed with mean zero and variance
) 2w9(0) § a(x)*f(x)* dx
as n — oo if nb(n)* — oo and b(n) = o(n~?).

THEOREM 2. Let the components of the random variables ;X be independent.
Assume that g,(x,), h,(x,) are the estimates of the marginal density functions g(x,),
h(x,) given in (42) and that w(x) = w,(x,)Wy(x;). Then under the conditions of
Theorem 1

(6) b(m)~'[nb(n)* § [fu(*) — gu(x)hu(xz))'a(x) dx — A(m)]

is asymptotically normally distibuted with mean zero and variance (5). Here

() A(n) = §f(x)a(x) dx + b(n) § g(x)h(x,)’a(x) dx[1 4 § wy()'wy(uy) du]
+ b(n) § g(x,)*h(x,)a(x) dx[1 + § wy(u,)wy(u,)* du] .

COROLLARY 1. Suppose one considers the one-dimensional analogue of the result
obtained in Theorem 1 with al’—a4’ the corresponding one-dimensional assumptions.
Then

(8) b(m)~Hnb(n) § [fu(x) — f(x)Fa(x) dx — § f(x)a(x) dx § w(u)* du}

is asymptotically normally distributed with mean zero and variance (5) as n — oo if
nb(n) — oo and b(n) = o(n#).
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Notice that Corollary 1 can be regarded as a substantial improvement on the
Theorem stated in Section 1 of [1] for the limiting distribution of (8) since the
assumptions in Corollary 1 on b(n) are weaker. This suggests that the technique
of Poissonization coupled with Lemmas 1 and 2 of this paper are a more natural
technique for dealing with quadratic functionals than that of Skorohod imbedding.

2. Proofs. A number of lemmas that are required for the principal results
are derived first. A number of lettered subheadings will be used in this section
to indicate the primary topics.

LeEMMA 1. Let w be a bounded integrable weight function with first moments zero,
§w(x)dx =1, and
%) [§ (%2 + x)w(x) dx| < oo .
If assumptions a2, a4 are also satisfied, then
(10) A = nb(n)[§ {(fa(x) — f(x))* — (fa(x) — Efu(x))}a(x) dx]

= o(b(n)),

if b(n) = o(n7%).

Notice that
(11) A = nb(n)’ § [(Efu(x) — f(X))* + 2(Efu(x) — f())(fulx) — Ef(x))]a(x) dx

= A, + A,.

The first expression
A, = O(nb(n)®)

under the assumptions on w and a2, a4. Also E|4,| < d(4,). Since

Cov (), fu()) = -;(1—)— Cov ( (3‘—(_7{) W (x'b(;n)x»

= o 3 Gy ) () o

—w ("b(_n)”> F(uydu §w (";(;)”) fv) dv} :

it follows that
X

(12)  o(4,) < 2nb(n)* {S IS W( b(_n)

“VUBf(x) — flag) x| o) dun-b(ny~)

< knib(n)*,

where k is constant. It is clear that 4 = o(b(n)) if b(n) = o(n7?).

The following remarks indicate what the corresponding result ought to be in
the k-dimensional case. Then we have nb(n)* as a multiplicative factor instead
of nb(n)*. The corresponding terms A,, 4, are such that

A, = O(nb(n)***)
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and
3(A;) < Crib(ny+

with C a constant. Thus
A = o(b(n)*")
if
b(n) = o(n~Vu+km)
A. Poissonization. In order to complete a set of estimates required in the
proof of Theorem 1, it is convenient to introduce a Poissonized sample size N.

Let N be a Poisson random variable with mean » independent of , X, ,X, ---. Set
— X
13 *(x) = y ("_a>
(13) [4) = sy T w (S5
Then
— .X
14 *(x) = 1 sim_ (x__,_)’
(14) 10 = 1270 = s W w (550

where by >}'?_, we mean }}%_, — Zj’!;l. Since Ef,(x) = Ef,*(x)
N 2 x—X
Elfu(x) — f* @) = 2b( ; 1 EN_ e (w( o ))
Now E|N — n| < (E|N — n|*)* < n* and

o (w <XT_n)X'>> — b(n)*f(x) § wi(u) du + O(b(n)) ,

if a2 holds. Thus

K
15 E — O < ——,
(15) s = fHOF S s

where K is a constant.
LEMMA 2. Under the assumptions of Lemma 1
(16) B = nb(n)* § {(fu(®) — Efu(x))" — (fa*(x) — Ef,*(x))}a(x) dx
= o(b(n)) ,
if nb(n)* — co and b(n) | 0 as n — co.
Now

B = nb(n)* § {(fu(x) — fa*(*))’
(17) + 2(£27(x) — Ef.*(0))(fa(x) — fu*(x))}a(x) dx
=B, + B,.

