THE NON-SINGULARITY OF GENERALIZED SAMPLE COVARIANCE MATRICES¹

By Morris L. Eaton and Michael D. Perlman

University of Chicago²

Let $X = (X_1, \dots, X_n)$ where the $X_i : p \times 1$ are independent random vectors, and let $A : n \times n$ be positive semi-definite symmetric. This paper establishes necessary and sufficient conditions that the random matrix XAX' be positive definite w.p. 1. The results are applied to cases where A has a particular form or X_1, \dots, X_n are i.i.d. In particular, it is shown that in the i.i.d. case, the sample covariance matrix $\Sigma(X_i - \overline{X})(X_i - \overline{X})'$ is positive definite w.p. 1 iff $P[X_1 \in F] = 0$ for every proper flat $F \subset R^p$.

- 1. Introduction. In a recent paper, Dykstra (1970) demonstrated the non-singularity w.p. 1 of the sample covariance matrix $S = \sum_{1}^{n} (Y_i \bar{Y})(Y_i \bar{Y})'$ for Y_1, \dots, Y_n i.i.d. $N_p(\mu, \Sigma)$ where Σ is positive definite (henceforth written $\Sigma > 0$). A similar result also appears in lecture notes of C. Stein (1969). These demonstrations depend heavily on normality. Let $Y: p \times n$ have columns Y_1, \dots, Y_n of dimension p and write $S = YA_0Y'$ where $A_0 = I (1/n)ee'$, $e' = (1, 1, \dots, 1) \in \mathbb{R}^n$. In this paper, we obtain conditions under which a random matrix of the form XAX' is positive definite w.p. 1 where $A: n \times n$ is positive semi-definite and $X = (X_1, \dots, X_n): p \times n$ is a random matrix whose columns are independent but not necessarily normal or identically distributed.
- 2. Main results. Let n-r denote the rank of $A=\{a_{ij}\}$ (assumed to be positive semi-definite) and assume that $n-r\geq p$ and $a_{ii}>0$, $i=1,\dots,n$. We now reduce the problem of studying the non-singularity of XAX' to the case r=0. Let $\mathscr{V}\subseteq R^n$ be the range of A and let $\Gamma:r\times n$ be any matrix of rank r with row space $\mathscr{V}^\perp\equiv$ the orthogonal complement of \mathscr{V} . Now, XAX' is singular iff $\exists a\neq 0$ in R^p such that a'XAX'a=0 iff $\exists a\neq 0$ in R^p such that $a'X\in\mathscr{V}^\perp$ iff $\exists a\neq 0$ in R^p and $b\in R^r$ such that $a'X=b'\Gamma$ iff the matrix $\tilde{X}=\binom{X}{\Gamma}:(p+r)\times n$ is singular. Thus, studying the non-singularity of XAX' is equivalent to studying the non-singularity of \tilde{X} (or equivalently of \tilde{X} where $\tilde{X}:\tilde{p}\times n$ again has independent columns and $n\geq \tilde{p}=p+r$.

REMARK. The assumption that $a_{ii} > 0$ is without essential loss of generality. For if $a_{ii} = 0$, then X_i does not occur in XAX', so conditions on X_i are irrelevant.

Received June 1971; revised August 1972.

¹ This research was supported by the National Science Foundation Research Grant No. GP-25911.

² Both authors are now at the University of Minnesota, Minneapolis.

AMS 1970 subject classifications. Primary 62H10, 60D05; Secondary 15A03.

Key words and phrases. Independent random vectors, nonsingularity of random matrices, sample covariance matrix, linear manifolds, flats.

We now study the case of r = 0. Let X_1, \dots, X_n in \mathbb{R}^p be independent random vectors, $n \ge p$, and $X = (X_1, \dots, X_n)$.

THEOREM 2.1. The following are equivalent:

- (i) $P\{X \text{ is singular}\} > 0$,
- (ii) for some s, $1 \le s \le p$, $\exists n-p+s$ columns of X, $\{X_{i_{\alpha}} \mid \alpha=1,\cdots,n-p+s\}$ and $\exists an (s-1)$ -dimensional linear manifold $M^{(s-1)} \subset R^p$ such that $P\{X_{i_{\alpha}} \in M^{(s-1)}; \alpha=1,\cdots,n-p+s\} > 0$.

