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LIMIT ESTIMATES UNDER RANDOM CENSORSHIP!
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Using the model of random censorship, a necessary and sufficient con-
dition for the consistency of the standard (actuarial) life table estimate of
a survival distribution is derived. We establish the asymptotic normality
of this estimate, showing that Greenwood’s variance formula is nearly
correct. In the case of a continuous survival distribution we establish
limiting normality for the product limit estimate and for the closely
related cumulative hazard process. Some applications of these results are
outlined.

1. Introduction. Although the life table is one of the statistical tools most
commonly used by applied statisticians, rigorous derivations of many of its for-
mal properties seem strangely to be lacking from the literature. This is true even
of properties which are widely quoted and used. For example, Greenwood’s
(1926) formula for the variance of the cumulative survival probability (cf. (5.9)
below and discussion) depends for its validity on the asymptotic independence
of the estimates of the conditional probabilities of survival over the intervals
used for grouping of the data. Chiang (1968, page 228) is often cited as a source
for this result, although his proof applies only to the case of no live withdrawals.
Derivations of the same result for life table estimates based on a specific parame-
tric model are given only under the assumed model (Elveback (1958)).

The purpose of the present paper is to outline a general theory for the life
table in which its familiar large sample properties can be rigorously established.
In large part the material presented consists of a review and extension, in the
light of both classical and modern large sample methods, of the fundamental
papers on the subject by Kaplan and Meier (1958) and Chiang (1960a, b, 1961).
Our Theorem 5 was first stated without proof by Efron (1967), so that the paper
also consists of a review and formalization of his work.

In order to keep the mathematics as simple as possible, the theoretical develop-
ment uses the device of random censorship introduced by Gilbert (1962) and
later exploited by Efron (1967), Breslow'(1969, 1970), Thomas (1972) and others.
This is a very convenient tool for studying the large sample effects of censorship
and the results obtained can, in many cases, easily be extended to the case of
fixed or conditional censorship.
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438 N. BRESLOW AND J. CROWLEY

The type of life table which is considered in this paper is the cohort table used
for estimation of a survival distribution from right censored data. Hence the
material presented here will be of greatest interest to statisticians concerned with
medical follow-up studies and life testing, and of some interest to actuaries and
demographers. Itisanticipated that the methodology employed may prove useful
in the study of extensions of the life table method, such as that proposed recently
by D. R. Cox (1972).

2. The statistical model: random censorship. Let X,°, ..., X,° denote the
true survival times for the N individuals included in the life table. These are
assumed to be independent random variables having a common distribution
F°(x) = P[X,° £ x] such that F°(0) = 0. (This notation is borrowed in part
from Efron (1967), although he works with left continuous survival functions
in place of distribution functions.) The period of observation, or follow-up, for
the nth individual will typically be limited by an amount Y,. Formally speak-
ing, the X, ° are censored on the right by the Y, since one observes only

2.1) X, =min(X,°,Y,) and 5, =/, ..,

where d, indicates whether X, is censored (d, = 0) or not (d, = 1).

Under the random censorship model the censoring variablesY, (n = 1,.-., N)
are also assumed to be a random sample, drawn independently of the X, °, from
a distribution H(y) = P[Y, < v]. Hence the observed X’s constitute a random
sample from the distribution function F given by

(2.2) (I —-—F)=U-F)1 - H),
while the sub-distribution function ¥ of an uncensored observation may be written

(2.3) F(x) = P[X, < x,0, = 1] = (¢ (1 — H)dF° .

n

3. The standard life table estimate (grouped data). Classical life table esti-
mates are calculated from grouped data arising from a partition of the range [0, T']
of observation into, let us say, K intervals /, = (§,_,, §,] with endpoints 0 =
£, < &, < -+ < &x < T. Theconditional probabilities of death in each interval

(3.1) g = (F°(§p) — F°(E-))/(X — F°(§,21))
are the parameters of interest. They are combined by multiplication in order to
obtain the probability of survival past &, written P, =1 — F°(§,) =p, --- p,,
where p, = 1 — ¢,.

Before giving an explicit definition of the most commonly used estimate of

the ¢,, we introduce the following statistics (k = I, - - -, K):
— N —
Dy, = 2554 [l»"n“k"'n>5k,'7n:11 s Dy, = i 1[“’n€1k’ynelk"3n:”
(3:2) W, = 2 ]L\'nelk,&":O]
J— N — N
Ny = 2= [Lr,,>$,c_1,r,,>sk1 ’ Ny = 201 [[,\'n>5k,1,rne1k1

2 Here as elsewhere 1,4 denotes the characteristic function of the event A.
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and further D, = D,, + D,,, N, = N,, + N,,. Thus N, D,, and W represent,
respectively, the number of individuals alive at the beginning of 7, (and hence
“at risk” of death in /,), the number known to have died in /,, and the number
“withdrawn alive” in /,. N, and D, may be further subdivided according to
whether the individual is “due for withdrawal” (¥,, and D,,) or not due for
withdrawal (N, and D,,) in /,. However, this subdivision is possible only if
one knows the censoring variables Y, for all N individuals and this information
is not always available. In general one has only the data specified by (2.1).