From (15) it follows that
(18) EB, < K'n™}
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with K’ a constant. To estimate B, we look at
(19) C = E(f.*(x) — Ef*())(fa(¥) — fu*(CN(fa* (X)) — Ef,*(X"))
X (falx) = fu*(x") -

Notice that
[o¥(x) — Ef,*(x) = n7'b(n) . L 1, a(x)

with
x — ;X _ x — X
@) = b(n) ) - ( b(n) )
and .
fa(x) — fo¥(x) = n7b(n)™* 2"_y Bi(X)
with

X

— X
ﬁ"(x):w( b(n) >
Then (19) can be written as
(20)  n7tb(n)E{ X <1 @y (X) Z'5-w B3y (¥) Difemr @5 (x") 250w B, (XN} -

We have to distinguish between (a) N=m > nand (b) N = m < n. Incase (b)
the contribution to the expectation in (20) is

@) Do mE[a(x)a(x)]

X A{(n — mE[B(x)B(x")] + (n — m)(n — m — 1)EB(x)EB(x")} .

In case (a) the contribution to the expectation in (20) is
D5 T {Ea()a(x)]

X ((m — mE[B(x)A(x")] + (m — m)(m — n — 1)EB(x)EB(x"))
+ (m — n)E[a(x)a(x)A(x)A(x")]
+ (m — n)E[a(x)a(x")]

(22) X ((m — n — DE[B(x)B(x")]
+ (m — n — 1)(m — n — 2)EB(x)EB(x"))
+ (E[a(x)B(x)]E[a(x)A(x")] + E[2(x)B(x")]E[a(x)A(x)])
X (m —n)(m —n—1)
+ (E[a(x)a(x")B(x)]EB(x") + E[a(x)a(x")B(x")IEF(x))
X (m —n)(m —n — 1)}.

Let
xt =x if x=0

=0 otherwise.
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The following inequalities
Em(n — m)* = nE(n — m)* — E[(n — m)*]) < n,
Em[(n — m)*]* = nE[(n — m)*]" — E[(n — m)*} < n*,
En(m — n)* = nE(m — n)* < n?,
En[(m — n)*]* = nE[(m — n)** < n*,
E[(m — n)*P < {E(m — n)*}} £ (4n®)t < 4n?
follow from the fact that the characteristic function of a Poisson random vari-
able with mean n is

exp{n(e® — 1) — itn}:exp{—-{;—n +(L;'Xn+ }

Now
(23) EB;} = 4 § Ca(x)a(x") dx dx' n*b(n)* ,
where C is given by (19). Notice that

(24) EB(x) = Ew <xT_n)X'> —§w ("T(—n_)ﬁ) f(u) du

= § w(@)f(x — b(n)z) dz b(n)* = f(x) § w(z) dz b(n)*

EB(B(x") = Ew (X o ) ("'b(j, )X )

)
X —u x' —u
(23) =5 b(n) >w< b(n) ) sty e
— W) w (";(;)x + z> f(x — b(n)z) dz b(ny? .

Then, using (24) and (25) one finds that
(26) EB? < Kn=*b(n)~*{nb(n)® + n’b(n)® + ntb(n)* + nb(n)* + nib(n)*
+ nb(n)* 4 nb(n)® + nb(n)® + nb(n)%},

and this implies that
E|By| = o(b(n)) ,

if nb(n)* — oo and b(n) | 0 as n — oo. The conclusion of Lemma 2 then follows.
In the k-dimensional case we would again have nb(n)* instead of nb(n)’ as a
multiplicative factor in B. Since

E|f(x) — fL*®) = C[(n¥b(n)f) ,

B = o(b(n)?),

then

if nb(n)* — oo and b(n) | 0 as n — oo.