PROOF. Clearly (ii) implies (i). The proof that (i) implies (ii) is deferred to Section 4.

Replacing X by \tilde{X} in Theorem 2.1 gives the necessary and sufficient condition that XAX' > 0 w.p. 1. We illustrate the application of Theorem 2.1 for the case r = 1, $n \ge p + 1$ and $\Gamma = e' = (1, 1, \dots, 1) \in \mathbb{R}^n$. Recall that a q-dimensional flat, $F^{(q)}$, in \mathbb{R}^p is the translate of a q-dimensional manifold.

THEOREM 2.2. Let $A: n \times n$ have rank n-1 and null space spanned by e. The following are equivalent:

- (i) $P\{XAX' \text{ is singular}\} > 0$,
- (ii) for some $t, 1 \leq t \leq p, \exists n-p+t$ columns of $X, \{X_{i_{\alpha}} | \alpha=1, \cdots, n-p+t\}$ and $\exists a \ (t-1)$ -dimensional flat, $F^{(t-1)}$, such that $P\{X_{i_{\alpha}} \in F^{(t-1)}; \alpha=1, \cdots, n-p+t\} > 0$.

PROOF. Apply Theorem 2.1 to $\tilde{X} = \binom{X}{e'}$ with p replaced by p+1 and t = s-1. In the case $A_0 = I - (1/n)ee'$, Theorem 2.2 gives necessary and sufficient conditions that the sample covariance matrix be positive definite w.p. 1.

A very simple sufficient condition which guarantees (for any $r \le n - p$) the positive definiteness of XAX' w.p. 1 is given below.

THEOREM 2.3. Assume that under the distribution of each $X_i \in \mathbb{R}^p$, every flat of dimension p-1 has probability 0. Then XAX'>0 w.p. 1.

PROOF. Consider $\tilde{X} = \binom{X}{\Gamma}$: $\tilde{p} \times n$, $\tilde{p} = p + r$. Let $1 \le s \le \tilde{p}$ and choose $n - \tilde{p} + s$ columns of \tilde{X} , say $\tilde{X}_1, \dots, \tilde{X}_{n-\tilde{p}+s}$, relabeling if necessary. If $M^{(s-1)} \subset R^p$ is an (s-1)-dimensional manifold, then $M^{(s-1)} = \{z \mid \Delta z = 0\}$ where $\Delta : (\tilde{p} - s + 1) \times \tilde{p}$ has rank $\tilde{p} - s + 1$. To apply Theorem 2.1, we must show that $P\{\Delta \tilde{X}_i = 0, i = 1, \dots, n - \tilde{p} + s\} = 0$. Partition $\Delta = (\Delta_1, \Delta_2), \Delta_1 : (\tilde{p} - s + 1) \times p, \Delta_2 : (\tilde{p} - s + 1) \times r$ and write

$$(\tilde{X}_1, \ldots, \tilde{X}_{n-\tilde{p}+s}) = \begin{pmatrix} \dot{X} \\ \dot{\Gamma} \end{pmatrix}.$$

Thus, we must show that

$$P\left\{(\Delta_1\Delta_2)\begin{pmatrix}\dot{X}\\\dot{\Gamma}\end{pmatrix}=\Delta_1\dot{X}+\Delta_2\dot{\Gamma}=0\right\}=0.$$

If $\Delta_1 \neq 0$, then (2.1) = 0 from the assumption that all proper flats have probability

0. If $\Delta_1 = 0$, then rank $(\Delta_2) = \vec{p} - s + 1$ so $\Delta_2 \dot{\Gamma}$ cannot be zero: otherwise, dim (range $\dot{\Gamma}$) $\leq r - (\vec{p} - s + 1)$ so that $r = \dim$ (range Γ) $\leq \dim$ (range $\dot{\Gamma}$) + dim (range $\ddot{\Gamma}$) $\leq r - (\vec{p} - s + 1) + (\vec{p} - s) = r - 1$ where $\Gamma = (\dot{\Gamma} \ \ddot{\Gamma})$, a contradiction. Hence, in either case, (2.1) is 0.

