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NOTE ON ANDERSON’S SEQUENTIAL PROCEDURES
WITH TRIANGULAR BOUNDARY!

By VAcLAv FABIAN
Michigan State University

Simple expressions are given for the probability of a correct decision
for the Anderson sequential procedure with a triangular boundary, for
some values of parameters. This can be used to improve bounds of the
probability of correct decision for the Paulson sequential ranking pro-
cedures and change slightly the comparison of these with the Bechhofer-
Kiefer-Sobel procedures. i

1. Introduction. The triangular stopping regions were, among some others,
considered by Armitage (1957), Donelly (1957) and Anderson (1960) for testing
a mean of a normal population. Later they were used to construct a ranking
procedure by Paulson (1964).

Suppose the triangular region is given by the lower and upper boundaries

Lin)y = —a + An, L,(n)=a — 4;n

witha >0, 4, = 0, 2, = 0; {S,} is a sequence of partial sums of independent
normal (yz, ¢?) random variables; and N is the first index n for which §, is not
in the continuation interval I, = (L,(n), L,(n)). A decision d, is taken if
Sy < L,(N) and I is non-empty, or if Sy, < 4(L,(N) + L,(N)) and I, is empty.
Otherwise another decision d, is selected. Note that if /, is empty then N lies
in the interval [n,, n, + 1) with n, = 2a(4, + 4,)~*. Itis then of interest to know
the probabilities of selecting d, and d, respectively; let us denote by p(u, 4;, 4;,
a, o%) the probability of selecting d,.

It is easy to verify that p(y, 4, 4,, a, 6®) = p(p/o, Ao, A/, ala, 1), p(p, 4y, 4y,
a,1) =p0, 4 — p, A4 + p, a, 1) = p(prg, 4, 2,0, 1) if 2 = (4 + 4)/2, o = ¢ +
A — 2. Thus we may restrict our attention to cases where 4, = 4,, ¢> = 1 and
denote p(u, 4, 4, a, 1) simply by p(y, 4, a).

It will help to think about p(y, 4, a), for ¢ > 0, as a probability of an incor-
rect decision.

Analogously let g(#, 2, a) denote the probability that a continuous Brownian
motion X on [0, 4+ o0), with EX, = ut, Var X, = rexits I, = (—a + At,a — 1)
through the lower boundary L,. (The event that X, € /, for all rsuch that I, = @&
is null.)
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The number ¢(y, a, 4) is an approximation to p(g, a, 2); Anderson (1960, page
170) remarks that it is actually an upper bound for p(g, a, 2) if ¢ > 0.

Donelly (1957) and Anderson (1960) have obtained expressions for g(x, 2, a)
which, unfortunately, are not easy to use for computation. Paulson (1964),
when using the sequential test in his sequential ranking procedure, does not use
Anderson’s expressions but derives an upper bound e-*#-%2 for p(y, 2, a) with
¢ = 2. The proof is essentially based on the Wald fundamental identity.

The purpose of this note is to show that the standard argument? of inter-
changing a density by another, on a set where the ratio of the two densities is
bounded by a constant, gives an improvement to the bound used by Paulson,
namely

) ples 2 @) < el — p(p — 22, 2,0)) i p2 2.
For example, if 2 = 1p, this gives
2 ’ P(es ko, a) < geemhe = Jere

The same technique, applied to (g, a, 2), yields an equality in (1) instead of
the inequality, and makes possible an evaluation of g(g, 4, a) for all 2 = p/(2)),
j =1,2,....

I do not know whether the results concerning g(y, 2, a) (Theorem 2.3) can
be deduced easily from Anderson’s (1960) results, but even if they can, the
present derivation is much simpler. It is possible, however, that suitable nu-
merical methods may make Anderson’s results (Corollary 4.4, in particular)
not so difficult to use.

Our formulas make it possible to compute g(y, 4, a) only for ¢ and 2 such
that x/2 is an even integer. Interpolation might complete the results for other
values of /2 in some practical considerations. There is also some evidence
how 2 should be chosen. In two examples considered by Anderson (1960, Sec-

tion 3), of testing x = —1 against 4 = 1 at the level .05 and .01, the optimal
4 (mimimizing EN for 4 = 0) was found to be approximately .33 and .41. In
general, when testing that the normal mean 6 is p against § = — at a pre-

scribed level, asymptotically optimal value of 2 (making E,N minimal)is 2 = /2
(this is easy to see by using the strong law of large numbers, or using, e.g.,
Perng’s (1969) Theorem 2.2). The same results hold when the procedure is
used as a component in the Paulson ranking procedure (1966); here there are
Monte Carlo studies by Ramberg (1966).