The standard (SD) life table estimate used most often in practice (Berkson
and Gage (1950), Cutler and Ederer (1958), Gehan (1969)) is given by

(3-3) ék = Dk/(Nk - %Wk) .

The fact that it is undefined if N, = 0 is of no consequence since we are con-
cerned only with large sample properties. However, the ambiguity may (and
will) be resolved by taking §, = 1 in such cases.

Maximum likelihood estimates based on models which specify a parametric
form for the survival distribution, and in which all withdrawals occur at the
midpoint of each interval, have been proposed by Elveback (1958) and Chiang
(1968) among others. While large sample properties for such estimates may be
derived from the corresponding likelihoods, these can only be expected to hold
under the assumed model. Kaplan and Meier (1958) studied the reduced sample
(RS) estimate
(3.4) g, = D, [Ny,
which is calculated solely from individuals not due for withdrawal in /,. This
estimate is consequently not commonly used and we introduce it here mainly
for reference during later (theoretical) developments.

Only the RS estimate will generally be consistent for ¢,. The SD estimate,
in common with the parametric estimates, utilizes information from the N,,
individuals who are at risk of death for less than the entire interval and is thus
(see Section 4) consistent only under special conditions relating the survival and
censoring distributions. Nevertheless, it has been used by actuaries on an ad hoc
basis for centuries: the {W, term in the denominator is supposed to adjust for
the fact that tho N, individuals are not all at risk for the entire interval. Littel
(1952) has suggested modifying the constant § in order to improve the approxi-
mation in certain circumstances. Since the SD estimate is the one most widely
used and quoted, we confine our attention to it. However, it will be readily
apparent that the techniques developed can also be used to establish similar large
sample properties for the other estimates.

4. Requirements for consistency of the SD estimate. Restrictingattention for
the moment to /,, note that the SD estimate may be written

@1y 4= ( Ny )(&) n < Ny — W, > <DL>
Nll + N21 - %Wl Nll Nll + N2l - %Wl N lW
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as a weighted average of the RS estimate and the estimate D,,/(N,, — £W)). This
latter is just the SD estimate calculated exclusively from the N, individuals due
for withdrawal in /,. Under the random censorship model, each of the frequen-
cies Ny, Ny, Dy, etc. appearing in (4.1) is a sum of N i.i.d. Bernoulli variables
whose respective probabilities can be calculated from (2.2) and (2.3). For ex-
ample, E(D,)) = NF°(&)(1 — H(£,)) and E(N,) = N(1 — H(&))) while E(D,,) =
N {i1F°dHand E(W,) = N {;1(1 — F°)dH. When divided by N, these frequen-
cies will converge a.s. to the corresponding probabilities. This provides a formal
proof of consistency for the RS estimate and shows that the SD estimate is con-
sistent if and only if it is consistent when all individuals are due for withdrawal
in 7,, i.e., when N, = N,;. In this case the requirement for consistency becomes
(4.2) S N :

I —3H7Y (&) S (1 — F°)dH
Insisting that this equation must hold for all choices of 0 < &, < T leads tosevere
restrictions on F° as shown by

THEOREM 1. Let the censoring distribution H be absolutely continuous with density
hon[0, T]. Anecessary and sufficient condition that the SD estimate yield a consistent
estimate of F° at the endpoints of each of the K intervals, for any choice of interval
endpoints, is that F° satisfy

(4.3) Fo(x)y =1 — [1)(1 + cH(x))]}
for some constant ¢ > 0.

Proor. For necessity, suppose the SD estimate is consistent at &, for any
0 <& < T. Then (4.2) must hold for all £ = &, between 0 and T. Define
G(§) = H'(§) §§ F°(x)h(x)dx. G satisfies the differential equation

G'(1+G) _ h

G(1 -G H
whose solution In (G/(1 — G?)) = In (¢H) in terms of F° = 2G/(1 + G) is pre-
cisely (4.3).

Conversely, any F° satisfying (4.3) will yield a consistent estimate at §,. Fur-
thermore, (4.3) ensures that the conditional survival distributions over each of
the K — 1 subsequent intervals satisfy an analogous condition with respect to
the distribution of censoring variables jn that interval, and this proves the
theorem.

A good approximation to the censoring distribution in many cases will be the
uniform H(x) = x/T,0 < x < T, in which case the distributions yielding a con-
sistent estimate satisfy F°(x) = 1 — (1/(1 4 cx))!. Similarly, if H places mass
only at the interval midpoints as assumed by some of the cited authors, the
requirement for consistency (4.2) becomes F°°(2§,) = 2F°(§,)/(1 + F°(§,)). This
has as a family of solutions

(4.4) Fe(x) =1 —1/(1 4+ ¢x), c>0.
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The fact that the distribution (4.4) may be consistently estimated by the SD
estimate in this case was previously noted by Elveback (1958, page 438).

