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ON LARGE-SAMPLE ESTIMATION FOR THE MEAN
OF A STATIONARY RANDOM SEQUENCE

BY RoLF K. ADENSTEDT
Lehigh University

For a wide class of stationary random sequences possessing a spectral
density function, the variance of the best linear unbiased estimator for the
mean is seen to depend asymptotically only on the behavior of the spectral
density near the origin. Asymptotically efficient estimators based only on
this behavior may be chosen. For spectral densities behaving like A* at
the origin, v > —1 a constant, the minimum variance decreases like n—v-1,
where n is the sample size. Asymptotically efficient estimators depending
onvare given. Finally, the consequences of over- or under-estimating the
value of v in choosing an estimator are considered.

1. Introduction. The following simple stochastic model is widely applied.
A (possibly complex-valued) random sequence X, =m 4+ Y,, t =0, + 1, ...
is the sum of a constant mean value m and a disturbance. The disturbance
{Y,} is a zero-mean, wide-sense stationary random sequence with a spectral
density function f(1), —x < 4 < =, so that its covariance function is

(1.1) R(z) = EY,,.¥, = {7 e} f(2) d2, t=0,+1,....

We consider in this paper aspects of the estimation of the mean m for this
model by unbiased linear estimators

(1.2) m=cX,+aX+ - - +c4X,, G+t -+, =1,

formed from a large number of observed values X, X;, ---, X,. Of particular
interest is the best linear unbiased estimator (BLUE) 7, y, i.e., the estimator
(1.2) baving minimum variance

Varm = Ejit — m> = 3%, _,c;E,R(j — k).

Since, typically, calculation of 7, ; or its variance is difficult, adequate approxi-
mations are needed in terms of more easily calculated estimators.

There is a substantial literature comparing the BLUE with other estimators,
especially the least squares estimator (LSE) #,g = (n 4 1)7'(X, 4+ .-+ + X,). A
good survey of results appears in Anderson (1971). Watson (1967, 1972) and
Zyskind (1967) consider coincidence of the BLUE and LSE for coefficients in
general linear regression models with a fixed sample size. Kruskal (1968) treats
this problem from a coordinate-free Hilbert space viewpoint.

A general Hilbert space approach to linear estimation problems is given by
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Parzen (1961) and in the infinite sample size case by Rozanov (1971). Cleveland
(1971) compares the BLUE to an arbitrary linear estimator using Mahalanobis
distance.

Studies have also been made with special cases of our model. Fishman (1972)
gives closed form expressions for i, and its variance when {Y,} is autore-
gressive of finite order. For order two he compares the BLUE and LSE with
regard to small and large sample behavior. The first-order case is treated in
detail by Chipman, et al. (1968).

We are concerned here with asymptotic or large-sample results and will
compare iy, to competitors other than 4. Grenander (1950) considered
asymptotic efficiency of the LSE relative to the BLUE in estimating means and
(1954) extended the results to more general regressions. In terms of our model
he showed that, as n — co, both iy, ;; and 771, ¢ have asymptotic variance 2z£(0)/n
as long as f(4) is positive and continuous. More recently Vitale (1973) con-
sidered the case when f(2) is continuous and positive except at the origin, where
A7%f(A) - L >0 as 2— 0. Then Var t,; ~ 24nxL/n* and the estimator (1.2)
with coefficients ¢, = 6k(n — k)/[n(n* — 1)] is asymptotically efficient, while
M4 is not.

Related results have appeared in the applied mathematics literature on
smoothing. Greville (1966) and Trench (1971) consider the minimum variance
linear estimation of a polynomial m(f) of fixed degree in the model X, = m(t) +
Y,. Trench gives an algorithm for computing the BLUE when {Y,} has a con-
tinuous spectral density f(2); while Greville gives a closed form for the BLUE
when f(2) = (sin® 2/2)* with @ an integer. Both authors are concerned, however,
with stability of minimum variance smoothing formulas, rather than asymptotic
properties thereof. Trench (1973) also considers estimation of a linear functional
of m(t).