B. Moments of a Poisson process on the plane. Before continuing with the
proof of Theorem 1 it is helpful to make a simple remark about moments of an
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estimate of the distribution function with Poisson sample size N. If Fy is the
sample distribution function with Poisson sample size N, let F,* = (N/n)Fy.
The characteristic function of a Poisson random variable with mean 2 is

k
27) exp(A(e® — 1) — itd} = 27;0% [e* — 1 — ir]t.

The advantage of considering a Poisson sample size N lies in the fact that nF,*
is then a Poisson process on the plane so that the number of points in fixed
disjoint sets is independent, and the mean number of points in for example a
rectangle is n times the increment of F over that rectangle. This remark and
formula (27) imply that

(28) wEd(F,* — Pyt = 2 @ary 4 St ath (@dF)i
nIRE(F,* — F)f* = B ekt (dF)

where

(29) a;.s,)n = O(n—,((s/2)—j))

as for each fixed j, s with j =1, ..., (s/2) — 1 and (u) is the smallest integer
greater than or equal to u.
Note that

(30) [a¥(x) — Ef,*(x) = §

(" )d(F *(u) — F(u)) .

b(n)2 b(n)
Lemmas 1 and 2 will tell us that if we let &(n) | O at the proper rate,
@1 S, = nb(n)* § [fu*(x) — Ef,*(x)Pa(x) dx

can be considered instead of
nb(n)* § [fu(x) — f(x)a(x) dx ,
with small error as n — oo, b(n) | 0.

C. Asymptotic normality. We now continue with the proof of Theorem 1.
Note that

(32) Sy = 2w Uju(n)
where

3 2
33 1) — {GHDbm detnbom | P <x1 — , Xy — ”z) dF * _ F ]
(3) Upalm = s s | o v (S o) s — )

X a(xy, Xx,) dx, dx, .

The random variables U; ,(n) would be called 2 X 2 dependent, that is, {U; ,(n)}
and {U}, ,.(n)} are 1ndependent if |j —j| = 2or |k — k’| = 2 for all pairs (], k)
and (j', k¥'). This follows from the assumption that w is zero outside [ —3, £]*
and the fact that nF, * is a Poisson process on the plane. By using this 2 X 2
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dependence, a central limit theorem is proven for S, just as for a k-step depend-
ent process with a one-dimensional parameter.

The mean

1 x —
34 ES, = w< > u) du a(x) d
(34) S g 3 Cogy) S0 dua(2)
= § f(x)a(x) dx - § w(uy* du + O(b(ny) ,

if f is bounded and continuously differentiable up to 2nd order with bounded
derivatives and the first moments of w? are zero.

Let

35 Vi) = 337 38 [ o

w (" - ”) d(F,*(u) — F(u))T a(x) dx, dx, ,

b(m) b(n)

where x = (x,, x,) and

=+ Db(m) +jA )=+ Db(m) + 4)
with b(n) = o(A) where A = A(n) | 0 as n — co. First notice that the random
variables V; , are independent. They play the role of the big blocks in a usual
argument to get a central limit theorem. These big blocks are separated by thin

strips of thickness b(n).
Notice that

(36)  EVum) = i 3 b( o § (St 0 duax)dr
so that
(37) E| T Vialt) — S| = O(m)A) .

Let I(j, k) = (A;, A") x (A;, A,’). Formula (28) and the character of the pro-
cess nF,* imply that
n* Cov {d(F,*(u) — F(u)) d(F,*(') — F()),
d(F,*(v) — F(v)) d(F,*(v') — F(v"))}
= [0(u — V)o@ — V') + o(u — v')(w' — v)] dF(u) dF (')

+ o(u — w)d(v — V) — v) {(dF(u))2 n % dF(u)} ;

Y 3a0) = s S 960 S a) {2 §w (5 w (50580 Gy an

+ —rlz_ §w (xb(_n)u>2 w (x;’( ) ) f(u) du} dx dx’

= WO(0) 1 4100) [ 2600 + — f() |

and this implies that

(38) o (3 V;.u(n)) = 2b(nyw(0) § a(x)* f(x)* dx .
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Further
E|V; . (n) — EV; (n)|*
= 30%(V;,u(n))
+ 48(§ 1¢j,10)* TIi=1 dx(§)* TTi=a 4 TIioy a(x?) TTi<1 f(uV)b(n)~
x(l) _ u(l) x(?) — u(l) x(l) — u(z) x(3) — u(ﬁ)
(39) XW( b(n) >w< B(n) >w< b(n) )w( B(n) )

< W (x(ﬁ)b(_n)u@)) W (xﬂ)b(_,;)u(!‘l)) W <x(3)b(_n)u(4)> W <x(4)b(_n)u(4)>

+ O(b(n)°A%)
= O(b(n)*A%).