Theorem 1 implies that the SD estimate is generally inconsistent, with the
estimates of the conditional probabilities converging to values ¢,* + ¢, (cf. (5.3)
below). The magnitude of the asymptotic bias, b = [[£, p,* — [[£,p., has
been investigated by Crowley (1970) for the case of censoring variables uni-
formly distributed on [0, 7] and both exponential and uniform survival distri-
butions. Following Elveback (1958), he chooses &, = &7, adjusts the parame-
ters of the survival distributions so that 1 — F°(§,) = exp(—2) = .135335, and
selects equidistant interval endpoints. A summary of these results is presented
in Table 1. The positive bias may be explained on the basis that the uniform
and exponential distributions show, respectively, positive and zero aging, i.e.,
increasing and constant failure rates. However, the distribution (4.3) with
H(x) = x, under which the SD estimate is consistent, has negative aging. Given
that all three distributions have the same value at &, an individual withdrawn
before &, will have a greater probability of dying before withdrawal under the
distribution (4.3) than for the exponential, and still less for the uniform. Since
the SD estimate correctly estimates the probabilities ¢, under (4.3), it may be
expected to underestimate them for the other distributions and hence to over-
estimate the survival probability. However, the bias appears not to be serious,
from a practical viewpoint, unless the number of intervals used is fewer than
ten. Related results for the SD estimate are given by Littel (1952) and for some
of the other estimates by Elveback (1958) and Crowley (1970).

TABLE 1
Asymptotic bias of the SD estimate for estimating the survival probability .13533
Sfor uniform withdrawals and uniform ard exponential survival distributions

Number of intervals = K
Survival distribution S )

1 5 10 20 40 80
Uniform .20401 .01945 .00543 .00141 .00036 .00009
Exponential 11189 .00626 .00160 .00040 .00010 .00002

5. Asymptotic normality of the SD estimate: large sample covariance struc-
ture. Denote by N, = N, — D, — W, the number of individuals at risk of
death beyond the last interval. Under the model of random censorship the
random vector of frequencies

(5-1) M = (Dn Wi, Dy Wiy - D/\'v WI\" NK+1)’

will have a multinomial distribution whose cell occupancy probabilities may be
calculated from (2.2) and (2.3) as illustrated in Section 4. Let us denote this
vector of probabilities (using an obvious notation) by

(5.2) n=Jde, oy, 1,7, Y, - - L7, Y Y)Y .
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It follows that the distribution of N-¥M — NII) converges to a multivariate
normal with mean 0 and covariance matrix £ = Dy — IIIl’, where Dy is the
diagonal matrix with IT on the diagonal. Since the estimates §, = D,/(N, — iW )
are smooth functions of these frequencies, it follows further that the random
vector N¥(q — q*) will likewise converge in distribution to a multivariate normal
having mean 0 and a covariance matrix which may be determined by the
“d-method” (Rao (1965), page 322). Here the asymptotic mean vector q* has
components

(5.3) g,* = IL"/(IL," — 310,")

which of course will generally not equal the true underlying ¢,. Finally, since
the vector of estimated survival probabilities P = (P,, - - -, P,) given by

(5-4) Pe=1l4 (1 =4y,

is again a smooth function of q, a further application of the d-method suffices
to establish its asymptotic normality. Hence it remains only to carry out the
covariance calculations.

Expanding in a Taylor’s series

_m,” 1 111, 1
5.5 i o— g * — <.___.____1c.ﬁ‘_, o -, 20 >
( ) qlc qk (Hk‘v _ %ka)z HkN _ %ka (HkN _ %Hkll')Z N
N, — NII," |
% | D, — NIL” | + o, <m>
W, — NIIL”

and similarly for §,—¢,*, it follows that the asymptotic covariance of N¥(§, —q,*)
with N¥(§, — ¢,*) is, for k < [, (IL,¥ — 3I1,")=*1I,~ — LII,")~* times

1 — I~ —1II,?
(56) (_Hk”’ Hk“y - %ka’ %Hkn) < —Hkl) ) (HZN’ HID’ Hl"’) <H1N - % l“'> .
_ka %Hzn
The matrix formed by the product of the two middle terms in (5.6) is N~ times
the covariance matrix of (N,, D,, W) with (N, D,, W;). Since the product of
the last two terms in (5.6) is zero, this proves that the individual estimates g,
are indeed asymptotically uncorrelated.
Essentially the same argument leads to the conclusion that the asymptotic
variance of N#(§, — ¢,*) is given by

0 0 0 —1,”
(I — Iy~ 11,7, TL,Y — 311, 411,7) (H m> o > (H - ;Hk"'>
Hkll' 0 Hkll' %Hkl)
— (Hk.\' . % kll')~4[nk1)(HkN _ %Hkll')Z + (%HkID)ZHkII' _ (Hkl))ZHkN]
(5.7)  Var,[Nd — )]
= (I, — JL") g — (gAY — LYY — TLY))].
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These results may be summarized in

THEOREM 2. The normalized vector N¥(q — q*) of the SD estimates of the con-
ditional probabilities of death has a limiting multivariate normal distribution with
mean 0 and a diagonal covariance matrix, the elements of which are given by (5.7).