The main results of this paper appear in Sections 4 and 5. Sections 2 and 3
contain preliminaries. In Section 4 (Theorem 4.1) we find that, for a large class
of spectral densities, the asymptotic form of Var r,,; is determined solely by
the behavior of f(2) near 2 = 0, and that asymptotically efficient estimators
based only on this behavior are available. In Section 5 we apply this result to
the case of a spectral density f(2) which behaves like 2* at the origin, where
v > —1is any constant. We find (Theorem 5.2) that the Var sy ; = O(n=*"?)
as n — oo, and prescribe an asymptotically efficient estimator based only on the
value of v. Thereby we generalize the results of Grenander (1954) and Vitale
(1973) described above.

We show in Section 6 that the generating functions associated with the
estimators of Section 5 are expressible in terms of Gegenbauer polynomials,
then use known properties of these polynomials to strengthen slightly the con-
clusions of Section 5.

In Sections 7 and 8 we consider cases of over- and under-estimating v when
f(2) = O(2) as 2 — 0 and an estimator as prescribed in Section 5 is used. We
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find (Theorem 7.2) that the optimum rate of decrease of Var i, is still
attained if too large a value of v is assumed, but that (Theorem 8.1) Var 7,y
decreases at a slower rate if v is assumed to be smaller than the true value.

2. Uniqueness of the BLUE. From (1.1) it is not difficult to see that the
covariance matrix R = {R(j — k); j,k =0,1, ---,n}of Y, ---, Y, is positive
definite as long as R(0) = {*, f(4) dA > 0, which we always assume. Then, as
is well known, 7, has a unique representation (1.2). In fact, the row vector
¢ of coefficients in 71, is given by

. 1
(2.1) ¢c=(c---c¢,) = @R ) 'u"R™, u=\:1,
1
with
(2.2) Var rgy = WRu)"* > 0.

From (2.1) and (2.2) we note that ¢cR = u” Var iy, . Since R is positive de-
finite, this relation together with cu = 1 uniquely determines the coefficient
vector ¢ of m,y, as well as Var #ig .

3. Preliminaries. Notation and definitions. It is convenient to reformulate
the problem of finding the BLUE in a concise notation that easily lends itself
to analysis. For a fixed spectral density f(4), we define an inner product by

(3.1) (P P2y = §2. du(€)do(e)f(2) dA
on the space of those (complex-valued) functions ¢(z) for which the associated

norm ||¢||, is finite. Using (1.1), we may then write the variance of an esti-
mator (1.2) as

(3.2) Var (1, f) = {7, | pu(e™)[f(2) d2 = || pall* >
where
(3.3) p(D)=¢c+cz+ - +c,2".

We employ the notation Var (7, f) to indicate dependence on f(2). The problem
of finding 771,, , may now be stated as

(3-4) llpall = min, — p,(1) = 1.

DEerFINITION 3.1. The polynomial (3.3) that solves (3.4) will be called the
optimal polynomial (of degree n) for f(2). The minimum itself will be denoted
by 0,%(f)-

Thus ||p,||,* = ¢,X(f) = Var rig,; for the optimal polynomial. Since the optimal
P.(2) is determined by 1, (and conversely), it is unique.

The square norm ||¢||,* is non-decreasing in f(2) for a fixed function ¢(z).
Consequently, we have the important property that the minimum variance
¢,2(f) is a non-decreasing functional of (1), i.e., ¢,*(f) = 0,%(g) when f(2) = g(4)-

Clearly, ¢,%(f) is non-increasing in n. In the sequel we restrict attention to
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spectral densities for which this minimum variance does not decrease too rapidly.
DeriNITION 3.2. We call ¢,%(f) slowly decreasing if
(3.5) lim, .. a4, (/)o, () = 1, v=1,2, 000

We also define several classes of functions to be considered in the following
sections. All such functions are assumed to be (Lebesgue) measurable on
[—m, 7]

DerINITION 3.3. Let g(4) be defined on [ —=, #]. We say that this function
belongs to the class

L,: if g(4) is nonnegative, integrable over [ —r, x], and continuous at 2 = 0;
Lyt if g(2) € L, and has a positive lower bound;

B,: if g(4) is nonnegative, bounded, and continuous at 2 = 0;

B,*: if g(4) € B, and has a positive lower bound.

