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ON INTERVAL ESTIMATION AND SIMULTANEOUS SELECTION
OF ORDERED LOCATION OR SCALE PARAMETERS!
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A formulation is given and a procedure is proposed for constructing a
confidence interval for a certain ordered location or scale parameter and
for simultaneously selecting all populations having parameters equal or
larger than this ordered parameter with a preassigned minimal probability.
The well-known indifference-zone formulation of the ranking problem is
obtained as a special case as is the problem of interval estimation of an
ordered parameter.

1. Introduction and formulation of the problem. Procedures for selection of
a certain number of populations with larger parameters from a collection of
several populations have been studied extensively in the past two decades; see
for example, Bechhofer [3] or Barr and Rizvi [2]. Recently Saxena and Tong
[6], Saxena [5], Dudewicz and Tong [4], and Alam, Saxena and Tong [1] have
considered confidence intervals for the largest parameter. The present paper
attempts to combine these two requirements simultaneously in a single formula-
tion for the location and scale parameter families. The problem of interest is
to construct a confidence interval for an ordered location or scale parameter
and simultaneously select all populations having parameters equal or larger than
this ordered parameter, with a preassigned minimal probability whenever pa-
rameters lie in a specified subspace. A procedure R is proposed to solve this
problem and its performance, in terms of the probability requirement being
satisfied, is evaluated.

Let {F(-; 6)} denote a family of absolutely continuous distribution functions
on the real line indexed by a parameter ¢; the density corresponding to F(., 6)
would be denoted by f(., §). Letd,, --., 0, be k values of # and let Y,, - - ., Y,
be k independent observations from k populations II, ..., II, with distribution
functions F(.; 6,), - - -, F(+; 6,) respectively.

Let 0 < 0y < - -+ < 6y, denote the ordered values of the components of
0= (0, --,0,)eQ. Forl <1t <k, we require a procedure R that selects all
IO,i=1,..-,kywith6, = 0,,_,,,, = 6 (say)and simultaneously gives an interval

I such that 6 € I. Denote by CS the (correct) selection of all IT; with 6, j =
k —t+41,...,k,and by CD (correct decision) the inclusion of # in 7, and let
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P(6) denote Pr{CS n CD|R}. Then the procedure R, for some preassigned 7,
0 < r < 1, is more specifically required to satisfy

(1.1) info, P(O) 2 7,

where Q(¢) = {0 € Q: 0;,_,y < ¢(014—.417)} and ¢ is a given function on the real
line such that ¢(x) < x.

We give solutions of (1.1) for location parameters and scale parameters using
procedure R proposed on an ad hoc basis in Section 2. The theorems of Section 2
provide a unified treatment for both the location and scale parameters. However,
the explicit solutions for the two cases are given in Section 3.

2. Main results on P(68) for proposed R.

Proposed procedure R. Rank Y,,Y,, ..., Y,, breaking ties (if any) with suitable
randomization, and let Y}, be the ith smallest Y,. Consider two suitably chosen
continuous increasing functions 4, and 4, (with inverses g, and g, respectively).
Construct the random interval I, = (A (Y—s411)s Po(Y1e-r41y))- Then assert that
6 eI, and that the II,’s corresponding to Y;;; (j = k —t 4+ 1, - - -, k) have pa-
rameters 6; = 0.

REMARK 1. It should be pointed out that in applications Y,’s are consistent
estimators (preferably functions of the sufficient statistic, when it exists) of 6,’s
based on samples of common size n from each population and #; and n appear
as parameters in their distribution (n will be explicitly demonstrated in the sequel
only when needed). Then (1.1) can be satisfied by a proper choice of n and the
functions g, and g, (see Theorem 2).

First we investigate the infimum of P(@) over Q*(¢) for the above R, where
Q) ={0eQ: 0y < ¢(0), 0 = 0,y held fixed},
and then determine conditions so that R satisfies (1.1). We have
@.1) P(B) = Skopens V2% TIEE (33 0,)
X Ilick-tniors {1 — F(3 Opa)} dF(y; 0159) -
Our main result is given by

THEOREM 1. Suppose F(y; 0) is differentiable for all 0 in the parameter space.
Suppose that (a) (0/00)F(y; 8) < 0 for all'y, (b) [(9/00)F(y; 0)]/[(0/00)F()'; 0)] is
an increasing function of 0 for every y > y', and (c) F(y; 6) = 0 for all y, where 0
is the largest possible value of the parameter (+ oo included). If F(.;0,), i =