Let S,(R) be expression (31) with the integral only extended over the rectangle
R = [—r, r]*. If ris large the variance of S, — S,(R) is small. By Liapunov’s
version of the central limit theorem, Y ¥, , extended over summands V', , arising
from integrals lying in R (r fixed) is asymptotically normal with mean ES,(R)
and variance ¢%S,(R)) as n — oo if b(n) = o(A) with A = A(n) | O as n — oo.
Then §,(R) is asymptotically normal with the same mean and variance. A stand-
ard approximation argument shows that S, is asymptotically normal with mean
(34) and variance (38). The proof of Theorem 1 is complete.

D. The one- and k-dimensional cases. Corollary 1 follows by noting that in
the one-dimensional case under parallel assumptions

A = o(b(n)?),
if b(n) = o(n~*) and
B = o(b(n)).

if nb(n) — oo and b(n) — 0 as n — oo.
In the k-dimensional case under corresponding assumptions

A = o(b(ny"),

if b(n) = o(n~¥®*») and
B = o(b(n)}"),

if nb(n)* — oo and b(n) — 0 as n — oo. The k-dimensional version of Corollary

1 can then easily be written out as follows:

CoroLLARY 1'. Consider the k-dimensional analogue of Theorem 1 with A1"—
A4 the corresponding k-dimensional assumptions. Then

b(n)=*2{nb(n)* § [ fu(x) — f(x)Pa(x) dx — § f(x)a(x) dx § w(u)" du}

is asymptotically normally distributed with mean zero and variance (5) as n — oo if
nb(n)¥ — oo and b(n) = o(n~*®+"),

E. Independent components. In the case the component random variables
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X,, X, of X are independent, it.is interesting to look at

(40) Sa(Xs X3) — Gu(x1)Ra(X5) 5
where
(x5 X5) = 9(x;)h(xy)
(41) W(xy, X5) = Wi(X)Wy(x5)
§ 9(x,) dx; = § h(x,)dx, = §wy(x,) dx, = wy(x)dx, =1,

and
_ 1 » X — ;X
(42) 0a(x) = s D (_b(;)_>
— l n xz — jXZ
h'n,(xﬁ) - 'E(n—) Zj:] wa <——b(T)—-> .

Notice that
n*b(n)[f,,(xp xz) - gn(xl)hn(xﬁ)]
= mb(n)[ fu(X1s X3) — Ef(X15 X5)]
43) - —1; (mb(m))H[g,(%) — Egu(x))(nb(m)[n(xs) — Eho(s)]

— (b(n))X(nb(n))H[9,(x1) — EGn(x1)]ERa(x,)
— (b(n))¥(nb(n))}[ A (xs) — Ehy(%,)]1EGa(%1)
=L+ L+ 5L+ 1,
since
Ef (%3, X;) = EQ,(x)Eh,(x,) .

The proof of Theorem 2 is now given.
We wish to look at
nb(n)* § [ fu(X1 X2) — Gn(X0)ha(x5)Pa(x) dX, dx,

(44) = {Iladx + § Lladx + § Iladx + § L’adx
+2$LLadx +2§ L adx + 2§ 1,adx
+2§\LLadx +2§Lladx 2§ LLadx.

The contribution from the first term on the right we already know. The second

term, on taking its expectation is seen to be O(1/n) = o(b(n)) and so can be

disregarded. The third term looks like
nb(n)? § [9a(x1) — EGu(x,)I'A(x,) dx, 5

where
B(x)) = § h(x,)’a(x,, x;) dx, .