Furthermore, suppose that g(4) has the form
(3.6) 9(A) = h(R)|A — 4,|*P|4 — 2,*® « oo |2 — 2,07,
where r is a natural number, 4,, 4,, - - -, 4, are constants in [—x, ], and (1),

a(2), - - -, a(r) are nonnegative constants. We say that g(2) is in ZL,* or ZB;*
according as k() is in L,* or B,*, respectively.

4. Asymptotic behavior of the minimum variance. To relate large-sample
behavior of Var iy, to behavior of the spectral density near the origin, we
study the ratio ¢,’(fg)/s,’(f), where ¢,*(f) satisfies (3.5) and g(2) is suitably
“nice.” In essence we are now taking the spectral density of {Y,} to be f(2)g(2)
rather than f(1). The purpose of this section is to prove

THEOREM 4.1. Let f(R) be a spectral density with slowly decreasing ¢,(f), and
let g(2) be in the class ZB,*. Then

“4.1) lim,_, ,’(f9)/0,’(f) = 9(0). -

Moreover, if g(0) > 0, then the BLUE i, calculated under tke hypothesis that the
spectral density is f(2) is asymptotically efficient with respect to f(A)g(2) in the sense
that

(4.2) lim, . o,%(fg)/Var (m,, fg) = 1.

Before proceeding with the proof, we obtain some preliminary results. In
the remainder of this section, we adhere to the following notatijon of the theo-
rem: f(1) will denote a spectral density with slowly decreasing ¢,% f) and 7,
will denote the BLUE calculated with respect to f(7). Moreover, the optimal
polynomials for f(2) will always be denoted by p,(2).

LeMMA 4.1. If 1(2) is a nonnegative trigonometric polynomial, then

lim inf, .., 0,X(/1)/0,(f) Z (0) .
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Proor. The result is trivial if #(0) = 0; therefore we take 7(0) > 0. By the
Féjer-Riesz representation theorem, there is a polynomial p(z) of the same
degree, say v, as 7(4) for which #(2) = |p(e"*)]*. Letting qy(z), ¢,(2), - - - be the
optimal polynomials for f(2)t(1), we define the polynomial r(z) = P(2)q,.(2)/p(1)
of degree n + v, and note that r(1) = 1. Therefore

(0)o5,(f) = 1OIrlly* = [1gull7e = 0.%(f1) -
The proof is completed upon dividing the extreme inequality by % f) and
taking lim inf, with use of (3.5).
Lemma 4.2. K, () = | p(e))f(2)/0,(f) satisfies, for any 0 < § < =,

(4'3) limn%, Sagmgz Kn('z) di=0.

Proor. Let g(1) = 2 for 0 < |2| < 6 and g(4) = 1 ford < |2| < . Then the
integral in (4.3) is just 2 — ||p,]|%,/0,%(f), and it suffices to show that

(4.4) Hm, || pull7e/0.%(f) = 2.

Now clearly we can choose a nonnegative trigonometric polynomial #(1) with
the properties: #(1) < g(4) and #0) = 2. Then |[p,||2, = 0.(f9) = a,}(f1).
Dividing by ¢,%(f) and taking liminf, with use of Lemma 4.1 we obtain
lim inf, __ {|p,|[7,/0.'(f) = 1(0) = 2. But clearly also ||p,|[%,/0,X(f) < 2. Thus

(4.4) is established and the proof is complete.
Lemma 4.3. If g(R) is in B,, then
lim, .. Var (1, f9)0,%(f) = 9(0) .

Proor. With K, (1) defined as in Lemma 4.2, the assertion is that
§7. K.(4)g(4) d2 — g(0) as n — co. This follows from a standard integral kernel
argument since K, (4) is nonnegative and satisfies |~ K, (1) di = 1 as well as
(4.3).

LemMaA 4.4, If g(4) is in B,, then

(4.5) limsup, ... 7,%(/9)/0,’(f) = 9(0) .

Proor. The resultis immediate from Lemma 4.3, since a,%(f9) < Var (m,, f9).

