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THE NON-SINGULARITY OF GENERALIZED SAMPLE
COVARIANCE MATRICES!

By MoRrRIs L. EATON AND MICHAEL D. PERLMAN
University of Chicago®

Let X = (Xi, - -+, X») where the X;: p x 1 are independent random
vectors, and let 4: n X n be positive semi-definite symmetric. This paper
establishes necessary and sufficient conditions that the random matrix
XAX' be positive definite w.p. 1. The results are applied to cases where 4
has a particular form or Xj, - - -, X, are i.i.d. In particular, it is sh_own that
in the i.i.d. case, the sample covariance matrix Z(X; — X)(X; — X' is posi-
tive definite w.p. 1 iff P[X7 e F] = 0 for every proper flat F C Re.

1. Introduction. In a recent paper, Dykstra (1970) demonstrated the non-
singularity w.p. 1 of the sample covariance matrix § = 37 (Y, — )(¥; — ¥
for Y, --., Y, i.i.d. N(g, Z) where I is positive definite (henceforth written
2 > 0). A similar result also appears in lecture notes of C. Stein (1969). These
demonstrations depend heavily on normality. Let Y:p X n have columns
Yy, - -+, Y, of dimension p and write § = YA4,Y’ where 4, = I — (1/n)ee’, &’ =
(1,1, ---, 1) e R*. In this paper, we obtain conditions under which a random
matrix of the form XAX is positive definite w.p. 1 where 4: n X n is positive
semi-definite and X = (X;, - -+, X,): p X n is a random matrix whose columns
are independent but not necessarily normal or identically distributed.

2. Main results. Let n — r denote the rank of 4 = {a;;} (assumed to be posi-
tive semi-definite) and assume that n — r > p and a; > 0,i=1, ..., n. We
now reduce the problem of studying the non-singularity of XAX' to the case
r=0. Let 7" C R be the range of 4 and let I : r X n be any matrix of rank
r with row space 7"+ = the orthogonal complement of 2”. Now, XAX is singu-
lar iff 3a # 0 in R? such that @’ XAX'a = 0 iff 3a # 0 in R? such that a’X e 7"+
iff 3a = 0in R* and b € R" such that ’X = &'T iff the matrix X = ({): (p+7r) X n
is singular. Thus, studying the non-singularity of X4X" is equivalent to study-
ing the non-singularity of X (or equivalently of XX’) where X: p X nagain has
independent columnsand n > p = p + r.

REeMARK. The assumption that a;; > 0 is without essential loss of generality.
For if a,; = 0, then X, does not occur in XAX’, so conditions on X; are irrelevant.
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‘We now study the case of r = 0. Let Xj, .- -, X, in R* be independent random
vectors, n = p, and X = (X, ..., X,).

THEOREM 2.1. The following are equivalent:

(i) P{X is singular} > 0,

(ii) for somes,1 < s < p,3n— p+ s columns of X, {Xia|a =1,---,n—p+s}
and 3an (s — 1)-dimensional linear manifold M“~" C R? such that P{X; e M“~";
a=1,...,n—p+s5}>0.

Proor. Clearly (ii) implies (i). The proof that (i) implies (ii) is deferred to
Section 4.

Replacing X by X in Theorem 2.1 gives the necessary and sufficient condition
that X4AX" > 0 w.p. 1. We illustrate the application of Theorem 2.1 for the case
r=1,nzp+land'=¢ = (1,1, ..-,1)e R". Recall that a g-dimensional
flat, F@, in R* is the translate of a ¢g-dimensional manifold.

THEOREM 2.2. Let A: n X n have rank n — 1 and null space spanned by e. The
following are equivalent:

(i) P{XAX' is singular} > 0,

(ii) for somet,1 <t < p,An—p—+tcolumnsof X, {X; |la =1,---,n—p+1}
and 3a (t — 1)-dimensional flat, F*~V, such that P(X;, e F*"";a =1, ...,n —
p+1t>0.

Proor. Apply Theorem 2.1 to X = () with p replaced by p+1and r = s—1.

In the case 4, = I — (1/n)ee’, Theorem 2.2 gives necessary and sufficient con-
ditions that the sample covariance matrix be positive definite w.p. 1.

A very simple sufficient condition which guarantees (for any r < n — p) the
positive definiteness of XA4X” w.p. 1 is given below.

THEOREM 2.3. Assume that under the distribution of each X, € R*, every flat of
dimension p — 1 has probability 0. Then XAX" > 0 w.p. 1.