It is of interest to compare (5.7) with the classical formula used routinely to
estimate the variance of §,. Derived by analogy with binomial sampling theory,
this takes the form

FEN
(5-8) Var (§.) = §u /N = (N)7 (G — 447)

where N,/ = N, — W, is the term appearing in the denominator of the SD
estimate. N, is often thought of as the effective number exposed to the risk of
death in 7,, which explains the origin of (5.8). Since N,//N is a consistent esti-
mate of II,Y — LII,", (5.8) is seen to overestimate the true limiting variance of
g,. Chiang (1968, page 275) observes a similar phenomenon for the estimate he
proposes. If the kth interval is sufficiently short that §,* is small compared with
4., then the leading terms of (5.8) and (5.7) will predominate. This is important
since the former is a consistent estimate of the latter, indicating that the error
in (5.8) may not be too serious if, once again, the number of intervals is reason-
ably large.
One further routine application of the d-method leads us to

CoROLLARY 1. The limiting distribution of N{P — P¥) for the SD estimate is
multivariate normal with mean 0 and a covariance matrix whose (k, l) term for k <l is

(5-9) PP ZioaVar, [NG; — ;9] — ¢;%)°,
the asymptotic variance being given by (5.7).

Formula (5.9), with (5.8) used in place of (5.7) to estimate Var (§,) and with
P, substituted for P,*, is the classical approximation established by Greenwood
(1926). In view of the preceding discussion, it too, from the viewpoint of asymp-
totic theory, will yield a slight overestimate of the variation in the estimated
survival probability.

6. The product limit (PL) estimate: heuristic approach. Let us denote
explicitly the dependence of the life table estimate (5.4) on the partition 0 <
Sk < - v+ < &gk and sample size N by writing
(61) 1 - ﬁ?\,’\([) - ﬁk for te [Ek,l\" EIx:—H,I\')

k=1,...,K—1.
Kaplan and Meier (1958) studied the product limit (PL) estimate F,° =
lim, . F2 ,, where the right continuous limit is taken under any nested se-
quence of partitions such that sup, ;< [§, x—&,-1 x| —0. In calculating the limit

they adopted the convention, also used here, of adjusting each of the censoring
variables an infinitesimal amount to the right. Thus withdrawals occurring at
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the endpoint &, do not contribute to W,. This is reasonable since these indivi-
duals are not at risk for even a portion of the interval /, and hence should not
be used in determining the “effective number at risk.” Likewise, uncensored
observations are ranked ahead of censored observations with which they are
tied. With these adjustments to the data and with the §, calculated according
to any of the methods previously mentioned, the limit becomes

(6.2) I=Fy2@0= T (N =R)/(N =R, 4 D], 1< Xy

=0, 1z Xy,
where X ,, = max (X,, ---, X,)and R, is the rank of (X,, 1 — 4,) in the lexico-
graphic ordering of the sequence (X,, 1 — 4,), - -+, (X, 1 — d,).

A heuristic derivation of the large sample properties of £,° can be given from
the corresponding properties of the life table estimate studied in Sections 4 and
5, merely by interchanging the two limiting operations K — co and N — oo.
For example, since the PL estimate is the limit as K — oo of the RS estimate,
and since this latter is consistent as N — oo, it “follows” that the PL estimate
will be consistent as well. To obtain the asymptotic distribution define the
stochastic process Z,*(1) = N¥F,°(r) — F°(1)) for 0 <t < T. Choose a se-
quence of partitions and let k, / and K approach infinity in such a way that
sel, and rel,. In view of Corollary 1 it follows upon interchanging the two
limits that the finite dimensional distributions of Z,* are asymptotically normal.
It would follow further from this that Z,* converges weakly to a mean zero
Gaussian process Z*, provided the property of uniform tightness could be estab-
lished (Billingsley (1968)). The covariance structure of the limiting process Z*
can be formally obtained by taking the limit in (5.7) and (5.9). Since the bias
of the life table estimate tends to O in the limit, we have P,* — 1 — F°(¢) and
likewise I, — 1 — F(t — 0)and g,* — dF°(1)/(1 — F°(t — 0))so thatfor s < ¢

Cov (Z*(s), Z*(1))
(6-3) =1 =F) = F(0) i (1 — Fx —0)~
X (I — F°(x))"'dF°(x).

It is easy to formalize this argument for the case of a discrete survival distri-
bution taking values ¢, < ... <1y, say. For, redefining N, = 31 Iy ., and
D, = YV Iy, -1,.5,-1 to be the number of individuals at risk and dying at 7,
respectively, it follows from the same multinomial arguments used in Section 5
that, almost surely as N — oo, N, /N > II.¥ = 1— F(1, — 0) = (1 — F°(t, — 0)) X
(1— H(t,— 0)) and DN — II,” = P[X, = 1,, ¥, 2 1,] = (F°(1,) — F°(t, — 0)) X
(1— H(t, — 0)) 50 that §, = Dy/N, — (F°(t,) — F*(t, — 0))[(1 — F*(t, — 0)) = 4.
Working through equations (5.3)—(5.7) in this simpler situation shows that
N}(q — q) is again asymptotically normal, with mean 0 and a diagonal covari-
ance matrix with diagonal elements g, p,/II,". Consequently the normalized
vector of estimated survival probabilities, as in Corollary 1, will be multivariate
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normal with a covariance matrix given by

(6.4) PPy 25 g, /(L p5) k<1.
But (6.4) is just (6.3) for the case of a discrete distribution.