LemMa 4.5. Let g(2) be in ZL,*. Then for any ¢ > O there is a trigonometric
polynomial 1(Z) with the properties: 0 < 1(2) < g(2) and 1(0) = g(0) — .

Proor. If suffices to prove the result for each of the factors on the right side
of (3.6), for the product of the “approximants” will yield an approximant for
g(4) in the required sense. We consider the individual factors.

(@) 9(4) € Ly*. Fore < g(0), we choose 0 < § < = such that g(2) > g(0) — ¢
for [2] < 6. Then we may use 7(2) = [¢(0) — ¢][4(1 + cos 2)]¥, where the inte-
ger N is chosen so large that [4(1 + cos 6)]¥ < inf g(2)/[9(0) — ¢]. For e > 9(0)
we use #(4) = 0.
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(b) 9(A) = |2 — 4™, v a positive integer. The result follows from (a) by
writing g(2) as the product of a positive and continuous function and the tri-
gonometric polynomial [1 — cos (2 — 4,)]*.

(c) 9(2) = |2 — A4J]*, a >0 not an even integer. If i, =0 we may use
t(2) = 0, so we take 4, = 0. For any integer v > «/2 and constant 0 < 6 < |4,
h(2) = [max {4, |4 — A,|}]"»*« is positive and continuous. Thus g,(1) =
h(2)|2 — A,/ may be approximated according to (a) and (b). But g,(1) < 9(2)
and ¢,(0) = ¢(0), so the approximant for g,(2) also serves for g(2).

With these preliminary results, the proof of the theorem stated at the begin-
ning of this section is quite short.

ProoF oF THEOREM 4.1. Any function g(4) in ZB,* is in ZL,* and in B,
hence satisfies (4.5) To prove (4.1) it suffices thus to show that

(4.6) lim inf, .., 0,%(f9)/0.*(f) = 9(0) -

For any ¢ > 0, choosing a trigonometric polynomial #(2) with the properties in
Lemma 4.5, we have ¢,*(fg) = 0,(ft), and so with use of Lemma 4.1, the left
side of (4.6) is seen to be bounded below by liminf, . ¢,*(ft)/s,’(f) = #(0) =
9(0) — e. Letting ¢ — 0, we obtain (4.6). The second assertion (4.2) follows
immediately from (4.1) and Lemma 4.3.

5. Application to certain spectral densities. Theorem 4.1 enables us to
obtain the rate of decrease of Var 71, ; and asymptotically efficient estimators
for large classes of spectral densities, in particular for many spectral densities
characterized by a zero (or infinity) of fixed finite order at the origin. As repre-
sentatives of such spectral densities we take
(5.1 f(A) = 2n)71 — e*]* = 2%~Iz=X(sin® 2/2)* .

Here a (not necessarily an integer) is a constant, with « > —4 for integrability.
The main problem is in obtaining the BLUE for f,(4).
LeEMMA 5.1. The covariance function corresponding to the spectral density (5.1) is
F'a + 1)
Ta+74+ Dl(a—z+ 1)’
We take 1|T'(z) = O for z a nonpositive integer.

(5.2) Ry(7) = (—1) c=0, 41, ...

Proor. Since f,(4) is even, by making the variable change 2 = = — 20 in
= . e“if,(2) d2 we derive

R,(z) = (—1)72%+1z=1 {52 cos 2¢6 cos™ 0 df .

Since the above integral has value zI'2a + 1)/[2**' (@ + = + 1)I'(a — = + 1)]
as given by Erdélyi (1953), Volume 1, page 12, we obtain (5.2).

The next two combinatorial lemmas are presented in a more general form,
needed in Section 7, than presently required. B(p, q) = I'(p)I'(q)/T'(p + q) re-
presents the beta function.
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LemMma 5.2. For any constants a, b > —1,
(53) YiaMB@+k+ Lbtn—k+1)=Ba+1,b+1).

Proor. With both sides expressed in terms of beta integrals, the identity is
obvious.

LemMMA 5.3. For @« > —% and B a nonnegative integer,

Si(n, a, B)
— (1) (1) (P lMa+B+k+DI(ea+B+n—k+1)
(5.4) = (— 1) Bt (=" () bk D

= (=1yn! 3302, (1)
) (I FY(n T+ M + 8 + 1)
v 26—y / T(a+ B —v+4+ D@ — B+ v 4 1)
forj=0,1, ..., n, with (Y) taken as zero forv > N and v < 0.