Proor. Consider X = (¥): px n,p=p+r. Letl < s < pand choose n —
p + s columns of X, say X, -+ -, )?n_;, +s» Telabeling if necessary. If M~V C Re
is an (s — 1)-dimensional manifold, then M“~V = {z|Az = 0} where A:(p —
s+ 1) x p has rank p — s + 1. To apply Theorem 2.1, we must show that
P{AX;=0,i=1,...,n—p+ s} =0. Partition A = (A, A,), A,: (p— s+
1) X p, Ay (p— s+ 1) X rand write

X
(Xl’ ] Yn—'i;+s) = <I=|> .
Thus, we must show that
@.1) P{(A1A2)<%:>:A1X+A,f‘:0} 0.

If A, = 0, then (2.1) = 0 from the assumption that all proper flats have probability
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0. If A, =0, then rank (4;,) =p — s+ 1 so A, I' cannot be zero: otherwise,
dim (range F) <r—(p-—-s+ 1) so that r = dim (range I') < dim (range ) +
dim (range 'y < r — (p—s+ 1)+ (p—s) =r — 1 where T = (I T, acon-
tradiction. Hence, in either case, (2.1) is 0.

The sufficient condition of Theorem 2.3 is satisfied, for example, if the distri-
bution of X; has a density with respect to Lebesgue measure or is orthogonally
invariant.

For pedagogical purposes we give a direct proof of Theorem 2.3 which does
not appeal to Theorem 2.1. Partition

x= (X5
rr
with X:px(n—r), X:pxr, I': rXx(n—r, and T':rx r. Permuting
columns if necessary, we may assume I is non-singular. Now Xis singular iff
W =X — XTI is singular (to see this, premultiply X by the non-smgular
(4r x F 1)), soto prove P{X singular} = 0it suffices to show that P{W singular | X} =

0. Foreachz_l ..,n —rset S, = Span {W,: j # i}, where W = (W, - - -,
W,_,). Then

P{Wsingularl)'(. }
(2.2) < Yo7 P{W,e S, and dim (S, < p — 1| X}

= Z"—'E[P{W €S, and dim(S,) < p — 1|W,,j+ i, X}| X].

Since X and X are independent, however, for fixed X the random vectors

(Wy, -+, W,_,) are independent, and P{W, € F| X } = 0 for every proper flat F
in R?. Therefore the conditional probability in the last expression in (2.2) is zero.
If we drop the assumption that X, ..., X, are independent but assume instead

that the distribution of X is absolutely continuous with respect to np-dimen-
sional Lebesgue measure, the above argument remains valid if the statements
involving independence are replaced by the observation that the conditional
distribution of W, given X and W,, j # i, is absolutely continuous with respect
to p-dimensional Lebesgue measure. This provides an alternate proof of the
theorem of Okamoto (1973).

3. Special cases. In this section we obtain necessary and sufficient conditions
that X4AX" > O w.p. | in the special cases (a) p = 1 or (b) X, - - -, X, are i.i.d.

THEOREM 3.1. Let U = (U,, - .., U,) where the U, are independent real-valued
random variables. Let A: n X n be positive semi-definite of rank n — r = 1 with
range space 7" R*and a;; > 0,i =1, ---,n. The following are equivalent:

(i) PUAU >0} =1,

(ily PlUe 7't} =0,

(iii) U has no atoms in 7"+,

ProoF. Clearly, (i) < (ii) = (iii). We show that not (i) implies not (iii). First,
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we remark that the assumption a;; > 0, i =1, ..., n is equivalent to the state-
ment that "% contains no coordinate axis e; = (0, ---,0,1,0, --.,0) e R",
which is equivalent to the statement that every subset of (n — 1) columns of T’
span R".

Not (i) implies, by Theorem 2.1, that there isan s, 1 < s < p =r + 1, there

are n — p + s columns (X, |a =1, ---,n — p + s} of X = ({) and there is an
(s — 1)-dimensional manifold M“~" C R? such that
(3.1) PX, eM* P, a=1,...,n—p+s5}>0.

If n — p + s columns of X lie in M¢V with positive probability, then the
corresponding n — p + s columns of I' lie in a manifold contained in R” of
dimension < s — 1. If s < r, then some n — 1 columns of I lie in a manifold
of dimension < r — 1 which cannot happen. Thus, s=r+4 1 so M*™" =
{z| ze R™**, 6’z = 0} where 6 + 0, d € R"*'. Hence (3.1) becomes

(3.2) P(6X =6, U+ 36T =0} >0

where § = (4,, 6), 6, € R. Since I has full rank, (3.2) implies that d, = 0, so
P{U = —(1/8,)6T € 71} > 0.

