ON INTERVAL ESTIMATION AND SIMULTANEOUS SELECTION OF ORDERED LOCATION OR SCALE PARAMETERS¹

BY M. HASEEB RIZVI AND K. M. LAL SAXENA

Lund University, Sweden, and Stanford University; University of Nebraska

A formulation is given and a procedure is proposed for constructing a confidence interval for a certain ordered location or scale parameter and for simultaneously selecting all populations having parameters equal or larger than this ordered parameter with a preassigned minimal probability. The well-known indifference-zone formulation of the ranking problem is obtained as a special case as is the problem of interval estimation of an ordered parameter.

1. Introduction and formulation of the problem. Procedures for selection of a certain number of populations with larger parameters from a collection of several populations have been studied extensively in the past two decades; see for example, Bechhofer [3] or Barr and Rizvi [2]. Recently Saxena and Tong [6], Saxena [5], Dudewicz and Tong [4], and Alam, Saxena and Tong [1] have considered confidence intervals for the largest parameter. The present paper attempts to combine these two requirements simultaneously in a single formulation for the location and scale parameter families. The problem of interest is to construct a confidence interval for an ordered location or scale parameter and simultaneously select all populations having parameters equal or larger than this ordered parameter, with a preassigned minimal probability whenever parameters lie in a specified subspace. A procedure R is proposed to solve this problem and its performance, in terms of the probability requirement being satisfied, is evaluated.

Let $\{F(\bullet;\theta)\}$ denote a family of absolutely continuous distribution functions on the real line indexed by a parameter θ ; the density corresponding to $F(\bullet,\theta)$ would be denoted by $f(\bullet,\theta)$. Let θ_1,\dots,θ_k be k values of θ and let Y_1,\dots,Y_k be k independent observations from k populations Π_1,\dots,Π_k with distribution functions $F(\bullet;\theta_1),\dots,F(\bullet;\theta_k)$ respectively.

Let $\theta_{[1]} \leq \theta_{[2]} \leq \cdots \leq \theta_{[k]}$ denote the ordered values of the components of $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_k) \in \Omega$. For $1 \leq t \leq k$, we require a procedure R that selects all Π_i $(i = 1, \cdots, k)$ with $\theta_i \geq \theta_{[k-t+1]} = \theta$ (say) and simultaneously gives an interval I such that $\theta \in I$. Denote by CS the (correct) selection of all Π_j with $\theta_{[j]}$, $j = k - t + 1, \cdots, k$, and by CD (correct decision) the inclusion of θ in I, and let

Received February 1970; revised January 1974.

¹ Work supported in part by contract N00014-67-A-0112-0053 (NR-042-267) at Stanford University and by University of Nebraska Research Council.

AMS 1970 subject classifications. Primary 62F10; Secondary 62F07.

Key words and phrases. Interval estimation, ordered location or scale parameter, ranking, indifference zone.

 $P(\theta)$ denote $Pr\{CS \cap CD \mid R\}$. Then the procedure R, for some preassigned γ , $0 < \gamma < 1$, is more specifically required to satisfy

$$\inf_{\mathbf{Q}(\phi)} P(\boldsymbol{\theta}) \geq \gamma,$$

where $\Omega(\psi) = \{ \boldsymbol{\theta} \in \Omega : \theta_{[k-t]} \leq \psi(\theta_{[k-t+1]}) \}$ and ψ is a given function on the real line such that $\psi(x) < x$.

We give solutions of (1.1) for location parameters and scale parameters using procedure R proposed on an ad hoc basis in Section 2. The theorems of Section 2 provide a unified treatment for both the location and scale parameters. However, the explicit solutions for the two cases are given in Section 3.

2. Main results on $P(\theta)$ for proposed R.

Proposed procedure R. Rank Y_1, Y_2, \cdots, Y_k , breaking ties (if any) with suitable randomization, and let $Y_{[i]}$ be the *i*th smallest Y_i . Consider two suitably chosen continuous increasing functions h_1 and h_2 (with inverses g_2 and g_1 respectively). Construct the random interval $I_0 = (h_1(Y_{[k-t+1]}), h_2(Y_{[k-t+1]}))$. Then assert that $\theta \in I_0$ and that the Π_j 's corresponding to $Y_{[j]}$ $(j = k - t + 1, \cdots, k)$ have parameters $\theta_j \ge \theta$.