Proor. With use of I'(z 4- 1) = zI'(z) repeatedly and of Leibnitz’s rule, the
result follows upon taking the derivative 0"**#/9xi*? gy"~4*/ of the identity

Skoo (— DHR)XpHyero et = xerayh(y —
and then setting x = y = 1.

THEOREM 5.1. The BLUE 1, calculated with respect to the spectral density (5.1)
has coefficients

(5.5) ¢, = ¢, (n, a)
_<n>B(a+k—|—1,a—|—n—k+1), k=01, .

~ Bla+ La+t 1) o
and variance
(5.6)  0,Xf.) = Var (i, f,) = B(n + 1,2a + 1)/Bla + 1, a 4 1).
PRrooF. As noted at the end of Section 2, it suffices to show that
(5.7) S a) = 1
and
(5.8) Siacln Rk —)) =0, X(f),  j=0,1,.--,n,

with ¢,%(f,) given by (5.6). (5.7) follows directly from Lemma 5.2 with a =
b = a. As for (5.8), using (5.2), (5.5) and (5.6) we may reduce the assertion
to (5.4) with 8 = 0.

A straightforward application of Stirling’s formula for the gamma function
yields, from (5.6), a

COROLLARY. Asn— co,

(5.9) 0, %(f.) ~ n~*"TQ2a + 1)/B(a + 1,a + 1).
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From (5.9) we conclude that ¢,(f,) is slowly decreasing, and may immedi-
ately apply Theorem 4.1. We state the result in terms of the original model in
Section 1.

THEOREM 5.2. Let the disturbance {Y,} have spectral density function f(2) =
f(A)9(R), where « > —% and g(2) € ZB,* (Definition 3.3) with g(0) > 0. Then

Var gy ~ n=T(2a + 1)g(0)/B(a + 1, @ + 1), n— oo .

Moreover, the estimator m, = 3.7_,c,(n, @)X, with coefficients given in (5.5) is
asymptotically efficient in the sense that

Var lﬁBLU/VaI‘ m, — 1, h— oo .

For @ = 0 and @ = 1 the theorem gives slightly strengthened versions of results
of Grenander (1954) and Vitale (1973), respectively. The theorem establishes a
conjecture of Vitale for integral a.

6. The optimal polynomials for f,(2). We denote by C,®(x) the Gegenbauer
(or ultraspherical) polynomials, i.e., the polynomials orthogonal on [—1, 1]
with respect to the weight function (1 — x**~”* and with the standardization
C,' (1) = I'(n + 2a)/[n! T'(2a)] for a + 0. We shall relate the optimal poly-
nomials for f,(2) to the C,*(x) and use the relation to establish a lemma required
in Sections 7 and 8. This lemma will also enable us to strengthen Theorem 5.2
slightly. Without further reference we make use of well-known properties of
the C,”(x), as given by Erdélyi (1953), Volume 2.

LEmMMA 6.1. The optimal polynomials

. Pn,a(z) = ZZ=0 ck(n’ a)zk
for f(R) satisfy

(6.1) Pn.o(€) = emC, “tD(cos 6)/C,*+1(1) .
ProoF. In terms of the coefficients (5.5), it is known that
C,“*V(cos 0)/C, (1) = Fr_gcp(n, @) cos (n — 2k)0 .

The right side, however, is easily seen to be e="%p, (€*?), since the c,(n, a) =
¢,_.(n, @) and are real.

With use of the relation between the Gegenbauer polynomials and the
hypergeometric function F(a, b; c; x), and a quadratic transformation on the
hypergeometric function, we can rewrite (6.1) as

Pu.o(€) = €™F(—n[2,n[2 + a + 1; a + 3/2;sin’§) .

This result is given essentially by Greville (1966), in a result attributed to
Sheppard (1913), for a an integer and n even.

LEMMA 6.2. For d > 0, n*™' maX, < < | Pu.o(€")] is bounded uniformly in n.