It is known that the triangular stopping region is not asymptotically optimal,
and asymptotically optimal stopping regions, e.g., that of a truncated Wald
sequential probability ratio test, are known. However, the probability of error
for the latter are difficult to estimate. Also, based on Hoeffding’s (1960) results,

2 For a recent use of this argument leading to a considerable simplification of previous proofs,
see Robbins (1970).
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it is possible to see that the procedures from the Anderson example are nearly
optimal (cf. Anderson (1960), page 173).

Ramberg (1966) shows that the Paulson procedure, for some values of pa-
rameters, is better than the Bechhofer-Kiefer-Sobel procedures; an improved
bound for the probability of correct decision would increase the set of such
parameter values (cf. [11]).

2. The results. The results are formulated in Theorems 2.2 and 2.3 using
the notations p(u, 4, @) and g(u, 4, a) from Section 1. Through most of the
discussion a and 4 are fixed (@ > 0, 2 = 0) and then we abbreviate p(y, 4, a) as

P, and g(y, 4, a) as g,.

In the lemmas and proofs we shall write P,([§,, &, - - -] € A) for the proba-
bility of the indicated event when &, &,, - - - is a sequence of independent normal
(¢, 1) random variables.

2.1. LEMMA. Let N be a stopping time determined by a sequence {M,} of Borel
subsets of R™ such that

{(N=n}={[¢s -, &]e M}
Then, for any A € R, any closed subinterval I of R and any subintervals B, of I,
P(Li €€ By) = kP_y(1iL, €. € By)
with a k € {e**Y; y e I}.

Proor. Denote by f, the normal (A, 1) density so that (f,/f_,)(x) = e**
and set

H, ={[x,---,x,]; 2i,x,€B,}.
Then

P(XL €€ By) = Nia P(Ei €€ B, N =n)
= D5 S, T fu(x) d, - d,
= 2721 Vupon, ©XP[2A 2050 x;] Tlic f-a(x:) dx, - - - dx,
and the assertion follows.

2.2. THEOREM. If p = A then

1) PuS e Opy_, = el — py);
in particular
2) Py, 3y @) < Je,
(3) P 0, @) < e7ox)(1 + e
Proor. Write p, = P{3Y,(Z, — ) £ —a,} with Z,, Z,, ... independent

normal (4, 1), a, = max {a, An} and with N the first time —a < 7., (Z; — 2) <
a — 22n is violated. Then

Pa= Py (B. 6 S —ay),
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and- applying this with A = p first, with A = 24 — p later, and using Lemma
2.1 in between, we obtain

P# é exp[—2a(/,z - 2)]P1—,u(2£v=1 §i é _aN)
= exp[—2a(px — A)]par—y -
Since p, = 1 — p_,, this establishes (1). Inequality (2) obtains from (1) upon
observing that p, = 4. For 2 =0, (1) implies p, < e7**#(1 — p,) and this is
equivalent to (3) (which, of course, concerns the Wald sequential probability
ratio test and is well known).

The inequality (1) in the above theorem is due to the excess over the boundary.
In the case of Brownian motion there is no excess over the boundary. This
roughly corresponds to the possibility of replacing / = (—oo, —a] in the pre-
ceding proof by [—a, —a]. Lemma 2.1 then yields an equality instead of an
inequality and we obtain the result of the next theorem. In fact, Lemma 2.1
does not apply directly to the continuous case; since the main idea is obvious
the proof itself is postponed to Section 3.

We shall use the Kronecker symbol d,; = y;,(j)-

2.3. THEOREM. If pp = A then

(M) g = et gy, = eI — g, )

in particular, for pp = 2j2

(2) 9> 4, @) = Hioa (—1)y g/ @I — 6,;4]
where

(3) ‘B — e-za(p—l) .

2.4. REMARK. For p an even multiple of 2, relation (2.3.2) gives a direct
formula for the evaluation of the error probability g(g, 4, a). Often, with a
preassigned a and given y# we want to determine 4 and a so that

0y q(p, 2, a) =a.

If we also choose 4 then the value of a satisfying (1) is uniquely determined
and can be obtained by setting
) a 1 logp!
2 p—12

where § is the solution of f(8) = a with f() the right-hand side of (2.3.2).

Some of the values of 3 are given in Table 1; a solution to f(8) = a can be
easily obtained by starting with 8, = a and using an iterative procedure to im-
prove B,. Notice that the Paulson’s bound ¢, < exp[—2a(p — 2)] yields a given
by (2) with 8 replaced by a.