REMARK 1. It should be pointed out that in applications Y_i 's are consistent estimators (preferably functions of the sufficient statistic, when it exists) of θ_i 's based on samples of common size n from each population and θ_i and n appear as parameters in their distribution (n will be explicitly demonstrated in the sequel only when needed). Then (1.1) can be satisfied by a proper choice of n and the functions g_1 and g_2 (see Theorem 2).

First we investigate the infimum of $P(\theta)$ over $\Omega^*(\phi)$ for the above R, where

$$\Omega^*(\phi) = \{\theta \in \Omega : \theta_{\lceil k-t \rceil} \leq \phi(\theta), \theta = \theta_{\lceil k-t+1 \rceil} \text{ held fixed} \},$$

and then determine conditions so that R satisfies (1.1). We have

(2.1)
$$P(\boldsymbol{\theta}) = \sum_{j=k-t+1}^{k} \int_{g_{1}(\theta)}^{g_{2}(\theta)} \prod_{r=1}^{k-t} F(y; \theta_{[r]}) \times \prod_{s=k-t+1; s\neq j}^{k} \{1 - F(y; \theta_{[s]})\} dF(y; \theta_{[j]}).$$

Our main result is given by

THEOREM 1. Suppose $F(y;\theta)$ is differentiable for all θ in the parameter space. Suppose that (a) $(\partial/\partial\theta)F(y;\theta) \leq 0$ for all y, (b) $[(\partial/\partial\theta)F(y;\theta)]/[(\partial/\partial\theta)F(y';\theta)]$ is an increasing function of θ for every y > y', and (c) $F(y;\bar{\theta}) = 0$ for all y, where $\bar{\theta}$ is the largest possible value of the parameter $(+\infty \text{ included})$. If $F(\bullet;\theta_i)$, $i=1,\dots,k$ satisfy the above conditions satisfied by $F(y;\theta)$, then

(2.2)
$$\inf_{\Omega^*(\phi)} P(\boldsymbol{\theta}) = \min_{r=0,1,\dots,t-1} P(\boldsymbol{\theta}^{(r)}),$$
 where

(2.3)
$$P(\boldsymbol{\theta}^{(r)}) = (r+1) \int_{g_1(\theta)}^{g_2(\theta)} F^{k-t}(y; \psi(\theta)) [1 - F(y; \theta)]^r dF(y; \theta),$$

and $\theta^{(r)}$ is a vector θ with first (k-t) ordered components equal to $\psi(\theta)$, (r+1) among the last t ordered components equal to θ and the rest equal to $\bar{\theta}$.

PROOF. Let $\Omega_1(\phi) = \{ \boldsymbol{\theta} \in \Omega(\phi) : \theta_{[k-t+1]}(=\theta), \dots, \theta_{[k]} \text{ held fixed} \}$. Then in view of the condition (a) the infimum of $P(\boldsymbol{\theta})$ over $\Omega_1(\phi)$ can be written as

(2.4)
$$\inf_{\Omega_{1}(\phi)} P(\boldsymbol{\theta}) = F^{k-t}(g_{1}(\theta); \psi(\theta)) \prod_{s=k-t+1}^{k} \{1 - F(g_{1}(\theta); \theta_{[s]})\}$$

$$- F^{k-t}(g_{2}(\theta); \psi(\theta)) \prod_{s=k-t+1}^{k} \{1 - F(g_{2}(\theta); \theta_{[s]})\}$$

$$+ (k - t) \int_{g_{1}(\theta)}^{g_{2}(\theta)} F^{k-t-1}(y; \psi(\theta))$$

$$\times \prod_{s=k-t+1}^{k} \{1 - F(y; \theta_{[s]})\} dF(y; \psi(\theta)).$$

Observe that the right side of (2.4) is a symmetric function of $\theta_{[k-t+2]}, \dots, \theta_{[k]}$. Hence disregarding their ordering and relabeling $\theta_{[k-t+2]}, \dots, \theta_{[k]}$ as $\eta_{k-t+2}, \dots, \eta_k$ and letting $\eta = (\eta_{k-t+2}, \dots, \eta_k)$ we may symbolically write (2.4) as