Proor. Since C,«*V(1) ~ n**/I'(2a 4 2) as n — oo, and because of (6.1),
it suffices to show that n=* max,, .. ,|C,“*"(cos §)| is bounded uniformly in n
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when ¢ > 0. This follows for —1 < @ < 0 from the inequality
(sin @)=+ C,**V(cos )| < (n/2)*/T(a + 1), 0<6=nr,
and for a = 0 from C,®(cos #) = sin (n 4 1)d/sin §. The desideratum may then
be obtained inductively for all « > 0 from the recurrence formula
2a(1 — x*)C,*(x) = 2a + n)C,2(x) — (n + DxCE (%) .
THEOREM 6.1. The conclusions of Theorem 5.2 remain valid if the condition

therein that g(2) € ZB,* is replaced by the weaker condition that g(2) € ZL,*.

Proor. Theorem 5.2 followed directly from Theorem 4.1. In the proof of
Theorem 4.1 boundedness of g(4) entered only through Lemmas 4.3 and 4.4,
and these lemmas would be true for unbounded g(2) (in L,) if (4.3) could be
replaced by the stronger condition that

(6.2) lim,_. max,_, <. K,() = 0, 5>0.

n—0co

Since our current K, (2) = |p, .(e")|*f(2)]0,X(f,) satisfies (6.2), as is seen from
Lemma 6.2 and (5.9), the result follows.

7. Overestimating the zero order. In applying the estimator 72, of Theorem
5.2 for a spectral density that vanishes at the origin, we may guess incorrectly
the true order a of the zero. In this section we consider certain cases when
our estimate is too high; the opposite case is studied in Section 8.

We consider initially the following situation: the true spectral density is f,(2)
but we use the estimator 71, , having coefficients c,(n, « 4+ ). p is restricted
to the nonnegative integers; the case of non-integral 5 remains open. We define
the asymptotic efficiency (if it exists) of 171, , relative to 71, for the spectral density

fo(4) by . .
e(a, p) = lim,_, a,%(f,)/Var (.., f.) -

With use of (5.2) and (5.5) we may write
Var (fy.p fo) = Zia-o€i(n @ + B)ey(n, a 4+ PR(J — k)
I'Qa + 1)
B(a+ﬂ+1 a+ B+ DI'Q2a + 28 + n + 2)
.’l =0 J(n a+ﬂ)S(n aMB)
where the S;(n, a, B) are given in (5.4). We introduce the notation (x), =
x(x — 1) ... (x — r 4 1) for r a nonnegative integer, with {(x), = 1. Writing
(]+ﬂ)(n J+ﬁ) = Zr 0 Z?ﬂ ’ ar s<j>r<n _j>s
and employing Lemma 5.2, we find that forv =0, 1, -..,28 and n = 28,
S (ENCHINB@ + B+ ]+ Lat fn—j+1)
= Zr s *r 8<n>r+8 Zn 0’ (n—}'—a)
XBla+p+j+r+lLat+f+n—j—r+1)
~Q . 0Ba+ B +v+1,a4+38—v41)

(1.1)
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as n— oo. Since a,,, , = [v! (28 — v)!]7*, with (5.4) and (5.5) we therefore
obtain
(7.2) lim,_,, (n*n!)=* 33"_, c;(n, a + B)S;(n, a, B)

= 8,28, a, L' 2 + 28 + 2)/[(28)! T'2ax + 45 + 2)] -
Referring to the proof of Lemma 5.3, we see however that

R . 84/9 a+By,a+p . 28
S,(28, @, B) = ( l)ﬁwx Hyeri(y — x) —
is a polynomial of degree 2§ in « that vanishes fora = —1, —2, ..., —2Band
has value [(2p)!T(¥) at a = 0, so that
(7.3) Sy(28, a, B) = 2P)! (DT (a + 28 + 1)/T(a + 1) .

Combining (7.1), (7.2) and (7.3), we arrive at an asymptotic expression for
Var (i,.,,, f,)- Using (5.9) and asymptotic expressions for those gamma functions
with argument involving n, we arrive after a bit of algebra at

THEOREM 7.1. Fora > —3 and B = 0 an integer,
(7.4) e(a, p) = LCa+ D@+ p + DI Qa + 45 +2)
CHT(a + DI (a + 28 + DIPQa + 28 + 2)

The efficiency of s,,, for a more general spectral density f,(2)g(4) may be
treated by an integral kernel argument as used in Theorem 6.1.