Thus the third term is to the first order

b(n) § 9(x,)h(x,)%a(x,, x,) dx, dx, .
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Similarly the fourth term is to the first order
b(n) § 9(x,)*h(xy)a(x,, x,) dx, dx, .
Using the Schwarz inequality one can see that the fifth term is

o (i) = o(b(n)) ,

nt
if nb(n)® — co as n — co. We now look at the sixth term. Note that
E{[fa(x) — Efu(0)][9(x:) — Egu(x,)]}
~ -1 -3 X, — Up\? Xy — Uy
= n~'b(n)~? w1< o) > w2< 5) > Sf(uy, u,) du, du,
= n7'b(n)f(Xy, X,) § Wi(Uy)*wy(uy) du, du,

This implies that the mean of this term is to the first order

b(n) § wi(x) W () dx § f(x)h(x)a(x) dx .

The variance of the sixth term is

§ A(x,)h(x,")a(x)a(x") dx dx’
(e (i) = () -2
[ () - ) - )

(45) + (=) (E[w (Z‘b_?n)ﬁ> —E - |[m xl’b(—n)Xl> —E -]

o |

[ () = E e () -2
X E[m <XI,b(_;1)X1> -k "'][W‘<xlb?n;(l> —£- )}

where an expression of the form a(X) — E - .- denotes a(X) — Ea(X). The
variance (45) can be shown to be O(b(n)?). The mean of the sixth term must be
taken into account since it is O(b(n)), but the fluctuation about the mean can
be neglected since it is O(b(n)?). The analysis for the seventh term proceeds just
as does that for the sixth term. The mean to the first order is

b(n) § wy(x)wy(x,)* dx, dx, § f(x)g(x;)a(x) dx

and the variance is O(b(n)?). The Schwarz inequality can be used to show that
the eighth and ninth terms can be neglected. The mean of the last term is zero.
Also the variance of this last term is small enough so that it can be neglected.
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Thus, if
(46)  A(n) = § f(x)a(x) dx + b(n) § g(x)h(x,)'a(x) dx[1 + § wi(u,)'wy(u,) du]
+ b(n) § 9(x1)’h(xp)a(x) dx[1 + § wy(u)wy(u,)* du] ,

then
b(n)~'[nb(n)* § [ fu(%) — gu(xp)hu(x,)]Pa(x) dx — A(n)]

is asymptotically normally distributed with mean zero and variance
(47) 2w(0) § a(u)*f(u)* du ,
given that nb(n)? — oo and b(n) = o(n~*) as n — oo. The proof of Theorem 2 is
complete.
In the paper [1] it was noted that
SUPy<, <1 (1D(1))H|g,(x1) — g(x))| = O((log n)?) .
By using this result we obtain the following corollary.

COROLLARY 2. Let the components of the random variables ;X be independent.
Further, assume that the marginal densities are positive on [0, 1] and zero outside
[0, 1]. Then under the assumptions of Theorem 2

(47) b(n)~* |:nb(n)2 S:;((b(n))i Sl—(b(»))i [fa(*) — gu(x)h(X)] dx — A(n):l

n)d (b(n))? g.n(xl)h”(xg)
is asymptotically normally distributed with mean zero and variance 2w*(0) if
b(ny = n~* with ¥ > d > L. Here
(48) A(n) = 1 + b(n)[2 + § wy(u,)* du, + § wy(u,)* du,] .
To make local power computations in the context,of Theorem 1 we consider
the behavior of the statistic for a sequence of alternatives to fy(x) of the form
(49) Ta(X) = fo*) + 127(¥) + 0(1a) »

where the r, satisfies a2 uniformly in n, 7, | 0 at a rate to be specified and o(y,)
is uniform in x. The function 7 is assumed continuous.

F. Asymptotic power. The following results on asymptotic power are obtained
just as in [1].

THEOREM 3. Let X, X, ---, X be independent and identically distributed with
common density function r,(x). Let the assumptions al, a3, a4 be satisfied. Set
T, = nb(n)* § [f.(X) — fo(x)]a(x) dx. Then if b(n) = n~° with 3 > 0 > L where
7. = n~ib(n)~, then it follows that
(50) b(m)7[T, — § fu(x)a(x) dx § w(z)* dz]
is asymptotically normally distributed with mean § 7(x)%a(x)dx and variance
2w9(0) § @(x)f(x) dx.