The sufficient condition of Theorem 2.3 is satisfied, for example, if the distribution of X_i has a density with respect to Lebesgue measure or is orthogonally invariant.

For pedagogical purposes we give a direct proof of Theorem 2.3 which does not appeal to Theorem 2.1. Partition

$$ilde{X} = egin{pmatrix} \dot{X} & \ddot{X} \ \dot{\Gamma} & \ddot{\Gamma} \end{pmatrix}$$

with \dot{X} : $p \times (n-r)$, \ddot{X} : $p \times r$, $\dot{\Gamma}$: $r \times (n-r)$, and $\ddot{\Gamma}$: $r \times r$. Permuting columns if necessary, we may assume $\ddot{\Gamma}$ is non-singular. Now \tilde{X} is singular iff $W \equiv \dot{X} - \ddot{X} \ddot{\Gamma}^{-1} \dot{\Gamma}$ is singular (to see this, premultiply \tilde{X} by the non-singular $\binom{I_p}{0} \ddot{X} \ddot{\Gamma}^{-1}$), so to prove $P\{\ddot{X} \text{ singular}\} = 0$ it suffices to show that $P\{W \text{ singular} \mid \ddot{X}\} = 0$. For each $i = 1, \dots, n-r$ set $S_i = \text{Span}\{W_j : j \neq i\}$, where $W = (W_1, \dots, W_{n-r})$. Then

$$P\{W ext{ singular} \mid \ddot{X}\}$$

(2.2)
$$\leq \sum_{i=1}^{n-r} P\{W_i \in S_i \text{ and } \dim(S_i) \leq p-1 \mid \ddot{X}\}$$

$$= \sum_{i=1}^{n-r} E[P\{W_i \in S_i \text{ and } \dim(S_i) \leq p-1 \mid W_j, j \neq i, \ddot{X}\} \mid \ddot{X}].$$

Since \dot{X} and \ddot{X} are independent, however, for fixed \ddot{X} the random vectors (W_1, \dots, W_{n-r}) are independent, and $P\{W_i \in F \mid \ddot{X}\} = 0$ for every proper flat F in R^p . Therefore the conditional probability in the last expression in (2.2) is zero.

If we drop the assumption that X_1, \dots, X_n are independent but assume instead that the distribution of X is absolutely continuous with respect to np-dimensional Lebesgue measure, the above argument remains valid if the statements involving independence are replaced by the observation that the conditional distribution of W_i given \ddot{X} and W_j , $j \neq i$, is absolutely continuous with respect to p-dimensional Lebesgue measure. This provides an alternate proof of the theorem of Okamoto (1973).

3. Special cases. In this section we obtain necessary and sufficient conditions that XAX' > 0 w.p. 1 in the special cases (a) p = 1 or (b) X_1, \dots, X_n are i.i.d.

THEOREM 3.1. Let $U=(U_1,\cdots,U_n)$ where the U_i are independent real-valued random variables. Let $A: n \times n$ be positive semi-definite of rank $n-r \ge 1$ with range space $\mathscr{V} \subseteq R^n$ and $a_{ii} > 0$, $i=1,\cdots,n$. The following are equivalent:

- (i) $P\{UAU' > 0\} = 1$,
- (ii) $P\{U \in \mathscr{V}^{\perp}\} = 0$,
- (iii) U has no atoms in \mathcal{V}^{\perp} .

PROOF. Clearly, (i) \Leftrightarrow (ii) \Rightarrow (iii). We show that not (i) implies not (iii). First,

we remark that the assumption $a_{ii} > 0$, $i = 1, \dots, n$ is equivalent to the statement that \mathscr{V}^{\perp} contains no coordinate axis $e_i = (0, \dots, 0, 1, 0, \dots, 0)' \in \mathbb{R}^n$, which is equivalent to the statement that every subset of (n - 1) columns of Γ span \mathbb{R}^r .