THEOREM 7.2. Let {Y,} have spectral density f(2) = f,(2)g(R), where g(2) € ZL,*,
9(0) > 0, and « > —4%. Then for any integer § = 0,

(7.5) Var (g.p [) ~ 9(0)0.}(fo)e(a; B) » n— o
and m,, , has the asymptotic efficiency e(a, f) in (7.4).

Proor. (7.5) states that {7 _K,(2)g(4) d2 — g(0) as n — oo, where now

K, (2) = e(@, B)| pp.ass(¢)NFu(D)],)(fa) -
Since 8 = 0, from (5.9) and Lemma 6.2 we conclude that K, (1) satisfies (6.2).
Also K,(2) = 0, and {~_ K,(2)d2 — 1 as n — oo by definition of e(a, §). Thus
(7.5) follows. Since 0,*(f) ~ 9(0)0,%(f,), n — oo, by Theorem 6.1, the second
assertion is also clear.

Since e(a, 8) > 0, we see that overestimation still yields an estimator whose
variance decreases at the optimal rate. From (7.4) we observe: (a) e(a, f)
decreases to 1/(¥) as a — oo, and (b) e(a, f) > 1 as « — —4. We note that
e(0, 1) = 3, as obtained by Vitale (1973).

8. Underestimating the zero order. We consider now the case when the
estimator 71,, a = integer, is used but the true spectral density has a higher
order zero at the origin. The results stand in marked contrast to those of
the previous section. We shall prove, after some preliminaries, the following
theorem.
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THEOREM 8.1. Let a be a nonnegative integer and let the true spectral density be
(D) = foi1(D9(R), where g(3) € L,. Then
(8.1) lim, ., n****Var (11, f) = [Qa + D!/a! Pz~ 7 g(2) dA .

Thus, if f(2) = f,,,.,(A)g(4) with 8 = 0, g(2) € ZL,* and g(0) > 0, we see (using
Theorem 6.1) that the efficiency of 1, is O(n=*-'); m, is far from efficient. (8.1)
is given by Vitale (1973) for a = 0.

In the following, a remains a fixed integer and we suppress dependence on it
in some cases. We note that then R, ,(r) = (—1)*(34%%.), with R (7) = O for
|t] = @ + 2. We may also now write
2a>(k—|—1)-~-(k+a)(n——k+I)-:(ri——k—ka')

o b
¢4

n+DHn+2) - (n+ 2a+1)

ey(n, @) = (2a + 1)(

which defines a polynomial of degree 2« in k, with zeroes at k = —1, —2, -,
—a and n41,n+2,...,n+4 a. Thus the ¢, (n, a) satisfy the difference
equation

(8.2) s e(n, )R (kK +v) =0, v=0,+1,....
Lemma 8.1. Define, forv =0, + 1, - ..

(8.3) S.(n) = Tica el Rk + 1)

Then S(n) =0 forv=a + 2and —n + 1 < v < —1, while

(8.4) lim, . n**18,(n) = (—1)[Qa + Dlfal](?),  O=<v<a+1.

Proor. Forv = a + 2, §,(n) involves only the R, ,(7) for r = a 4 2, which
all vanish. For —n 4+ 1 < v < —1 we may write S,(n) as the left side of (8.2)
by adding terms with ¢, (n, ) = 0 and deleting terms with R, ,(k + v) = 0.
Finally, suppose that 0 < v < a + 1. Note that

(8.5) lim, ., n**ie,(n, @) = (2a 4+ 1))k + a)!/k! .

Since, for n = a + 1 — v, the upper summation limit in (8.3) can be taken as
a + 1 —v,as n— oo we have

(—D(aHh! (@ + 1 — ) n**1S (n)/[Ra + 1)! 2a + 2)!]
= yanT (=D Bk +a+ 1,y + 1) = Bla + 1, a + 2)
with use of (8.5) and the beta integral, and (8.4) follows.
LEMMA 8.2. Theorem 8.1 holds if g(2) is a nonnegative trigonometric polynomial.