Similar computations for a sequence of alternatives of the form (49) with
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Sfo(X) = go(x1)ho(x,) would allow us to make local power computations for the
statistic used to test independence in the corollary.

3. A comparison of tests based on estimates of the distribution function and
density function. In the multidimensional case one could just as well test inde-
pendence by using a statistic based on the sample distribution as in [2] rather
than one based on the density function. It should be noted, however, that the
limiting distribution obtained in the case of (47) is the normal distribution,
rather than a distribution whose properties are not familiar as in [2]. Nonethe-
less, the local power computations of the type based on alternatives like (49)
would appear to indicate that tests based on the sample distribution function
are more powerful than those based on the density. There are other types of
local alternatives for which tests based on density estimates are more powerful
that tests based on the sample distribution function. So as to keep the argument
simple notationally we shall illustrate this by an example in the one-dimensional
case. Similar examples can be constructed in the multidimensional case. Let
us consider the question of a test of goodness-of-fit. Asis well known, the local
alternatives when using the sample distribution function as a basis for a test
would differ from the null hypothesis by O(1/nt) where n is the sample size.
We shall look at

T, = § [fu(x) — f(x)Pa(x) dx nb(n)

as the statistic based on a density function estimate with the density

9.(%) = f(X) + 7a(%) »
where 7,(x) — 0 in a manner to be prescribed later on as n — co. Assume that
conditions a1’—a4’ referred to in Corollary 1 are satisfied. The type of local
deviation 7,(x) is assumed to be of the form

m(0) = au (2=5),
Tn

where both «a,, 7, | 0 at appropriate rates to be specified as n — oo, and u is
continuously differentiable up to second order and band limited with b(n) =
o(r,), b(n) | 0 as n — oo.

One can show that
b(n)™(T,, — (§ f(x)a(x) dx) § w(z) dz)
is asymptotically normal with mean
, a(c) § u(x)*dx,

and variance

2w (0) § a(x)*f*(x) dx ,
as n — oo if for example
1

= — = b 8 Py
. S 7w = b(n)
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with b(n) = n~t. Notice that the magnitude of the indefinite integral of ,(x) is
of the order
b(n)}

— p—f
=n
nt ’

Xnln =

so that we have greater power against such an alternative than in the case of a
test based on the deviation between the sample and true distribution function.
Notice that the deviation 7,(x) is local not only in that it is close to zero but
also since it is highly centered about the point c¢. Of course, one could also
have an alternative which is a finite sum of such functions 7,(x) centered about
different points.

I am indebted to Peter Bickel, who initially suggested Poissonization in dis-
cussions and computations leading up to our joint paper [1] as a possible tech-
nique. His comments and suggestions have been very helpful in the writing of
this paper.

It is plausible though not absolutely clear that one might be able to get similar
resnlts for other density estimates of types mentioned in [4] and [5]. Also the
mo. extended results of this paper are based on the use of weight functions
with bounded support. It is not apparent how much additional labor would be
required to prove them for a broader class of weight functions. In obtaining
the results the estimates of Lemmas 1 and 2 were essential.

REFERENCES

[1] BickkL, P. J. and ROSENBLATT, M. (1973). On some global measures of the deviations of
density function estimates. Ann. Statist. 1 1071-1095.

[2] Brum, J. R., KIEFER, J. and ROSENBLATT, M. (1961). Distribution free tests of independ-
ence based on the sample distribution function. Ann. Math. Statist. 32 485-498.

[3] GiBson, C. H. and MasIieLLo, P. J. (1972). Observations of the variability of dissipation
rates of turbulent velocity and temperature fields. Statistical Models and Turbulence,
427-453.

[4] ROSENBLATT, M. (1971). Curve estimates. Ann. Math. Statist. 42 1815-1842.

[S] TArTER, M. E. and KRONMAL, R. A. (1970). On multivariate density estimates based on
orthogonal expansions. Ann. Math. Statist. 41 718-722.

[6] VAN ATTA, C. W. and PARK, J. (1972). Statistical self-similarity and inertial subrange tur-
bulence. Statistical Models and Turbulence, 402-426.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
LA JoLLA, CALIFORNIA 92037