Not (i) implies, by Theorem 2.1, that there is an $s, 1 \le s \le \tilde{p} = r + 1$, there are $n - \tilde{p} + s$ columns $\{\tilde{X}_{i_{\alpha}} | \alpha = 1, \dots, n - \tilde{p} + s\}$ of $\tilde{X} = \binom{U}{\Gamma}$ and there is an (s-1)-dimensional manifold $M^{(s-1)} \subset R^{\tilde{p}}$ such that

(3.1)
$$P\{\tilde{X}_{i_{\alpha}} \in M^{(s-1)}, \alpha = 1, \dots, n - \tilde{p} + s\} > 0.$$

If $n - \tilde{p} + s$ columns of \tilde{X} lie in $M^{(s-1)}$ with positive probability, then the corresponding $n - \tilde{p} + s$ columns of Γ lie in a manifold contained in R^r of dimension $\leq s - 1$. If $s \leq r$, then some n - 1 columns of Γ lie in a manifold of dimension $\leq r - 1$ which cannot happen. Thus, s = r + 1 so $M^{(s-1)} = \{z \mid z \in R^{r+1}, \, \delta'z = 0\}$ where $\delta \neq 0$, $\delta \in R^{r+1}$. Hence (3.1) becomes

$$(3.2) P\{\delta \tilde{X} = \delta_1 U + \ddot{\delta} \Gamma = 0\} > 0$$

where $\delta = (\delta_1, \ddot{\delta}), \ \delta_1 \in \mathbb{R}^1$. Since Γ has full rank, (3.2) implies that $\delta_1 \neq 0$, so

$$P\{U=-(1/\delta_1)\ddot{\delta}\Gamma\in\mathscr{V}^{\perp}\}>0$$
.

This completes the proof.

We now turn to the case of i.i.d. random vectors in \mathbb{R}^p . The following is an immediate consequence of Theorem 2.1.

THEOREM 3.2. Let $X = (X_1, \dots, X_n)$ where the X_i are i.i.d. random vectors in \mathbb{R}^p , $n \geq p$. The following are equivalent:

- (i) $P\{X \text{ is non-singular}\} = 1$,
- (ii) $P\{X_1 \in M\} = 0$ for all proper manifolds $M \subset R^p$.

For $w \in R^p$, $w \neq 0$, and $c \in R^1$, let $F(w, c) = \{x \in R^p \mid w'x = c\}$ be the (p - 1)-dimensional flat determined by w and c.

THEOREM 3.3. Let $X = (X_1, \dots, X_n)$ where the $X_i \in \mathbb{R}^p$ are i.i.d. and let $A: n \times n$ be positive semi-definite with range space $\mathscr{V} \subseteq \mathbb{R}^n$ and rank $n-r \geq p$. The following are equivalent:

- (i) $P\{XAX' > 0\} = 1$,
- (ii) $\prod_{i=1}^{n} P\{X_i \in F(w, v_i)\} = 0$ for all $w \in R^p$, $w \neq 0$ and $v = (v_1, \dots, v_n) \in \mathcal{V}^{\perp}$.

PROOF. If (ii) does not hold, then $\exists w \neq 0$ in R^p and $v = b'\Gamma \in \mathscr{V}^{\perp}$ such that $P\{w'X = b'\Gamma\} > 0$. Hence $P\{XAX' \text{ is singular}\} = P\{\binom{x}{\Gamma} \text{ is singular}\} > 0$ and (i) does not hold.