ProoF. Setting g(4) = 3} I__, b,e™* we easily find that f(4) = f,,,(2)g(2) has
covariance function R(t) = 3, b, R, (v + v). Consequently,
n2e+Var (n/;I", f) — 7 ; by plat? W,,(n) ,

y=—

where
W, (n) = 2o c(n, @)S,_(n)



1106 ROLF K. ADENSTEDT

and the S,(n) are defined in (8.3). Now, since ¢,(n, a) = ¢,_,(n, @) and R, ,(7) =
R,..(—7), we find that S_,(n) = S_,,(n)and W_,(n) = W (n). Since ¢\(n, a) =
0 for —a < k < —1, from Lemma 8.1 and (8.5) we find that, for 1 <v <7y
and n > v,

n"’“"""WV(n) = nlat? Zz:(l) C,,_k(n’ a)sk(n)
S AT (=D —k+ D~k +2) - =k + @) =0

as n— oo, where 4 depends only on a. The last sum vanishes since
(v—k 4+ 1)v —k +2) ... (v — k + a) isa polynomial of degree a in k. Since
S_,(n) = Sy(n), from Lemma 8.1 and (8.5) we also obtain, as n — oo,

W (n) = 2n*+iey(n, a)Sy(n) — 2[(2a + 1)!/al]*.
The result then follows because 2b, = =~ {*_g(4) dA.

Proor ofF THEOREM 8.1. For convenience, we write I(g) = {*, g(2) dA and

define
$u(2) = [a!/2a + DIPr p, (€[ Fara() -
We wish to show that I(¢,9) — n~'I(g) as n— co. We let 7,(2),»v=0,1, .-,
denote the Féjer means of the Fourier series for g(2), and note that I(z,) = I(g).
Then
77 H(g) — 1($.9)]
(8.6) < |nTH() — Lgat)] + §2s ¢a(D]0R) — 9(A)] 44
+ Sosiuse a(A|1(2) — 9(2)] d4

for any 0 < 6 < . The proof will be complete if we show that each term on
the right side approaches zero as first n — oo, then v — oo, then 0 — 0.

By Lemma 8.2, the first term tends to zero as n — oo for each fixed v. By
Lemma 6.2, ¢,(4) is bounded by a constant C, independent of n for 4] = d > 0.
Thus the last term in (8.6) is bounded uniformly in n by C,I(j¢, — g|), which
for fixed § vanishes as v — co by a property of the Féjer means. From Lemma
8.2, I(¢,) > 2 as n — oo. Therefore, as n — oo, the second term on the right
side of (8.6) is bounded by 2sup,,|t,(2) — g(4)|. That this expression ap-
proaches zero as v — oo, then § — 0, follows from the fact that the 7,(2) are
continuous at 2 = 0 uniformly in v, as is easily proved using properties of
Féjer’s kernel.

9. Remarks. The results of this paper may easily be extended to the esti-
mation of m in the model X, = me** 4 Y,, where p is a fixed constant in
[—x, z]. With X, = X,e~"* and ¥, = Y,e~*, this new model reduces to our
original: X, = m 4 ¥,. If {¥ } has spectral density f(4) then {Y,} has spectral
density f(2) = f(4 + ), with definition of f(2) extended outside [—=, z] by
periodicity. In the new model it is thus behavior of f(4) near 1 = p that is
pertinent.

The types of “multipliers” g(2) allowed in Theorems 4.1 and 5.2, and defined



LARGE-SAMPLE ESTIMATION FOR THE MEAN 1107

in Section 3, may seem overly complicated. However, we want to stress that
it is only continuity of and behavior near 2 = 0 of the spectral density that are
important. It does not matter if there are discontinuities or isolated zeroes
away from the origin.

In Sections 5 through 8 we have dealt with spectra behaving like A** near

= 0. We should remark that spectra corresponding to « > 1 are unlikely to
occur in practice, except possibly through difference filtering. However, spectra
with —1 < a < 1 would seem to be practically useful.

Acknowledgments. The author is grateful to the editor and the referees for
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