7. Weak convergence of the cumulative hazard and PL processes: continuous
case. For a number of technical reasons it is convenient to study the behavior
of the PL estimate and its relative, the empirical cumulative hazard process,
under the assumption that F° and H are continuous. It follows that F and F
are also continuous. This allows us to perform numerous changes of variable
in integrations of the form § A(F°)dF° (cf. (7.5) and the Appendix). It also
means that, almost surely, there will be no ties among the observations, so that
the ranks R, especially of the uncensored observations among X, - .-, X, are
uniquely defined, as required below by Lemma 1 and the following definition.

The empirical cumulative hazard process A, is defined by

(7.1) ANe(t) = Z,X’ngt d,/(N+1—R,),

where R, isthe rank of X, among all N observations. While the PL estimate
may be derived as the unrestricted maximum likelihood estimate of the cumu-
lative distribution function, A,* may be derived as the maximum likelihood
estimate of the cumulative hazard function in the class of distributions which
have constant hazard functions between each pair of uncensored observations
(Breslow (1972)). The two estimates are related through the following inequality.

LEMMA 1. Let N(t) = 317, 1|y -, be the number of individuals still “at risk” at
time t. Then with probability 1 forall 0 < t < X ,,,
(7.2) 0 < —In(1 — £,°(1) — Ay(r) < (N — N()/(N - N(1)) .

Proor. Using the elementary inequality*0 < —In(l — (x+1)™) — (x + 1) <
(x(x + 1))7%, valid for x > 0, it follows upon substituting x = N — R, that
0< —Inlece (@ = TN+ T —=R))» = Fy < 0,/(N+1—R,)
< Lagse 0/(N = R)(N 4+ 1 — R,))
= 2N = m)(N —n + 1))
< Zacvw 7 < §iwyHdy = (N = N()/(N - N(1)) -
Denote by
(7.3) Fy(t) = N~y I[X,n<l]

and )
FNe(t) =N Z;y:l I[X,n<t,5n:1J s

respectively, the left continuous versions of the EDF of the observations and
the sub-EDF of the uncensored obssrvations. Then A,* may be written

(7.4) Ay () = §5(1 — Fy(n) 7 dFy(y) -

3 Due to Thomas (1972).
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Since F,* and F,* converge almost surely to F and F as defined by (2.2) and
(2.3), we expect A to converge to

(1.5) A= A@r) = §i(1 = F)'dF = §4(1 — F°)'dF° = —In (1 — F°(1)),

i.e., we expect A,° to consistently estimate the cumulative hazard function of
the underlying distribution F°.

The relevance of (7.4) is that it allows us to study the limiting distribution of
A,* in terms of the joint limiting distribution of F,* and F,°. These latter are
treated as random functions in D[0, T'], the well-known space of functions on
[0, T] having jump discontinuities, using the Skorohod topology (Billingsley
(1968)). Here T is any finite value such that 1 — F(T') > 0. The pertinent facts
concerning the joint distribution of F,* and F,* are summarized in

THEOREM 3. Define (X,,Y,)e D[0, T] x D[0, T] by X, = N¥F,* — F) and
Yy = N¥F,* — F). Then(X,,Y,) converges weakly to a bivariate Gaussian process
(X, Y) which has mean 0 and a covariance structure given for s < t by

Cov (X(s), X(1)) = F(s)(1 — F(1))
(7.6) Cov (Y(s), Y(1)) = F(s)(1 — F(1))

Cov (Y(s), X(1)) = F(s)(1 — F(1))

Cov (X(s), Y(1)) = F(s) — F(s)F(1) .

Proor. The fact that the finite dimensional distributions of (X, Y,) are
multivariate normal with covariance structure (7.6) follows, as with the EDF,
from the representation

(7.7) Xy (0, Yu(0)) = N* Ty (lwycor — F(0), Ty a0 — F(D))

of (X, Yy) as the normalized sum of i.i.d. processes. Hénce it remains only to
prove tightness. However it is well known (Billingsley (1968, Theorem 16.4))
that the sequence of distributions induced by X, is tight, and the same conver-
gence criteria apply equally well to the Y,. Consequently (X, Y,) induces a
tight sequence of distributions on the product space D[0, 7] x D[0, T'].