Next, assume (ii) holds. Setting v=0, it follows that $P\{X_1 \in M\} = 0$ for all proper manifolds $M \subset R^p$ and therefore $P\{X_1 \in F\} = 0$ for all flats of dimension $\leq p-2$. If (i) does not hold, then by Theorem 2.1, $\exists s, 1 \leq s \leq \tilde{p} = p+r$, $\exists n-\tilde{p}+s$ columns of $\tilde{X}=\binom{r}{r}$, say $\tilde{X}_1, \dots, \tilde{X}_{n-\tilde{p}+s}$ (relabeling if necessary) and \exists a manifold $M^{(s-1)} \subset R^p$ such that

(3.3)
$$P\{\tilde{X}_{i} \in M^{(s-1)}, i = 1, \dots, n - \tilde{p} + s\} > 0.$$

Note that s must be ≥ 2 since $P\{X_1 = 0\} = 0$. Now, $M^{(s-1)} = \{z \mid \Delta z = 0\}$ where $\Delta: (\tilde{p} + s - 1) \times \tilde{p}$ has rank $\tilde{p} + s - 1$, so (3.3) becomes

$$(3.4) P\left\{\Delta\left(\frac{\dot{X}}{\dot{\Gamma}}\right)=0\right\}=P\{\Delta_1X_i+\Delta_2\gamma_i=0, i=1,\dots,n-\tilde{p}+s\}>0$$

where $\Delta = (\Delta_1 \Delta_2)$,

$$\begin{pmatrix} \dot{X} \ \dot{\Gamma} \end{pmatrix} = (ilde{X}_1,\ \cdots,\ ilde{X}_{n- ilde{p}+s}) \ ,$$

and $\Gamma=(\gamma_1,\cdots,\gamma_{n-\tilde{p}+s})$. As in the proof of Theorem 2.3, $\Delta_1\neq 0$. However, if rank $\Delta_1\geq 2$ then $\{x\mid x\in R^p,\, \Delta_1x=-\Delta_2\gamma_i\}$ is a flat of dimension $\leq p-2$, contradicting (3.4). Thus rank $\Delta_1=1$ so $\Delta_1=aw',\,a:(\tilde{p}-s+1)\times 1$ and $w:p\times 1$.

Since

$$\Delta \left(\stackrel{\dot{X}}{\dot{\Gamma}} \right) = 0$$

implies that

$$\Delta \begin{pmatrix} X \\ \Gamma \end{pmatrix}$$

is singular, (3.4) yields

(3.5)
$$0 < P\left\{\Delta \begin{pmatrix} X \\ \Gamma \end{pmatrix} \text{ singular}\right\}$$
$$= P\{aw'X + \Delta_2 \Gamma \text{ singular}\}$$
$$= P\left\{(a \mid I) \begin{pmatrix} w'X \\ \Delta_2 \Gamma \end{pmatrix} \text{ singular}\right\},$$

where $I: (\tilde{p} - s + 1) \times (\tilde{p} - s + 1)$, and

$$\binom{w'X}{\Delta,\Gamma}$$
: $(\tilde{p}-s+2)\times n$.

Using the fact that $s \ge 2$ and $(a \mid I)$ has rank $\tilde{p} - s + 1$, we conclude that

$$P\left\{\begin{pmatrix} w'X\\ \Delta, \Gamma\end{pmatrix} \text{ singular}\right\} > 0.$$

Since $U \equiv w'X$: $1 \times n$ has independent components, Theorem 3.1 implies that there is a y: $(\tilde{p} - s + 1) \times 1$ such that

$$(3.7) P\{U = y'\Delta_2\Gamma\} > 0.$$

Setting $v = y'\Delta_2 \Gamma \in \mathcal{V}^{\perp}$, (3.7) becomes

$$\prod_{i=1}^{n} P\{X_{i} \in F(w, v_{i})\} > 0,$$

contradicting (ii). Hence (i) must hold.

As an immediate consequence of Theorem 3.3, we obtain

THEOREM 3.4. Let $X = (X_1, \dots, X_n)$ where the $X_i \in \mathbb{R}^p$ are i.i.d., and let

 $A: n \times n, n \ge p+1$, have rank n-1 with null space spanned by $e \in R^n$. The following are equivalent:

- (i) $P\{XAX' \text{ non-singular}\} = 1$,
- (ii) $P\{X_1 \in F\} = 0$ for all proper flats $F \subset \mathbb{R}^p$.