For 4 not equal to an even multiple of 2, formula (2) with 8 obtained by
interpolation could be used.
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3. Proof of Theorem 2.3. First we strengthen Theorem 2.2 in the following
way.

3.1. LeMMA. If p = 2> 0andc > p — 2 then

e—ﬂa+1+c)(p—1)(pu_# _ r) é P# g e—za(p—l)P“_#
with
r= (@t + )2 — g+ ) exp[—4(2 — 1 + <]
Proor. Only the left-hand inequality has to be proved as the rest is contained
in Theorem 2.2. As in the proof there

P = P.i(ZN 6 é —ay) = P, (X6 e[—ay — ¢, —ay]) .

An application of Lemma 2.1 to the last term gives, since ay < a + 4,

pozexp[—2(a+ 2+ o)(r — NP, (L& e[—ay — ¢, —ay])
2 exp[—2(a + 4 + ) (e — W Pu-y — P L€ < —a = )]

and it remains to prove that the second term in the brackets is less or equal to
r. Since ¥ '&, > —a, and N < ai™' + 1, this probability is less or equal to

P,_, {Ei < —c forsome 1 <i < % + 1} < (% + 1> (oo itr et dt

and this is less or equal to r since {Z% e~ dt < z7'e~#*? for z > 0.

3.2. Proor oF THEOREM 2.3. Let X, be a continuous Brownian motion,
EX, = At, Var X, = t, let = and r,, be defined as the times of exit of

X, from (—a + 4t, a + 1)

with ¢ unrestricted for z, and ¢ restricted to the set {1/m, 2/m, 3/m, - ..} for
Tp- Set

m

A={X,< —a+ 12}, A, =X, < -—a+i,}.

We want to show that
1) P(A4,) — P(A) .

According to the law of the iterated logarithm at 0 (cf., e.g., Breiman, Section
12.9), for every number ¢, with probability 1, every (0, ¢) with ¢ > 0 contains
a t, and 1, such that X(1) < —ct,, X(8,) > ct,. Applying this to X,(7) =
X(t + t) — X(r) we obtain that, with probability one, (0, ¢ + ¢) contains points
at which X is outside the continuation interval, for every ¢ > 0.

Also, if 2 > 0, P{X,,; # 0} = 1. Let Q, be the intersection of the two events
of probability 1.

Thus if @ € Q, N 4 and if N is a neighborhood of 7(®), then by continuity of
X(w) there is an open interval (x, v) € N on which X(w) is below the lower
boundary and such that on [0, v], X(») does not touch the upper boundary.
But then w e Q, n A4, forallm > (v — u)™".
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Similarly, if 0 € Q, n (2 — A) then w € Q, N (2 — A4,,) for m sufficiently large.

Thus N Umen (0 A4,)Cc U nAdc Us, Nee. (Q,n 4,) and, since
P(Q,) =1, (1) holds. Of course P(4) = g(u, 4, a) and P(4,) = p(Ajm, 2|m, i/m,
a, 1/m) = P(Am=%, 2m~%, am?) and (1) means, that for every A, 2>0,a>0
2) P(A ,-_'z_,am5>—>q(A,2,a).

mt  mt

Now suppose 2 > 0. Lemma 3.1 states that

exp[—2(a 4 am™ + c,m ) (p — 2)] [P (B—,,,_Tﬁ ,,'; ’ ‘"”i> - r’“]

éP(L, A ,am*>
mt mt

24 — A
< expl—2a(u — D]p (L, L am)

if ¢, > (1 — A)/mt, with

mm (A ) e (A

Taking c,, = m* we obtain r, — 0 and using (2) and taking limits in the ine-
qualities above we obtain the assertion (2.3.1) for 2 > 0.

For 2 = 0 one obtains the result by showing that g(g, 4, a) — q(g, 0, a) as
4] 0, using similar considerations as in proving (1). Relation (2.3.2) follows
from (2.3.1) by induction and using ¢, = 1.

Acknowledgment. I am thankful to Mr. W. Allard who prepared a program
and supervised the computation of the table on a computer.

TABLE 1
Values of B for which q(y, 2, a) = a

@ .1 .05 .01 .005 .001 .001
7

2 2 .1 .02 .010 .002 .0002
4 .13443 .06237 .011262 .005483 .0010536 .00010240
6 .12367 .05742 .010549 .005182 .0010142 .00010037
8 .11957 .05571 .010354 .005108 .0010070 .00010014
10 .11745 .05487 .010272 .005080 .0010046 .00010008
12 11617 .05439 .010229 .005065 .0010035 .00010005
+o0 1111 .05263 .010101 .005025 °  .0010010 .00010001
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