For technical reasons it will also prove helpful to introduce the special Skorohod
(1956) constructions, as elucidated by Pyke and Shorack (1968), and replace
(X5, Yy) and (X, Y) with a sequence of random functions having the same dis-
tributions for each N, but which satisfy also

(7-8) o((Xx> Yy), (X, Y)) =40,

where p is the Skorohod metric on D[0, T] x D[0, T]. As explained by Pyke
and Shorack, conclusions regarding limiting distributions of functions of the
specially constructed processes will apply equally well to the same functions of
the original processes. Thus, in what follows, think of A* = A (X,, Y,)asa
mapping from D[0, T} x D[0, T'] to D[0, T']. Assume that the arguments (X, Y,)
satisfy (7.8) and that (X, Y) is the Gaussian process defined in (7.6). We then
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have the expansion
Ni(A Y — A) = Ay + By + Riy + Ry
where
A1) = §5 Xy(1 — F)dF
(7.9) By(t) = Yy())(1 — F(1)™ — §; Yy(I — F)~dF
Riy(1) = N7H X, %1 — F)~%(1 — Fy*)~'dF and
Roy(t) = §i Xy(1 — F)7(1 — Fy*)'d(Fy* — F).

We will show that 4, and B, converge a.s. in p,, the supremum metric on
[0, T], to random functions 4 and B defined by A(t) = §{ X(1 — F)~*dF and
B(t) = Y(r)(1 — F())™* — §¢ Y(1 — F)~*dF, respectively. Likewise we will show
that R, and R,, converge in probability to 0. Since convergence to a continuous
limit (such as 4, B, X, Y and 0 are a.s.) in p, is equivalent to convergence in
o, this will establish

THEOREM 4. Let T < oo satisfy F(T) < 1 and suppose F° and H are continuous.
Then the random function N*(A,* — A) converges weakly to the Gaussian process Z
defined by

(7.10) Z(t) = §¢ X(1 — F)*dF + Y(1)(1 — F(1))™* — §§Y(1 — F)~*dF,

where (X, Y) is the bivariate mean 0 Gaussian process satisfying (7.6). Furthermore,
the covariance structure of the limiting process Z is given for s < t by

(7.11)  Cov (Z(s), Z(1)) = §3(1 — F)~*dF = {3(1 — F)~(1 — F°)~'dF°..

Proor. To prove limiting normality it suffices to examine the convergences
mentioned above. Since p,(4y, A) < p,(Xy, X). §¢ (1 —F)*dF and p,(B,, B) <
or(Yy, V)[(1 — F(T))™* + §¢ (1 — F)~*dF], convergence of the two leading
terms in (7.9) follows straightaway from (7.8). Turning to the remainder terms,
or(Riy, 0) < N Y1 — F(T)*(1 — Fp(T))p,*(Xy, 0). Since the distributions in-
duced by the X, are tight and since F,*(T) — F(T) a.s., the last two terms in
this expression are bounded in probability. Hence p,(R,y, 0) = o,(1). Next
0r(Rax, 0) < 20,(Xy, X)(1 — F(T))X(1 — Fy(T))™ + supyg,zr |1 X(1 — F)™' X
[(1 = Fy)™ = (1 = F)d(Fy* — F)| + Suppger |3 X(1 — F)d(Fyt — F)|.
The first term is 0,(1) in view of (7.8) and the a.s. boundedness of (1 — F,*(T)).
The second term is bounded by 2N~tp (X, 0)o, (X, 0)(1 — F(T))~*(1 — F¥(T))™!
and is thus o,(1) by the same argument. For the third term, consider a subset
Q, of the underlying probability space such that (i) P(Q;) = 1 and (ii) for v € Q,,
X is uniformly continuous on [0, T'] while p,(F,¢, F) = N=%p,(Y,, 0)—0. Choose
a partition (depending on w) of [0, T] into K intervals I, = (§,_,, §,] such that
SUP;eq, [X(O(1 — F(1)™" — X(§)(1 — F(§)*| <efork =1, ..., K. Then we
have the third term bounded by 2¢ + [(k — 1)e 4 p,(X(1 — F)72, 0)]o,(F,*, F),
which tends to 2¢ as N — oo. Since ¢ is arbitrary, this shows that the third
term also converges to 0 a.s. and completes the proof of normality.
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The evaluation of the covariance structure of the limiting process consists of
a lengthy and tedious but straightforward calculation of the covariances for the
additive terms (7.10) which make up Z(r) and Z(s), using (7.6) and repeated
integration by parts. It is given in detail in the Appendix. .

The asymptotic normality of the PL estimate follows from Theorem 4 upon
one further application of the g-method. For thinking now also of F.°asa
random function in D[0, T'], we have from (7.2) and (7.5) on the set [ X, > T],

(7.12)  NYF° — F°) = —N¥e ™" — e=") — Ni[exp(In (I — £°)) — e=*¥]
= —e *N{A* — A) — e *V'NH(A,* — A)?
+ Nie2s™(—In(1 — F,°) — Ay°)

where p,(Ay*, A) < o,(Aye, A) and, from Lemma 1, p.(A,**, Ay) <
o (—In(1 — F\°), Ay) < N'N-NT)(N — N(T)). The two remainder terms
converge to 0 in probability while the leading term converges in distribution to
the Gaussian process Z*(f) = —(1 — F°(t))Z(t). Since the set [X, > T] has
probability one in the limit, this proves

THEOREM 5. Let T < oo satisfy F(T) < 1 and suppose FF° and H are continuous.
Then the random function N*(ﬁvO — F°), for 0 <t < T, converges weakly to a
mean 0 Gaussian process Z*(t) with

(7.13)  Cov (Z*(s), Z*(1)) = (1 — Fo(s))(1 — Fo(1)) §3(1 — F)*dF, s<t.