In particular, condition (ii) is necessary and sufficient for the non-singularity w.p. 1 of the sample covariance matrix $\sum (X_i - \bar{X})(X_i - \bar{X})'$ in the i.i.d. case.

Theorem 3.3 has an interesting geometric interpretation. Let $\mathcal{S}(X) \subseteq \mathbb{R}^n$ be the random subspace spanned by the row vectors $X_{(1)}, \dots, X_{(p)}$ of X. Theorem 3.3 states that

$$P\{\dim \left[\mathscr{S}(X) \cap \mathscr{V}^{\perp}\right] \geq 1\} > 0$$

iff there exists a fixed vector $v \in \mathcal{V}^{\perp}$ and a fixed nonzero linear combination $\sum_{i=1}^{p} w_i X_{(i)}$ of $X_{(1)}, \dots, X_{(p)}$ such that

$$P\{\sum_{i=1}^{p} w_{i} X_{(i)} = v\} > 0$$
.

4. Proof of Theorem 2.1. Throughout this section V^p will denote a p-dimensional real vector space and $M^{(d)}$ (with or without subscripts) a manifold of dimension d in V^p .

LEMMA 4.1. Let $Z \in V^p$ be a random vector with $P\{Z = 0\} = 0$. Then for each $d = 1, \dots, p-1$ there are at most countably many manifolds, say $\{M_i^{(d)} | i = 1, \dots\}$, such that

$$P\{Z \in M_i^{(d)}\} > 0$$

and

(b)
$$P\{Z \in M^{(d-1)}\} = 0$$
 for every $M^{(d-1)} \subset M_i^{(d)}$.

PROOF. If $M_1^{(d)}$, ..., $M_m^{(d)}$ satisfy (a) and (b), then

$$P\{\{\bigcup_{i=1}^{m} M_{\alpha}^{(d)}\} = \sum_{i=1}^{m} P\{M_{\alpha}^{(d)}\}.$$

This shows that the collection of d-manifolds satisfying (a) and (b) is at most countable.

If v_1, \dots, v_{β} are vectors in V^p , $S(v_1, \dots, v_{\beta})$ will denote the span of v_1, \dots, v_{β} . The following result yields Theorem 2.1.

THEOREM 4.2. For every j, $1 \le j \le p$, for every $k \ge j$, and for every set of independent random vectors X_1, \dots, X_k in V^p , the following are equivalent:

- (i) $P\{\dim S(X_1, \dots, X_k) \leq j-1\} > 0.$
- (ii) For some s, $1 \le s \le j$, the following assertion, A(s), holds: there exist k-j+s vectors $\{X_{i_{\alpha}} | \alpha=1, \cdots, k-j+s\}$ and there exists $M^{(s-1)}$ such that $P\{X_{i_{\alpha}} \in M^{(s-1)}, \alpha=1, \cdots, k-j+s\} > 0$.

PROOF. Clearly (ii) implies (i). We prove that (i) implies (ii) by induction on p. This is easily verified for p = 1. For $p \ge 2$, assume the result is true for all p', $1 \le p' \le p - 1$.

To prove the result for dimension p, we use a secondary induction on j. The result is clear for j=1. For $2 \le j \le p$, assume (i) implies (ii) for all j', $1 \le j' \le j-1$. Now fix $k \ge j$ and X_1, \dots, X_k in V^p . Assume that

$$(4.1) P\{\dim S(X_1, \dots, X_k) \le j-1\} > 0$$

but that $A(1), \dots, A(j-1)$ do not hold; we will show that A(j) obtains. Since A(1) does not hold, there is some X_i , say X_1 , such that $P\{X_1 = 0\} = 0$. Using the secondary induction hypothesis for $j' \equiv j-1$ and $k' \equiv k-1$, not $A(1), \dots$, not A(j-1) implies