1, - -, k satisfy the above conditions satisfied by F(y; 0), then
(2.2) infg.,, P(@) = min,_,, ... .., P(0),
where

(2.3) POT) = (r+ 1) §525 F*~*(y; ()1 — F(y; O)]" dF(y; 6)
and 0 is a vector @ with first (k — t) ordered components equal to (), (r + 1)
among the last t ordered components equal to 6 and the rest equal to §.
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Proor. Let Q(¢) = {0 € Q¢): Op_rsri(= 0), - - -, Oy held fixed}. Then in
view of the condition (a) the infimum of P(@) over Q,(¢) can be written as
info, g, P(0) = F*(9:(0); $(0)) ILi-iria {1 — F(92(6); Or))}
(2:4) — F74(9y(0); $(0)) 1i-i-esa {1 — F(9:(6); 01}
+ (k= 1) §525 F =75 ¢(9))
X ke {1 — F(p3 )} dF(y3 $(0)) -

Observe that the right side of (2.4) is a symmetric function of 0y, _,,4, - - -, G-
Hence disregarding their ordering and relabeling 0y, _, 51, « + 5 011 88 Ny_pyr ==+ 5 Wi

and letting % = (7;_,42s - - *» 7%) We may symbolically write (2.4) as

(2.5) infy, ;, P(0) = H(0,7) -

It is clear that the infimum of P(@) over Q*(¢) is equal to the infimum of H(4, )
over {9: 0 <7, <6,j=k—1t+2,---,k}. Forsome j, fix y,_, 5 -, 71

D415 * > 7 and consider (9/dx;)H(#, 7). Observe that the condition (b) implies
that [(8/9n,)F(y; 1,)1/[(8/97,)F(90); 7,)] is a decreasing function of »; for all
y €[94(60), g,(0)]. Arguing in a similar manner as in Saxena [5] we conclude that
H(f, 3) is either decreasing in 7; or first increasing and then decreasing in 7;.
Consequently inf, . H(6, 7) is either at 7, = 6 or at 5, = . This conclusion is
valid for every other j. Therefore, infimum of P(€) over Q*(¢) is achieved
when a certain number 7 of 7,’s are equal to 6 and the rest equal to . Finally,
using the condition (c) in (2.4) completes the proof.

REMARK 2. The condition (a) of Theorem 1 is closely related to the stochastic
ordering of a family of distributions, whereas the condition (b) is equivalent to
the monotone likelihood ratio property when the family of density functions
depends on a location or a scale parameter.

Note that P() in (2.3) can be expressed as C(r)E,[F*~(Y; ¢(6))] where E,
denotes a certain expectation and C(r) is a certain constant. Well-known results
on monotonic behavior of such expectations give

CoroLLARY 1. If conditions of Theorem 1 hold and

(2:6) F(g,(0); 0) + F(ay(0); 0) = 1,
then /
(2.7) infg. ., P(0) = P(6"~) = 1§30 F*~*(y; ¢(0))

X [1 — F(y; )] 1dF(y; 0) .

Now we prove that if Y,’s are consistent, it is possible to choose g,(¢) and
g,(0) so that the infimum of P(f) over Q*(¢) goes to unity for any fixed ¢ as
the common sample size n tends to infinity.

Suppose Y,’s are consistent estimators. Writing F,(y; 0) for a typical F(y; 0),
F,(y; 0) tends to unity for y > ¢ and to zero for y < 6 as n tends to infinity.
Now choose functions g,(6), g,(¢) and ¢(6) such that g,(0) < 6, g,(¢) > ¢ and
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¢(0) < 6. Further, choose constants ¢ and d such that max (g,(9), ¢(0)) < ¢ <
0 < d < g,(0). Thenforagivene > 0, there existsan n,(¢) such that for n = n,(¢),
F,(c; ¢(0)) =1 —e. Henceforany r=0,1,...,¢t — 1,and n = nye), we have
from (2.3)

(2.8) PO™) = (1 — &) '[{1 — F,(c; )Y+ — {1 — F,(d; 0)}*'].

Now there exist n,(¢) and n,(e) such that for n = ny(¢), 1 — F,(c; ) = 1 — ¢ and
for n = nye), 1 — F,(d;0) < e. Let n(¢) = max{nye), n,(¢), ny(¢)}. Then for
n = n(e), from (2.8) we have

(2.9) POD) = (1 — e)~(1 — e)r*1 — e+

Moreover, for any given 6, 0 < d < 1, it is possible to choose an ¢(0 < ¢ < 1)
depending on 4 and r, such that the right side of (2.9) is not less than (1 — 9).
Thus, with Y,’s consistent, we have proved the following theorem.