(2.5)
$$\inf_{\Omega_1(\phi)} P(\boldsymbol{\theta}) = H(\theta, \boldsymbol{\eta}).$$

It is clear that the infimum of $P(\theta)$ over $\Omega^*(\psi)$ is equal to the infimum of $H(\theta, \eta)$ over $\{\eta: \theta \leq \eta_j \leq \bar{\theta}, j = k - t + 2, \cdots, k\}$. For some j, fix $\eta_{k-t+2}, \cdots, \eta_{j-1}, \eta_{j+1}, \cdots, \eta_k$ and consider $(\partial/\partial\eta_j)H(\theta, \eta)$. Observe that the condition (b) implies that $[(\partial/\partial\eta_j)F(y;\eta_j)]/[(\partial/\partial\eta_j)F(g_2(\theta);\eta_j)]$ is a decreasing function of η_j for all $y \in [g_1(\theta), g_2(\theta)]$. Arguing in a similar manner as in Saxena [5] we conclude that $H(\theta, \eta)$ is either decreasing in η_j or first increasing and then decreasing in η_j . Consequently $\inf_{\eta_j} H(\theta, \eta)$ is either at $\eta_j = \theta$ or at $\eta_j = \bar{\theta}$. This conclusion is valid for every other j. Therefore, infimum of $P(\theta)$ over $\Omega^*(\psi)$ is achieved when a certain number r of η_j 's are equal to θ and the rest equal to $\bar{\theta}$. Finally, using the condition (c) in (2.4) completes the proof.

REMARK 2. The condition (a) of Theorem 1 is closely related to the stochastic ordering of a family of distributions, whereas the condition (b) is equivalent to the monotone likelihood ratio property when the family of density functions depends on a location or a scale parameter.

Note that $P(\theta^{(r)})$ in (2.3) can be expressed as $C(r)E_r[F^{k-t}(Y; \psi(\theta))]$ where E_r denotes a certain expectation and C(r) is a certain constant. Well-known results on monotonic behavior of such expectations give

COROLLARY 1. If conditions of Theorem 1 hold and

$$(2.6) F(g_1(\theta); \theta) + F(g_2(\theta); \theta) \ge 1,$$

then

(2.7)
$$\inf_{\Omega^{\star}(\phi)} P(\boldsymbol{\theta}) = P(\boldsymbol{\theta}^{(t-1)}) = t \int_{g_1(\theta)}^{g_2(\theta)} F^{k-t}(y; \, \phi(\theta)) \times [1 - F(y; \, \theta)]^{t-1} \, dF(y; \, \theta).$$

Now we prove that if Y_i 's are consistent, it is possible to choose $g_1(\theta)$ and $g_2(\theta)$ so that the infimum of $P(\theta)$ over $\Omega^*(\psi)$ goes to unity for any fixed θ as the common sample size n tends to infinity.

Suppose Y_i 's are consistent estimators. Writing $F_n(y;\theta)$ for a typical $F(y;\theta)$, $F_n(y;\theta)$ tends to unity for $y \ge \theta$ and to zero for $y < \theta$ as n tends to infinity. Now choose functions $g_1(\theta)$, $g_2(\theta)$ and $\phi(\theta)$ such that $g_1(\theta) < \theta$, $g_2(\theta) > \theta$ and

 $\psi(\theta) < \theta$. Further, choose constants c and d such that $\max(g_1(\theta), \psi(\theta)) < c < \theta < d < g_2(\theta)$. Then for a given $\varepsilon > 0$, there exists an $n_0(\varepsilon)$ such that for $n \ge n_0(\varepsilon)$, $F_n(c; \psi(\theta)) \ge 1 - \varepsilon$. Hence for any $r = 0, 1, \dots, t - 1$, and $n \ge n_0(\varepsilon)$, we have from (2.3)

$$(2.8) P(\boldsymbol{\theta}^{(r)}) \ge (1 - \varepsilon)^{k-t} [\{1 - F_n(c; \theta)\}^{r+1} - \{1 - F_n(d; \theta)\}^{r+1}].$$