$$P\{\dim S(X_2,\,\cdots,\,X_k)\leq j-2\}=0$$

so

$$(4.2) P\{\dim S(X_2, \dots, X_k) \ge j-1\} = 1.$$

Combining (4.1) and (4.2) gives

$$P\{\dim S(X_2, \dots, X_k) = j - 1, \dim S(X_1, \dots, X_k) \le j - 1\} > 0$$

so

$$(4.3) P\{X_1 \in S(X_2, \dots, X_k), \dim S(X_2, \dots, X_k) = j-1\} > 0.$$

Now (4.3) can be written as

$$(4.4) 0 < \int_C P\{X_1 \in S(X_2, \dots, X_k) \mid X_2, \dots, X_k\} dQ$$

where Q is the probability distribution of (X_2, \dots, X_k) and $C = D \cap E$, where D and E are the following events:

$$D = \{\dim S(X_2, \dots, X_k) = j - 1\}$$

$$E = \{P\{X_1 \in S(X_2, \dots, X_k) \mid X_2, \dots, X_k\} > 0\}.$$

By Lemma 4.1 with $Z = X_1$,

$$C = \bigcup_{d=1}^{j-1} \bigcup_{i=1}^{\infty} \left[\left\{ M_i^{(d)} \subseteq S(X_2, \dots, X_k) \right\} \cap D \right].$$

From (4.4), there exists a d and an i such that

$$(4.5) P\{X_1 \in M_i^{(d)}\}P[\{M_i^{(d)} \subseteq S(X_2, \dots, X_k)\} \cap D] > 0.$$

If d = j - 1, then A(j) obtains with $M^{(j-1)} = M_i^{(d)}$. If $1 \le d \le j - 2$, then we have

$$(4.6) P[\{M_i^{(d)} \subseteq S(X_2, \cdots, X_k)\} \cap D] > 0.$$

Let Π denote the orthogonal projection onto $(M_i^{(d)})^{\perp}$. Clearly,

$$\Pi(S(X_2, \dots, X_k)) = S(\Pi X_2, \dots, \Pi X_k),$$

so (4.6) implies that

(4.7)
$$P\{\dim S(\Pi X_2, \dots, \Pi X_k) \leq j-1-d\} > 0.$$

Set p'=p-d, j'=j-d and k'=k-1. Since $\prod X_{\alpha} \in (M_{\mathbf{i}}^{(d)})^{\perp}$ and $\dim (M_{\mathbf{i}}^{(d)})^{\perp}=p' \leq p-1$, we can apply our original induction hypothesis.

Hence for some s', $1 \le s' \le j'$, there exists k' - j' + s' vectors $\{\prod X_{i_{\alpha}} | \alpha = 1, \dots, k' - j' + s'\}$ and a manifold $M^{(s'-1)} \subset (M_{i_{\alpha}}^{(d)})^{\perp}$ such that

$$P\{\Pi X_{i_{\alpha}} \in M^{(s'-1)}, \alpha = 1, \dots, k' - j' + s'\} > 0.$$

Now, let $M_0 = M^{(s'-1)} \oplus M_i^{(d)} \subset V^p$ so

$$(4.8) P\{X_{i_{\alpha}} \in M_0, \alpha = 1, \dots, k' - j' + s'\} > 0.$$

Combining (4.8) and (4.5), we have

$$(4.9) P\{X_1 \in M_0, X_{i,\alpha} \in M_0, \alpha = 1, \dots, k' - j' + s'\} > 0.$$

Since we have assumed that $A(1), \dots, A(j-1)$ do not hold, it follows that 1 + k' - j' + s' = k and dim $(M_0) = j - 1$. Thus A(j) obtains, completing the proof.

Theorem (2.1) follows by setting j = p and k = n in Theorem 4.2.

REFERENCES

- [1] DYKSTRA, R. L. (1970). Establishing the positive definiteness of the sample covariance matrix. Ann. Math. Statist. 41 2153-2154.
- [2] OKAMOTO, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. *Ann. Statist.* 1 763-765.
- [3] Stein, C. (1969). Multivariate Analysis I. (Lecture notes recorded by M. L. Eaton). Technical Report No. 42, Department of Statistics, Stanford Univ.

DEPARTMENT OF STATISTICS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455