If the distribution H of censoring variables has support on all of (0, co), then
F(r) < 1 forall 0 < t < oo. In this case Theorem 5 can probably be extended
to yield weak convergence on the entire half line as required in one of the
applications suggested below. However, in most realistic applications the cen-
soring variables will be bounded and as 7 approaches the upper limit of the
range of observation, the variance of the limiting process increases to -+ oo
unless the limit is also the limit of support of the underlying /7°. This suggests
that care be taken in applying the result in a region where only a few uncen-
sored observations are available.

8. Applications. We outline briefly a few of the possible applications of the
preceding. According to Theorem 5, any continuous functional of £,° will
have, when appropriately normalized, a limiting distribution which can be de-
termined from the distribution of Z*. Since many statistics calculated from
simple random samples can be expressed as linear functionals of EDF’s, they
are casily generalized to the censored data case by substituting PL estimates for
the EDF’s. The asymptotic distribution of such a statistic will be normal with
a variance which may be estimated by substituting F*, F,* and F° for F, F
and F° in (7.13). Thus, for example, providing that H has support on all of
(0, o0), the moments of the underlying distribution may be estimated by inte-
grating the following expression by parts:

(8.1 d," = {2 x"dF,°(x) .
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The asymptotic variance of the mean, estimated from (8.1) with r = 1, is for
example

(8.2) Var,a,' = % § (1 — F() TS (1 — Fo(1)) di]* dF(s) ,

which reduces to the usual ¢*/N in case F = F = F°, i.e., there is no censoring.

Kimura (1973) uses the PL estimate to obtain smoothed estimates of the under-
lying survival distributions by means of orthogonal series expansions. Following
Kronmal and Tarter (1968), he writes

(8.3) o) =P = i el

where the [¢,] form an orthogonal series of functions on [0, T']. Coefficients in
this expansion are estimated by

(8.4) G, =\l ¢, dF.° .

Theorem 5 is useful in establishing asymptotic variances for the estimated co-
efficients, which can then be used in a selection rule to choose the terms in the
asymptotic expansion (8.4) which are actually used for estimation of the density.

It is not inconceivable that Theorem 5 could be used to investigate asymptotic
properties of a Kolmogorov-Smirnov type test appropriately generalized to cen-
sored data.

Finally, in a two sample application, Efron (1967) obtains a generalization of
Wilcoxon’s statistic by setting

(8.5) W =IF.,°dG,°,

where F,° and G,° are PL estimates calculated from independent samples of
size N and M.

9. The case of fixed censorship. It isin many ways more satisfying to regard
the censoring variables Y, as fixed numbers rather than as random variables:
one would like to study the asymptotic properties of the life table and PL esti-
mates conditionally, in terms of the Y, actually observed, rather than in terms
of an unknown distribution. In conclusion we merely note that the previous
results may indeed be extended to fixed censoring variables, provided that these
behave in the limit as if they were a random sample from some distribution.
Liapunov’s version of the central limit theorem and a moment inequality estab-
lished by Koul (1970) are useful in making these extensions. However, due to

limitations of space, we leave the detailed arguments to the reader.

Acknowledgments. The authors wish to express their appreciation to Professor
Galen Shorack for invaluable assistance in the construction of the proof of Theo-
rem 4. We also appreciate the suggestion of a referee that Theorem 1 be gener-
alized to arbitrary H (as stated) in place of the uniform distribution originally
considered.
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Note added in proof. While this article was in press the authors’ attention
was directed to the paper by Odd Aalen (1973) titled “Nonparametric inference
in connection with multiple decrement models,” Statistical Research Report No.
6, Department of Mathematics, University of Oslo. This paper, based in a
competing risks framework, presents results similar to those outlined in Section
6 and derives a Kolmogorov-Smirnov type test as suggested in Section 8.

APPENDIX
Covariance structure of the limiting process. Write Cov (Z(s), Z(1)) =
Var Z(s) + Cov (Z(s), Z(t) — Z(s)) where Z is the process defined in (7.10) and
s < t. We use repeatedly the relationships (7.6) and integration by parts.
Var Z(s) may be expressed as the sum of the terms (A.1) through (A.6) below
where, by convention, the variables of integration r and u satisfy 0 < r < u < s.

Var {; X(1 — F)*dF
(A.1) =2 1 — (= F(n) — H(r))
(I = F(r)(1 = Fo()(1 — F°(u))
a0 = F) —In (1 — £
(I = F(n)(1 = F°(r)

(A.2)  VarY(s)(1 — F(s))~' = F(s)(1 — F(s))(1 — F(s))?.

dF°(r) dF° ()

) aro(ry — In2(1 — Fo(s))..