THEOREM 2. If g,(0) < 6, 9,(0) > 0 and ¢(0) < 0, then for any fixed 0, a given
00<d<1)and any r=0,1,...,t — 1, there exists an n(d,r) such that
P@™) =1 — 0 forn = n(d,r).

It is possible to choose g,(f) and g,(f) so that the conditions of Theorem 2
and (2.6) are satisfied at the same time. Consequently there exists an n(d) such
that for n = n(d),

(2.10) infg.,, P(0) = PO ") =1 —39.
3. Explicit results for location and scale parameters.

Location parameter case. Let F,(y; 0,) = F,(y — 0,), ¢(0) =0 — 0, 9,(0) =
0 — a, g9 = 6 + b, where 6 = 0 and a and b with a + b > 0 are preassigned
constants. If the density f,(y — 6,) has a monotone likelihood ratio in y for 6,
and a and b are chosen such that

(3.1) F(—a)+ F(0) 2 1,
then for 1 < ¢ < &,

(3.2) infoy, P(O) = 1 {2, 57y + O)[1 — F ()] dF.(y) -

If Y,’s are consistent and both @ and 4 are chosen to be positive constants
satisfying (3.1), then the right-side expression in (3.2) for any fixed k and ¢ goes
to unity as the common sample size » tends to infinity. Thus for a preassigned
7, there exists a smallest value of n so that (1.1) is satisfied. If F,(+) is symmetric
about the origin, @ and b can be any pair of numbers with 4 = a > 0. In gen-
eral, the choice of a and b may depend on the sample size n chosen.

Scale parameter case. Let F,(y;0,) = F,(y/0,), y >0, 6, =0, F,(0)=0,
@(0) = L0, g,(0) = 0/a, g,() = 0/b, where {, a, b are preassigned constants such
that 0 < £ < 1,0 £ b < a. If (1/8,)f.(y/0;) has a monotone likelihood ratio in
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y for 6§, and constants @ and b are chosen such that

(3.3) F(lfa) + F,(1/6) 2 1,
then for 1 < ¢ < &,
(3-4) info, P(6) = 1§18 S (0/O11 — Fu ()] dF,(y) -

If Y;’s are consistent and constants @ and b are chosen (possibly depending
on n) such that 0 < b < 1 < a in addition to (3.3), the right-side expression in
(3.4) goes to unity as n tends to infinity. Hence there exists a smallest value of
n so that (1.1) is satisfied for a preassigned 7.

4. Some concluding remarks. The present formulation includes as a special
case the indifference zone formulation of the ranking problem by taking a =
b = oo in the case of location parameters and @ = oo and 4 = 0 in the case of
scale parameters; Pr{CS n CD|R} then equals Pr{CS|R} and (3.2) reduces to
(7) of [2] and (3.4) reduces to (10) of [2].

The present work also includes the confidence interval formulation for the
largest location or scale parameter (see [1]) as a special case. For ¢ = k, we
have§ = 6y, Q*(¢) = Q,, Q, = {0: 0y, held fixed} and Pr{CS n CD | R} equals
Pr{CD|R}. Now the result for # = 6, can be derived by considering a strictly
monotone transformation of the random variables Y,’s.

If ¢(f) = 6 (that is, no indifference zone) then the integral (2.7) can be eval-
uated using incomplete beta function tables and the tables of the distribution
function F for any fixed value of 4.

It is well known that in the CS problem alone, a meaningful lower bound on
7 of the probability requirement (1.1)is 1/(f). Such isnot the case in the CS n CD
problem as indicated by (2.7).

In this formulation of interval estimation and simultaneous selection for loca-
tion (scale) parameters, the upper confidence bound for 4,,_,,,, can be obtained
by taking & = co(b = 0) and the lower confidence bound by taking a = co(a = oo0).
However, for 1 < ¢ < k, all that can then be said regarding the infimum of P(6)
over Q(¢) by use of Theorem 1 is that it is equal to min{P(@"),r=0,1, ...,
t — 1}. In general it is not possible to find the value of r which minimizes
P(@™). However, fort = 1 or ¢t = k, the infimum of P() can be easily obtained.
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