This completes the proof.

We now turn to the case of i.i.d. random vectors in R*. The following is an
immediate consequence of Theorem 2.1.

THEOREM 3.2. Let X = (X, - - -, X,) where the X, are i.i.d. random vectors in
R?, n = p. The following are equivalent:

(i) P{X is non-singular} = 1,

(ii) P{X;e M} = O for all proper manifolds M C R®.

For we R?, w = 0, and c e R, let F(w, ¢) = {x € R?|w'x = c} be the (p — 1)-
dimensional flat determined by w and c.

THEOREM 3.3. Let X = (X,, - -+, X,) where the X ,c R® are i.i.d. and let
A:n X n be positive semi-definite with range space 77" < R" and rank n — r = p.
The following are equivalent.

(i) P{XAX' >0} =1,

(i) TI&,P{X,e F(w,v,)} =O0forallwe R, w+0andv = (vy,---,v,)€ 7.

Proor. If (ii) does not hold, then 3w = 0 in R* and v = b'T' € 77+ such that
P{w'X = b'T} > 0. Hence P{XAX is singular} = P{({) is singular} > 0 and (i)
does not hold.

Next, assume (ii) holds. Setting v = 0, it follows that P{X; e M} = 0 for all
proper manifolds M C R? and therefore P{X, € F} = 0 for all flats of dimension
< p — 2. If (i) does not hold, then by Theorem 2.1,3s, l S s<p=p+r,
in — p + s columns of X = (§), say X,, ---, X,_;,, (relabeling if necessary)
and 3 a manifold M“~"  R* such that

(3.3) PX,eM* Y, i=1,...,n—p+s}>0.
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Note that s must be > 2 since P{X; = 0} = 0. Now, M~V = {z|Az = 0} where
A: (p+s— 1) x phasrank p + s — 1, so (3.3) becomes

(3.4) P{A(?):O}:P{AlXi+A271.:0,i:1,-~-,n—p+s}>0

where A = (A4,4,), ;
<X> _ (Xl, cee, X,,_7,+s) >

r
and I' = (7, - -+, 7,_3,,). As in the proof of Theorem 2.3, A, = 0. However,
if rank A, > 2 then {x|xe R, A,x = —A,7,} is a flat of dimension < p — 2,
contradicting (3.4). Thus rank A, =1 s0o A, =aw’, a: (p — s+ 1) x 1 and
wipx 1.
Since

implies that

is singular, (3.4) yields
X\ .
P 1
0< {A <I‘> singu ar}
3.5) = Plaw'X 4+ A,T" singular}
IX .
—P v 1 } ,
{(a I <A2F) singular

where I: (p — s+ 1) X (p — s + 1), and

wX
(p— 2 .
<A2F> (P—s+2)xn
Using the fact that s > 2 and (¢ /) has rank p — s 4 1, we conclude that
(3.6) P {(Z;’E) singular} >0.

Since U = w’X: 1 X n has independent components, Theorem 3.1 implies that
thereisa y: (p — s + 1) X 1 such that

(3.7) P{U = y'A,T} > 0.
Setting v = y'A,T" e 77+, (3.7) becomes
J§ b P{Xl € F(w, 1),5)} >0,

contradicting (ii). Hence (i) must hold.
As an immediate consequence of Theorem 3.3, we obtain

THEOREM 3.4. Let X = (X,, ---, X,) where the X,c R* are i.i.d., and let
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A:n X n,n=p+ 1, have rank n — 1 with null space spanned by e € R*. The fol-
lowing are equivalent:.

(i) P{XAX non-singular} = 1,

(ii) P{X,e F} = O for all proper flats F C R®.

In particular, condition (ii) is necessary and sufficient for the non-singularity
w.p. 1 of the sample covariance matrix 3] (X; — X)(X; — X) in the i.i.d. case.

Theorem 3.3 has an interesting geometric interpretation. Let S(X) & R" be
the random subspace spanned by the row vectors X, - - -, X, of X. Theorem
3.3 states that

Pdim [A(X)n 741 =1} >0

iff there exists a fixed vector v € 2"+ and a fixed nonzero linear combination
»rw, X, of Xy, - -+, X, such that

P{ytw, X, =v}>0.

