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MAJORIZATION IN MULTIVARIATE DISTRIBUTIONS
By ALBERT W. MARSHALL AND INGRAM OLKIN

University of Rochester and Stanford University

In case the joint density f of X = (Xi, -, Xa) is Schur-concave (is an
order-reversing function for the partial ordering of majorization), it is
shown that P(Xe A + ) is a Schur-concave function of # whenever 4 has
a Schur-concave indicator function. More generally, the convolution of
Schur-concave functions is Schur-concave.

The condition that f is Schur-concave implies that Xi, - -+, X, are ex-
changeable. With exchangeability, the multivariate normal and certain
multivariate *‘s’, beta, chi-square, “F”’ and gamma distributions have
Schur-concave densities. These facts lead to a number of useful inequalities.

In addition, the main result of this paper can also be used to show that
various non-central distributions (chi-square, <“#”’, “‘F”’) are Schur-concave
in the noncentrality parameter.

1. Introduction. For exchangeable random variables X, X,, - --, X, proba-
bilities of the form

P{(X,— 6, -, X, —0,)cA}=P{XcA+06)

often exhibit a monotonicity property in values of § partially ordered according
to majorization. We obtain some theory for such monotonicity which is suffi-
ciently general to yield a number of interesting examples. Included in the study
are some standard models for dependence and discussions of several non-central
distributions.

In n dimensions the vector a is said to be majorized by the vector & (written
a < b) if, upon reordering components to achieve

algazg"‘gan’ blgb2g."gbn’
it follows that

e, = X b i=1,2,.-..,n—1, it = 2 by

= i=1 %1

See, e.g., Hardy, Littlewood and Polya (1952), page 49, or Berge (1963), page
184. Functions ¢ for which a < b implies ¢(a) < ¢(b) are said to be Schur-
convex; if ¢(a) = ¢(b) they are called Schur-concave. Such functiors are
permutation-symmetric, i.e., invariant under permutations of components of
theargument. A necessary and sufficient condition that a permutation-symmetric
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differentiable function be Schur-concave is that

dp(x) _ 9p(x)
1 Gﬂ_____)%—x.go
M) = ) (= x) =
for all i # j (Schur (1923), and Ostrowski (1952)). The inequality is reversed
for Schur-convex functions.
It is easily verified that

(a, ay ---5a,) > (X a/n)(1,1,-..,1)
for all vectors a. Thus, when Y] a, is fixed, a Schur-concave function achieves

a maximum at the point where components are equal. Another useful obser-
vation is that

(1,0, -,0) > (1,1,0,--,0) > $(1,1,1,0, .-, 0) > «-- > L (1,1,...,1).
n

Most of the results of this paper identify specific Schur-concave functions;
from this, the reader can construct various inequalities by evaluating the func-
tions at pairs of points ordered by majorization. The results are nearly all conse-
quences of one basic theorem. Thus, we shall identify Schur-concave functions
by indicating situations under which the conditions of the theorem are satisfied.

2. The main theorem. Most results of this paper are obtained from the fol-
lowing theorem.

2.1. THEOREM. Suppose that the random variables X,, X,, - - -, X, have a joint
density f that is Schur-concave. If A C R™isa Lebesgue-measurable set which satisfies
(2) yeAd and X<y=xeAd,
then ‘

o f(x) dx = P{Xe A + 6)
is a Schur-concave function of 0.

The condition that f is Schur-concave implies that f is permutation-sym-
metric; this is just the condition that the random variables X, X,, ..., X, are
exchangeable.

Condition (2) is satisfied whenever A4 is a permutation-symmetric convex set.
This follows from the fact that (i) x < y implies x = yD for some doubly sto-
chastic matrix D (Hardy, Littlewood and Polya (1952) page 49), and (ii) the set
of doubly stochastic matrices is the convex hull of the permutation matrices
(Birkhoff’s Theorem—see, e.g., Mirsky (1963)). But (2) does not imply that A
is convex; indeed, if 4, and 4, satisfy (2), then so does 4, U 4,. Condition (2)
does not even imply measurability.

The condition that f is Schur-concave is equivalent to the condition that for
each constant ¢, {y: f(y) = c} satisfies (2). Thus, the condition is satisfied if
{y: f(y) = c} is convex (called unimodal by Anderson (1955)), and f is permu-
tation-symmetric.