Now there exist $n_1(\varepsilon)$ and $n_2(\varepsilon)$ such that for $n \ge n_1(\varepsilon)$, $1 - F_n(c; \theta) \ge 1 - \varepsilon$ and for $n \ge n_2(\varepsilon)$, $1 - F_n(d; \theta) \le \varepsilon$. Let $n(\varepsilon) = \max\{n_0(\varepsilon), n_1(\varepsilon), n_2(\varepsilon)\}$. Then for $n \ge n(\varepsilon)$, from (2.8) we have

$$(2.9) P(\boldsymbol{\theta}^{(r)}) \ge (1 - \varepsilon)^{k-t} [(1 - \varepsilon)^{r+1} - \varepsilon^{r+1}].$$

Moreover, for any given δ , $0 < \delta < 1$, it is possible to choose an $\varepsilon(0 < \varepsilon < 1)$ depending on δ and r, such that the right side of (2.9) is not less than $(1 - \delta)$. Thus, with Y_i 's consistent, we have proved the following theorem.

Theorem 2. If $g_1(\theta) < \theta$, $g_2(\theta) > \theta$ and $\phi(\theta) < \theta$, then for any fixed θ , a given $\delta(0 < \delta < 1)$ and any $r = 0, 1, \dots, t - 1$, there exists an $n(\delta, r)$ such that $P(\theta^{(r)}) \ge 1 - \delta$ for $n \ge n(\delta, r)$.

It is possible to choose $g_1(\theta)$ and $g_2(\theta)$ so that the conditions of Theorem 2 and (2.6) are satisfied at the same time. Consequently there exists an $n(\delta)$ such that for $n \ge n(\delta)$,

$$\inf_{\Omega^{\bullet}(\phi)} P(\boldsymbol{\theta}) = P(\boldsymbol{\theta}^{(t-1)}) \geq 1 - \delta.$$

3. Explicit results for location and scale parameters.

Location parameter case. Let $F_n(y; \theta_i) = F_n(y - \theta_i)$, $\psi(\theta) = \theta - \delta$, $g_1(\theta) = \theta - a$, $g_2(\theta) = \theta + b$, where $\delta \ge 0$ and a and b with a + b > 0 are preassigned constants. If the density $f_n(y - \theta_i)$ has a monotone likelihood ratio in y for θ_i and a and b are chosen such that

$$(3.1) F_n(-a) + F_n(b) \ge 1,$$

then for $1 \le t \le k$,

(3.2)
$$\inf_{\Omega(\phi)} P(\boldsymbol{\theta}) = t \int_{-a}^{b} F_n^{k-t} (y + \delta) [1 - F_n(y)]^{t-1} dF_n(y).$$

If Y_i 's are consistent and both a and b are chosen to be positive constants satisfying (3.1), then the right-side expression in (3.2) for any fixed k and t goes to unity as the common sample size n tends to infinity. Thus for a preassigned γ , there exists a smallest value of n so that (1.1) is satisfied. If $F_n(\cdot)$ is symmetric about the origin, a and b can be any pair of numbers with $b \ge a > 0$. In general, the choice of a and b may depend on the sample size n chosen.