4. Proof of Theorem 2.1. Throughout this section V'* will denote a p-dimen-
sional real vector space and M@ (with or without subscripts) a manifold of
dimension d in V>,

LEMMA 4.1. Let Z e V* be a random vector with P{Z = 0} = 0. Then for each
d=1,..., p—1 there are at most countably many manifolds, say {M;¥|i=1,.--},
such that

@) P{Ze M/} >0
and ,
(b) P{Ze M9} =0  forevery M“ cC M®.

Proor. If M@, ..., M, @ satisfy (a) and (b), then
P{Ur M} = I P{M,V} .

This shows that the collection of d-manifolds satisfying (a) and (b) is at most
countable.

If v,, - -, v, are vectors in V'?, S(v,, - - -, v,) will denote the span of vy, - - -, v,.
The following result yields Theorem 2.1.

THEOREM 4.2. For every j, 1 < j < p, for every k = j, and for every set of
independent random vectors Xy, - - -, X, in V?, the following are equivalent:

(i) P{dim S(X,, ---, X,) < j— 1} > 0.

(ii) For some s, 1 < s < j, the following assertion, A(s), holds: there exist
k —j+ s vectors {X, |a =1, .-,k — j+ s} and there exists M©~" such that
PX; eMe P, a=1, - k—j+s5}>0.

Proor. Clearly (ii) implies (i). We prove that (i) implies (ii) by induction on
p. This is easily verified for p = 1. For p > 2, assume the result is true for all
phl=p=sp-1
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To prove the result for dimension p, we use a secondary induction on j. The
result is clear for j = 1. For 2 < j < p, assume (i) implies (ii) forall j/, 1 < j' <
j— 1. Now fix k = jand X, --., X, in V». Assume that
4.1) P{dim S(X;, ---, X)) <j—1} >0
but that 4(1), - - -, A(j — 1) do not hold; we will show that A4(j) obtains. Since
A(1l) does not hold, there is some X, say X, such that P{X, = 0} = 0. Using
the secondary induction hypothesis for j* = j — 1 and k¥’ = k — 1, not A(1),- - -,
not A(j — 1) implies

P{dim S(X,, ---, X)) <j—2} =0
so
4.2) P{dim S(X,, ---, X, ) =j— 1} =1.
Combining (4.1) and (4.2) gives
P{dim S(X,, - -+, X,) =j — 1,dim S(X;, -+, X)) <j— 1} >0

SO
(4.3) PlX, e S(X,, -+, X,),dim S(X,, -+, X)) =j— 1} > 0.
Now (4.3) can be written as
4.4 0< §,PX,eS(Xy, + -, X)Xy, -+, X,jdQ
where Q is the probability distribution of (X;, ---, X,) and C = D n E, where

D and E are the following events:
D = {dim §(X,, ---, X,) = j — 1}
E={PX,eSX,, -, X)|X,, -+, X,} > 0}.
By Lemma 4.1 with Z = X,
C=Uioiua [{M@ < S, ---, X,)} n D].
From (4.4), there exists a d and an i such that
4.5) P{X, e M/P}P[{M,® < S(X,, ---, X))} n D] >0.

If d =j— 1, then A(j) obtains with M“0 = M®. If 1 <d < j— 2, then
we have

(4.6) P[{M® C S(X,, -+, X)}nD]>0.

Let IT denote the orthogonal projection onto (M;®)*. Clearly,
I(S(X,, - -+, X)) = S(ILX,, - -, ILX,)

so (4.6) implies that

4.7) P{dim S(ILX,, -- -, IIX,) <j—1—4d} > 0.

Set p=p—d, jJ=j—d and k' =k — 1. Since IIX,e (M;*): and
dim (M;")* = p’ < p — 1, we can apply our original induction hypothesis.
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Hence for some s/, 1 < s’ < j', there exists k' — j/ + s vectors {IIX; |a =

1, ..., k" — j' + s’} and a manifold M*' -V c (M;®)+ such that
PIIX, e MO=D,a =1, -,k — ] + 8} >0.
Now, let My = M-V P M, C V?so

(4.8) PIX, eMya=1,.--,k —j +5}>0.
Combining (4.8) and (4.5), we have
(4.9) PX,eM, X, eMp,a=1,....,k —j+5}>0.

Since we have assumed that A(1), ---, 4(j — 1) do not hold, it follows that
1+ 4k —j 4+ =k and dim(M,) = j — 1. Thus A(j) obtains, completing
the proof.

Theorem (2.1) follows by setting j = p and k = n in Theorem 4.2.
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