MAJORIZATION IN MULTIVARIATE DISTRIBUTIONS 1191

We mention these facts partly to point out the distinction between the above
theorem and a result of Mudholkar (1966), which generalizes a theorem of
Anderson (1955). From this generalization, Mudholkar obtains as a special case
the conclusion of the above theorem, but with the additional requirements that
A and sets of the form {y: f(y) = c} are convex. An advantage of our weaker
condition is that it is often much easier to check than is convexity. Moreover,
the convexity condition is too strong for certain applications.

Theorem 2.1 is of special interest in the case that X, X,, ..., X, are inde-
pendent and have a common marginal density g. In this case, the joint density

[ is given by f(x) = TT 9(x,)-

2.2. ReMARk. If f(x) = []7, 9(x;), then f is Schur-concave if and only if
log g is concave. When g is a differentiable function, the Schur-concavity of f
can easily be checked using condition (1). This result is of particular interest
in view of a result of Mudholkar (1969) to the effect that f(x) = ] g(x;) is uni-
modal (i.e., sets of the form {y: f(y) = c} are convex) if g is log-concave. Con-
sequently, the converse of Mudholkar’s result is true. Moreover, in the case of
independence, our condition that f is Schur-concave coincides with the condition
of Mudholkar (1966) that f is unimodal.

There is a corollary to Theorem 2.1 worth mentioning.

2.3. CoRrOLLARY. If f, and f, are nonnegative integrable Schur-concave functions
defined on 2™ then their convolution

J0) = § 20 i(X)fo(0 — x) dx

is Schur-concave.

Proor. Since f, is Schur-concave, fy(x) = f,(—x) is Schur-concave, and by
Theorem 2.1,

Savo fo(—%) dx = § 5u Li(x)fo(6 — X) dx

is a Schur-concave function of §. To complete the proof, approximate f, by an
increasing sequence of simple functions ¢, = 3] a, I 4,» Where the sets 4, satisfy
the conditions of Theorem 2.1, and then use Lebesgue’s monotone convergence
theorem. []

The above corollary shows that the class % of all nonnegative integrable
Schur-concave functions on 2" is closed under convolutions. The class .& is
a convex cone closed also under the formations of maxima, minima and products
as well as monotone nonnegative transformations.

2.4. COROLLARY. If the exchangeable random variables X, X,, - - -, X, have a
Joint density which is Schur-concave, and if ¢ is also permutation-symmetric, non-
negative and Schur-concave, then

Ep(X —0) and  P{p(X — 0) = c}

are Schur-concave functions of 6.
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To prove that P{o(X — #) = c} is Schur-concave, let 4 = {u: —o(u) < c}.
Then, because —¢ is Schur-convex, x < y and y € 4 implies x € A. Thus, by
Theorem 2.1,

$avo f(x)dx = P{(X,, ---, X,) e A + 0} = P[X — O c 4}
= P{—p(X — 0) < ¢} = Plp(X — 0) = ¢}
is Schur-concave. []

Of course, the condition that P{p(X — ) = ¢} < P{p(X — &) = ¢} for all ¢
implies Ep(X — ) < Ep(X — §), so that there is no need to offer an independ-
ent proof that E¢(X — @) is Schur-concave. Although the Schur-concavity of
Ep(X — 6) follows from that of P{¢(X — @) = c}, one can take ¢ to be the indi-
cator function /, of the set 4 to obtain Theorem 2.1 from the fact that E¢(X — 6)
is Schur-concave.

Corollary 2.3 was also obtained by Mudholkar (1969) with the stronger hy-
pothesis that f is permutation-symmetric and unimodal, and {u: ¢(u) = c} is
convex for all c.

Proor oF THEOREM 2.1. We must show that if § < &, then

3 §avo f(x) dx = § 4pe f(x) dx .

Because f and A4 are permutation-symmetric,

SA+.9 f(x) dx = SA+1r(0)f(x) dx
for all permutations =. Thus, we can assume that

612022"‘201» and 51;‘522257»

According to a result of Hardy, Littlewood and Pdlya (1952) 6 can be derived
from ¢ by a finite number of pairwise averages of components. Consequently,
we can assume that 6, = &, if i = j or k, where j < k. Of course, 6, + 6, =
§; + &, =20,say. If§; =0+ aandf; =0 4 B, then§, =0 — a,0, =9 — f
and a > 8> 0.