Var — {; Y(1 — F)™*dF
o FO( = Fu)
=2k — Fay O
(A.3) =241 = F)(1 — F)y%F1 — F) 4 In(1 — F°))dF
= Fs)(1 — F))(1 = F(5)7 + §5 (1 = F)7(1 — F°)~1dre
+ 2In(1 — Fo(s))(1 — ng))(l — F(s))™' — In*(1 — F°(s)) .
2Cov (Y X(1 — F)*dF, Y(s)(1 — F(s))™)
(A.4) —ag PO —FORS g
(I = F(r)X(1 = F()
=2(1 — F(s))7[§s F(1 — F)™'(1 — F°)~'dF®
— F(s)§5(1 — F)™(1 — F°)='dF° — F(s)In (1 — F°(s))] .
2Cov ({; X(1 — F)2dF, —{;Y(1 — F)~*dF)
_ e FOO = FOOFW) 5
= =25 (0= Fiy(l — Fay dF(r) dF (u)
g F(N( = F) © j
(A'S) 2 So So a”:?(r))z(l ;‘F@)Z dF(r) dF(”)
= =2(1 — F(s)7' s F(1 — F)™(1 — F°)~'dF®
+ 2[F(s)(1 — F(s)™ + In (1 — F°(s))]
X §5(1 — F)7(1 — F°)-'dF°.
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(A.6) 2Cov (Y(s)(1 — F(s))™!, —§sY(1 — F)~? df)
= —2(1 — F’(s))(l — F()[F(s)(1 — F(s))' 4 In (1 — F°(s))] -
Addition of (A.1)—(A.6) yields the expression (7.11). It remains to show that

Cov (Z£(s), Z(t) — Z(s)) = 0. For these calculations there are nine terms (B.1)—
(B.9) for which, by convention, the range of integrationis0 < r<s<u <t

Cov (§3 X(1 — F)-*dF, §t X(1 — F)~*dF)
_ e FOO(A — F(u)) F(r) dF
(B.1) =i SO(] T F(r))z(l — F(;S)? dF(r) dF(u)
=[In(1 — F°(s) — In (1 — Fo(e))][§3s(1 — F)~}(1 — F°)~1dF®
+ In(1 — F°(s))] .
Cov (§3 X(1 — F)*dF, Y(1)(1 — F(1)™ — Y(s)(1 — F(5)™)
(B.2) = (1= F@)™ = (1 = F(s)™) (i F(1 — F)7(1 — F°)~'dF®
— (F(1)(1 — F(0)™* — F(s)(1 — F(s))™)
X [§5(1 — F)(1 — F°)"'dF° + In (1 — F°(s))] .

Cov ({3 X(1 — F)~*dF, —§!Y(1 — F)~*dF)
F(r)y — F(nE(u)
— F(N)(1 — F(u))?
(B.3) = —((1 = F()™ — (1 = F(5))™) $§ F(1 — F)7/(1 — F°)~tdF°
+ [F(t)(1 — F(0)™ + In (1 — F°(1)) — F(s)(1 — F(s))™
— In(1 = Fe)§i (1 — F)7(1 — F°)~'dF°
+In(1 = F°(s))] .
(B.4)  Cov (Y(s)(1 — F(s))™%, §¢ X(1 — F)~*dF)
= F(s)(1 — F(s))"Y(In (1 — F°(s)) — In (1 — F°(1))).

dF(r) dF (u)

=—S§Ss(1

Cov (Y(s)(1 — F(s)™% Y(n(I — F(0)™ = Y(s)(1 — F(s))™)
(B-5) = F(s)(1 — F(s))((1 — Fo)(1 — F(1)™
— (L= F@s)(1 = F(9)™) -
Cov (Y(s)(1 — F(s))™!, = Y(1 — F)=*dF)
(B.6) = —F(s)(1 — F(9)' § (1 — F)(1 — F)7dF
= —F()(1 = F(9)7{(1 — F)(1 — F(1)™!
— (I = F@)(1 — F(s)™' = In (1 — F°(1))
+In(1 — Fo(s))] -
Cov (— {3 Y(1 — F)~*dF, §: X(1 — F)~*dF)
(8.7) = g5 TOA = F@)__
(I = F(r)1 — F(u))
=[In(l — F°(1)) — In(1 — F°(s))] s F(1 — F)*dF.

dF(r) dF(u)
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Cov (= s Y(1 — F)2dF, Y()(1 — F(1))™' — Y(s)(1 — F(s))™)

(B-8) = —((I = Fep(d — F(r)™

B.9 = (¢4
(B.9) SSS(

— (I = F)(I — F(s)™) §s F(1 — F)=dF .
Cov (—§; Y(1 — F)*dF, —\, Y(1 — F)*dF)
F(r)(1 — F(u))
I — F(n)(1 = F(u)*
(1 = F)(1 — F(0))™" — (1 = Fs))(1 — F(s))™
— In(1 — F°(1)) + In (1 — F°(s))) s F(1 — F)*dF .

dF(r) dF (u)

Note that the sum of (B.1)—(B.3) is zero as is the sum of (B.4)—(B.6) and
(B.7)—(B.9). This completes the proof of Theorem 4.
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