Scale parameter case. Let $F_n(y; \theta_i) = F_n(y/\theta_i)$, y > 0, $\theta_i \ge 0$, $F_n(0) = 0$, $\psi(\theta) = \zeta\theta$, $g_1(\theta) = \theta/a$, $g_2(\theta) = \theta/b$, where ζ , a, b are preassigned constants such that $0 < \zeta \le 1$, $0 \le b < a$. If $(1/\theta_i)f_n(y/\theta_i)$ has a monotone likelihood ratio in

y for θ_i and constants a and b are chosen such that

$$(3.3) F_n(1/a) + F_n(1/b) \ge 1,$$

then for $1 \le t \le k$,

(3.4)
$$\inf_{\Omega(\phi)} P(\boldsymbol{\theta}) = t \int_{1/a}^{1/b} F_n^{k-t}(y/\zeta) [1 - F_n(y)]^{t-1} dF_n(y).$$

If Y_i 's are consistent and constants a and b are chosen (possibly depending on n) such that $0 \le b < 1 < a$ in addition to (3.3), the right-side expression in (3.4) goes to unity as n tends to infinity. Hence there exists a smallest value of n so that (1.1) is satisfied for a preassigned γ .

4. Some concluding remarks. The present formulation *includes* as a special case the indifference zone formulation of the ranking problem by taking $a = b = \infty$ in the case of location parameters and $a = \infty$ and b = 0 in the case of scale parameters; $Pr\{CS \cap CD \mid R\}$ then equals $Pr\{CS \mid R\}$ and (3.2) reduces to (7) of [2] and (3.4) reduces to (10) of [2].

The present work also *includes* the confidence interval formulation for the largest location or scale parameter (see [1]) as a special case. For t=k, we have $\theta=\theta_{[1]}, \Omega^*(\psi)=\Omega_*, \Omega_*=\{\pmb{\theta}:\theta_{[1]}\text{ held fixed}\}$ and $\Pr\{\text{CS}\cap\text{CD}\,|\,R\}$ equals $\Pr\{\text{CD}\,|\,R\}$. Now the result for $\theta=\theta_{[k]}$ can be derived by considering a strictly monotone transformation of the random variables Y_i 's.

If $\psi(\theta) = \theta$ (that is, no indifference zone) then the integral (2.7) can be evaluated using incomplete beta function tables and the tables of the distribution function F for any fixed value of θ .

It is well known that in the CS problem alone, a meaningful lower bound on γ of the probability requirement (1.1) is $1/\binom{k}{t}$. Such is not the case in the CS \cap CD problem as indicated by (2.7).

In this formulation of interval estimation and simultaneous selection for location (scale) parameters, the upper confidence bound for $\theta_{\lfloor k-t+1 \rfloor}$ can be obtained by taking $b=\infty(b=0)$ and the lower confidence bound by taking $a=\infty(a=\infty)$. However, for 1 < t < k, all that can then be said regarding the infimum of $P(\theta)$ over $\Omega(\phi)$ by use of Theorem 1 is that it is equal to $\min\{P(\theta^{(r)}), r=0, 1, \cdots, t-1\}$. In general it is not possible to find the value of r which minimizes $P(\theta^{(r)})$. However, for t=1 or t=k, the infimum of $P(\theta)$ can be easily obtained.

REFERENCES

- [1] ALAM, K., SAXENA, K. M. L. and TONG, Y. L. (1973). Optimal confidence interval for a ranked parameter. J. Amer. Statist. Assoc. 68 720-725.
- [2] BARR, D. R. and RIZVI, M. H. (1966). An introduction to ranking and selection procedures. J. Amer. Statist. Assoc. 61 640-646.
- [3] Bechhofer, R. E. (1954). A single-sample multiple-decision procedure for ranking means of normal populations with known variances. *Ann. Math. Statist.* 25 16-39.
- [4] DUDEWICZ, E. G. and Tong, Y. L. (1971). Optimal confidence intervals for the largest location parameter. Statistical Decision Theory and Related Topics. Academic Press, New York. 363-376.

- [5] SAXENA, K. M. L. (1971). Interval estimation of the largest variance of k normal populations. J. Amer. Statist. Assoc. 66 408-410.
- [6] SAXENA, K. M. L. and Tong, Y. L. (1969). Interval estimation of the largest mean of k normal populations with known variances. J. Amer. Statist. Assoc. 64 296-299.

DEPARTMENT OF MATHEMATICS
SIR GEORGE WILLIAMS UNIVERSITY
MONTREAL 107, CANADA

Department of Math. and Statist. University of Nebraska Lincoln, Nebraska 68508