Letu = x; + x,, and v = x; — x,. To obtain (3), integrate first on v, con-
ditionally with the other variables held fixed. Observe that

. u -+ u—
{Iv- (xp “'ij_l, 2 ’ xj+1’ "'9xk_1, 2 ’ xk+1’ °--,Xn>€A +51’

(u — 20) + (v — 2a)
2 b

s Xpp1 _Sk-{-l’ ey Xy —5”>GA}

Xjpr— Ejur t 0 0s

= ’{'U: (xl - 519 ey Xjo — Ej_la

(u — 28) — (v — 2a)

Xp—1 — ‘Sk—v D)

=B,.

The set B, is symmetric and convex. Moreover, as a function of v,

_ u-+v u—
f(x) = f(xl, cets X D) s Xjprs 00ty Xpo1s 2 s Xkt1s “‘,xn>
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is symmetric and unimodal. Thus by the theorem of Anderson (1955) or of
Wintner (1938),
$o, /() dv = §,, f(x) dv.
The inequality is preserved upon integrating out the remaining variables to yield
3)-
3. Bounds for distribution functions. Interesting applications of Theorem 2.1
are obtained with the sets

A, ={x:x, 20, ---,x, <0} and A ={x:x>0,..--,x, > 0}.
In this way, we conclude that if the joint density is Schur-concave, then
Fx)y=PX,Zx, -+, X, < x,) and F(x) =P(X, > x;, -+, X, > x,)
are Schur-concave in x.
Since (x;, - -+, x,) > (1, 1, - .., 1)a/n where « = 3 x, we obtain
Bound 1.

Fla,a, -, a) = F(x) and F(a, a, -+, Q) gF(x).
In case x; = O for all 7, it is also true that (3} x,,0, ---,0) > (x, - - -, x,).
Thus, for nonnegative random variables X, with a Schur-concave joint density,
Bound 11.
Flx) = F(3] x,0,---,0)  and  F(x) = F(} x,,0, ---,0);
equivalently, for x, = 0, - .-, x, = 0, and nonnegative random variables X,
P{X, > x, -+, X, > x,} = P{X; > 3 x;}.

If attention is confined to the set 4, or A*, conditions weaker than that of
Theorem 2.1 can be obtained; Section 7 is devoted to a discussion of more gen-
eral conditions under which F and F are Schur-concave.

In Section 4, we consider certain special cases where another useful bound
on the distribution function can be obtained.

4. A direct verification. In some instances, one can directly verify the con-
dition of Theorem 2.1 that a joint density is Schur-concave by using condition
(1). One such case is given in the following proposition.

4.1. ProroSITION. If the joint density [ has the form
f(x) = g(xAx)
where ( is a decreasing function and N = (4,;) is positive definite with ;, = ... =
Any and A,; = A when i # [, then f is Schur-concave.
Although this result is easily checked from (1), it can also be easily verified that
f(x) = g(xAx') is unimodal in the sense that sets of the form {x: g(xAx’) = ¢}

are convex. Consequently the result of Mudholkar (1966) applies in place of
Theorem 2.1 for sets A that are permutation-symmetric and convex.
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To check that {x: g(xAx’) = ¢} is ceavex, suppose that g(yAy’) = ¢ and
9(zAz') = ¢. Then yAy’ < g7%c) and zAz' < g~'(c). Because xAx’ is convex
in x, this implies [ay + (1 — @)z]A[ay 4 (1 — @)z]’ < g7'(c) and hence
9y + (1 — a)z]A[ay + (1 — @)z]) 2 .

Multivariate normal distributions. If X, ..., X, are exchangeable and are
jointly normally distributed, then Proposition 4.1 shows that their joint density
is Schur-concave.

Multivariate “t” distribution. If U, ..., U, are exchangeable and jointly nor-
mally distributed, and if Z* is chi-square distributed (Z = 0), then X, = U,/Z,. - .,
X, = U,/Z have a joint density f of the form g(XAX’) where g(w) is propor-
tional to (1 + w)=%, @ > 0. Thus Proposition 4.1 again applies to show that f
is Schur-concave.

Multivariate beta distribution. If U,, ..., U, and Z are independent random
variables with a chi-square distribution and U,, ..., U, are identically distrib-
uted, then from Olkin and Rubin (1964), Theorem 3.3,

‘X;ZUZ/(ZUz-I_Z)) i=1y2""’n
have a multivariate beta distribution with joint density of the form

fx) = K(IT 5771 = Zx) =

Here, condition (1) is easily verified directly, so that Theorem 2.1 applies.

5. Applications to mixtures of distributions and some models for dependency.
Suppose that for each z in some set Q, the density f,(x) is Schur-concave, i.e.,
f, satisfies the conditions of Theorem 2.1. Then for any random variable Z
taking values in Q and having distribution G, the mixture

f(x) = §a fi(x) dG(2)
also satisfies the conditions of Theorem 2.1. This is an immediate consequence
of the observation that the class of Schur-concave functions forms a convex
cone. Some interesting examples arise directly from the fact that the class of
densities satisfying the conditions of Theorem 2.1 is closed under the formation
of mixtures. (In contrast, this closure does not hold for unimodal densities.)

A multivariate chi-square distribution. Suppose S = (s;;) is the sample covari-
ance matrix based on a sample of size N > p from a p-variate normal distribution

with covariance matrix X = (g;), 0, = 0% 0,;, =3, i#+j=1,...,p. The
joint density of (s, - - -, 5,,) has the form of a mixture of independent chi-square
densities (which are log concave). Consequently, the joint density of 5,;, - - -, 5,

is Schur-concave. (The density can be expressed in terms of a multiple infinite
series, and does not have a simple expression. When p = 2, the density was first
obtained by Bose (1935), and expressed as a mixture by Siotani (1940).)

A particularly interesting case is that in which f,(x) = ] g,(x;) for some
univariate density g,. Here, a random vector X, ,, ---, X, , with density f has
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components which are conditionally independent, given Z. We have already
observed (Remark 2.2) that f, satisfies the conditions of Theorem 2.1 if and only
if log g, is concave. Of course, conditional independence serves as a source of
various models for dependence.

5.1. PROPOSITION. Let ¢,(u) be linear and increasing inu forall z. If U,, U,,- - -,
U, and Z are independent random variables, and if the U, have a common log-concave
density, then the joint density f of

Xy =, (U), -+, X, = ¢2(U,)

satisfies the conditions of Theorem 2.1.

If the random variables X, X,, - - -, X, are generated as in Proposition 5.1,
then one can give the following lower bounds for F(x) = P(X; < x;, ---, X, <
x,) and F(x) = P(X; > x;, - -+, X, > X,):

Bounds I11.

PX,=x, -, X, =x,) 2] P(X, = x;),
P(X, > xp, -0 X, > x,) = [T P(XG > x)

Before comparing the bounds II with III, we give a proof of III.

Esary, Proschan and Walkup (1967) show that III holds if X, X,, - .-, X, are
associated, in the sense that for all real-valued increasing functions ¢, ¢ of n
arguments,

Cov (o(Xy, -+ -, X,), o(Xy, - - -, X”)) =>0.

Since the random variables X, - - ., X, of Proposition 5.1 are conditionally in-
dependent, given Z, the conditional covariances are all nonnegative (Theorem
2.1, Esary, Proschan and Walkup (1967)); this property is preserved in uncon-
ditioning so that X, ..., X, are associated. Hence III holds.

Now let us compare the lower bounds P{X; > 7, x,} and ]2, P{X; > x;}
of IT and III. If the inequality

P{Xl > tax) = I1m P{Xi > x;}

holds for n = 2 and all x,, x,, then one can show by iteration that it holds for
all n. For n = 2, the property

PX, > x + x} 2 P{X, > x}P(X, > x))

arises in a reliability context and is discussed by Marshall and Proschan (1972)
in the case X,, X, are identically distributed as they are here. They term the
property “new worse than used,” and the reverse inequality is called “new better
than used.” In some of the examples which follow neither property holds, so
that neither inequality is always better then the other. On the other hand, the
multivariate gamma discussed below includes cases for which the “new better
than used” and “new worse than used” properties hold.

5.2. Ratios of random variables. We consider some examples below in which
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¢(x) = x/z,z > 0. U, ---, U, and Z are independent random variables, the U,
have a common log-concave density, and Z is a univariate random variable such
that P(Z > 0) = 1.

The multivariate “F” distribution. A particular multivariate “F” distribution
which arises in statistical contexts is generated as follows: U, ---, U, each have
a chi-square distribution with » > 2 degrees of freedom, and Z has a chi-square
distribution with s degrees of freedom. Since U,,---, U, and Z have log-concave
densities,

X, = Ul/Z’ e X, = Un/Z

have a joint density f which satisfies the conditions of Theorem 2.1. Moreover,
the marginals of f are “F” densities. Here, one has the Bounds I and II. For
this application, Bounds III were obtained by Kimball (1951). Bounds I and IT
were obtained by Olkin (1973), who shows by verifying (1) that for this example
F is Schur-concave.

If Y, ..., Y, has a multivariate beta distribution (Section 4), and X,, - - -, X,
has a multivariate F-distribution, then one may obtain one distribution from the
other by the transformations Y, = X;/(1 + X X;) and X; =Y,/(1 — X Y)).

Consequently, some results for one distribution may be obtained from the other.

Multivariate “t” distribution. As shown in Section 4, the multivariate “¢”
density is Schur-concave. If we assume that U,, - .., U, are independent (rather
than exchangeable as in Section 4), then we obtain from Proposition 5.1 the
same conclusion because U, - - -, U, have log-concave densities. However, with
independence we have the additional Bounds III which do not necessarily hold
for the exchangeable case.

5.3. Sum of random variables. A further example of Proposition 5.1 is the
case in which ¢,(x) = x + z.

Multivariate normal distribution. If U, ..., U, and Z are independent normally
distributed random variables and the U, are identically distributed, then X, =
U+ Z,...,X, =U, + Z have a Schur-concave joint density as already ob-
served more generally in Section 4. This special case is of interest because
Bounds III apply.

A multivariate gamma distribution. If U, ..., U, and Z are independent U,
have a gamma distribution with density f(u; @) = A(Au)*"'e~**/T'(a), @« = 1, and
Z has a gamma distribution with density f(#; ) then

X\=U4+2Z .--,X,=U,+ 72

are jointly distributed with marginal densities f(u; a + 8). Here the marginal
densities of the X,’s are “new better than used” if « 4 8 = 1, and they are “new
worse than used” if @ 4+ 8 < 1. Consequently, the bound of III is better than
IT when a 4 8 = 1, and the bound of III is weaker than IT when a + 8 < 1.
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6. Non-central distributions. There are several ‘“non-central” distributions
which are derived from multivariate distributions and have vector-valued pa-
rameters. Such distributions are often Schur-concave in their parameters.

Non-central chi-square distribution. This distribution function is given by

1 2
Fy(r) = ——(27[),,/, §ize2sn eXp[—3 20 (x; — 0)"]dx
1 2
= ey §ocao eXp(—3% 2 x7) dx,

where 4 = {x: 3] x;* < t}. Since A4 is convex and since the integrand is a pro-
duct of log-concave densities, it follows from Theorem 2.1 that F, is Schur-
concave in —#@, which is equivalent to being Schur-concave in 6.

It is well known that F, can be written as a mixture of central chi-square
distribution functions where the mixing distribution is Poisson with parameter
Y7 62 Condition (1) is not easily checked directly when F), is written in this
form or in the form above. However, one can show that F, is decreasing in
B = 3 02 either by direct differentiation or via total positivity. Since ¢(f) =
37 6.2 is Schur-convex, this implies that F, is Schur-concave in 6.

Non-central “t” distribution. The distribution function of the non-central “¢”
is given by
Fy(t) = Yiza,sev) exp[—4% X (x, — 0,)]st"le~t dx ds .
The sets 4, = {x: } x; < t+/ s } are all convex in x, and we can write
Fy(t) = Sazo {§sea, XP[—% X (x; — 0,)7] dx}st""le~d ds
= §ozo{Saea,—0 exp[—3 2 x’]dx}si"le"t ds .

The inner integral is Schur-concave in # for each fixed s by Theorem 2.1, and
hence the mixture F,(t) is Schur-concave in 6.

Non-central “F” distribution. The distribution function of the non-central “F”
distribution can be written as
Fy(1) = Yizapsen €XP[—3 20 (X — 0,)*]st"le~ 4 dx ds
= ozo {Szemepsay €XP[—3 2 (X, — 6,)’] dx}st"-le 4 ds .
Here the argument used for the non-central “¢” requires little modification to

show that the non-central “F”’ distribution function is Schur-concave in 4.

7. Distribution functions and survival functions. Here we consider exclu-
sively the two special sets
A, ={x:x, <0 forall i}
and
A* ={x:x, > 0 forall i}.
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These sets satisfy the conditions of Theorem 2.1, but

F(a) = § 4,40 f(x) dx
and

F(a) = §poya f(x) dx
may be Schur-concave under weaker conditions on f than those required in
Theorem 2.1.

7.1. PROPOSITION. In the independent identically distributed case, i.e., F(a) =
112, G(a;) and F(a) = T]2, G(a;) for some univariate distribution function G =
1 -G,

F is Schur-concave if and only if log G is concave,
F  is Schur-concave if and only if log G is concave.

Proor. We apply condition (1) to prove the assertion for F. For a; > a,,

0F(a)  0F(a) _
da; da,

J

which holds if and only if

Tixs.1 G(a)l9(a;)G(ar) — 9(ar)G(a;)] = O,

9(@) _ o(a) |
G(a;) — G(a)
or d/dz log G(z) is decreasing in z, i.e., log G is concave. The proof for F is
similar. [J
The condition of Proposition 7.1 that log G is concave has not received much
attention in the literature. By contrast, the condition that log G is concave has
been extensively studied in the context of reliability theory (see, e.g., Barlow
and Proschan (1965)). Both conditions are implied by the condition that the
density g of G is log-concave.
The following result is to be compared with Proposition 3.1.

7.2. PROPOSITION. Let ¢,(u) be concave and increasing in u for all z. If U,
U,, - -+, U, and Z are independent random variables, and the U; have a common dis-
tribution function G such that G = 1 — G is log-concave, then

Xy = 0Uy), -+, X, = @u(U,)
are such that P(X; > x,, - --, X, > x,) is a Schur-concave function of x.

ProOF. We assume that ¢, is strictly increasing and differentiable so that it
has an increasing differentiable inverse, and we also assume that G has a density
g. Then

P(Xy > xp, 0 Xy > x,) = Plo(U) > x5 04(U,) > x,)
= EP(?Z(UI) > xl’ T sDZ(Un) > Xn | Z)
= EP(U, > ¢,7 (%), -+ -5 Up > 0,7 (%,) [ 2)
= ET[ia P(U; > ¢,71(x) | Z) = E 11 Gl (xy) -
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Now, apply condition (1) to 4(x) = [Tt G(p,~(x)- If x; > x,,

oh,(x) _ ahz(x) _ ) S =1y —9(027(%5) ¢, -1
(@) T~ T < [y Gl ) [—soz'(soz*(x,-» G(p,~(%,)
007 gro e ],
T ) e |

If y, = ¢,7%(x,), then y; > y,, and the difference (4) is nonnegative if and only if

® 08 G(y,) 2 I Gy .

¢z (Vi) ¢z (¥5)
But log G is concave so g(y,)/G(y:) = 9(»,)/G(y;), and ¢, is concave so ¢,'(y;) =
¢, (7). Consequently (5) holds. To complete the proof, we need only remark
that we have shown P(X; > x,, - -+, X, > x,) to be a mixture of Schur-concave
functions. [J

7.3. PROPOSITION. Let ¢, (u) be convex and increasing in u forall z. If X, - - -,
X, are defined as in Proposition 7.2, and log G is concave, then P(X, < x,, « - -,
X, < x,) is a Schur-concave function of x.

We omit the proof of this result, which is analogous to the proof of Propo-
sition 7.2.

7.4. The minimum of random variables. The function ¢,(u) = min (u, z) is
concave and increasing in u for each z, so it satisfies the condition of Proposition
7.2. If U, U,and Z are independently distributed having an exponential distri-
bution with parameters 4, 2 and 2,,, respectively, then

X, = min (U,, Z) and X, = min (U,, Z)
have the bivariate exponential distribution given by
F(x,, x3) = P(X; > X3, X; > X)) = exp{—4x; — Ax, — A, max (x;, x,)} .
By Proposition 7.2, F is Schur-concave.
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