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MINIMUM DISTANCE ESTIMATION IN RANDOM COEFFICIENT
REGRESSION MODELS!

By R. BERAN AND P. W. MILLAR

University of California, Berkeley

Random coefficient regression models are important in modeling het-
eroscedastic multivariate linear regression in econometrics. The analysis
of panel data is one example. In statistics, the random and mixed effects
models of ANOVA, deconvolution models and affine mixture models are all
special cases of random coefficient regression. Some inferential problems,
such as constructing prediction regions for the modeled response, require a
good nonparametric estimator of the unknown coefficient distribution. This
paper introduces and studies a consistent nonparametric minimum distance
method for estimating the coefficient distribution. Our estimator translates
the difficult problem of estimating an inverse Radon transform into a mini-
mization problem.

1. Introduction. Research in statistics and in econometrics during the
past two decades has called increasing attention to random coefficient regres-
sion models of the form

(1.1) Yi =Ai +XiBi, 1> 1.

Here Y; and A; are p x 1 random vectors, B; is a ¢ x 1 random vector and X;
is a p x ¢ random matrix. The triples {(4;,B;,X;): i > 1} are iid and (A;,B;)
is independent of X;. The distribution of (4;, B;,X;) is not known, although it
may be restricted further in some applications. The sample S, that we observe
consists of the n pairs {(Y;,X;): 1 <i <n}.

This model articulates three ideas about the data. First is the assumption
that the ith response Y; depends linearly on the ith set of covariates X;. Second
is the view that the coefficients (A;, B;) of the linear response function vary with
i. Third is the supposition that the data behaves like a simple random sample
from a large population. Thus, Y; is the response and X; is the covariate matrix
associated with the ith individual in the sample. The first two modeling ideas
are expressed by (1.1). The third idea corresponds to the iid assumption on the
{(¥;, X;,Ai,B)}.

In the statistical literature, several special cases of model (1.1) are well es-
tablished, under various labels. When each B; = b, an unknown constant vec-
tor, then (1.1) becomes a multivariate linear model with random regressors
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and homoscedastic errors. When the {X;: 1 < i < n} are not observed but the
distribution of X; is known, then (1.1) is an affine mixture model. When each
X; = x, a known constant matrix, then (1.1) includes the random effects models
of ANOVA [see Scheffé (1959), Chapter 7] and the models studied in nonpara-
metric deconvolution [see Fan (1991) and van Es (1991)].

If the first moments exist and if we write A; =a +a;, B, = b+b; witha = EA;
and b = EB;, then (1.1) can be put into the equivalent form

(12) Yi =a+X,~b +Ei,
where
(1.3) Ei =a; +)(ibi-

This is a multivariate linear model with heteroscedastic errors possessing the
structure (1.3). In the econometric literature, such models have been used
to estimate the variances of heteroscedastic regression errors and to test for
homoscedasticity. See, for instance, Hildreth and Houck (1968), Goldfeld and
Quandt (1972), Chapter 3, and Amemiya (1977). More recent surveys of work on
random coefficient regression models, their autoregressive analogs and models
combining both features include Raj and Ullah (1981), Chow (1983), Nicholls
and Pagan (1985) and Newbold (1988).

Let F4 g denote the unknown distribution of (4;, B;) in model (1.1). The main
topic of this paper is the nonparametric estimation of Fsp from the sample
S, = {(Y;,X;): 1 < i < n}. This problem is important if we wish to construct
prediction regions for response in random coefficient models, such as those used
for panel data [see Hsiao (1986)]. For instance, suppose we wish to predict the
future observable Y, ,; in model (1.1), given the sample S,, and the condition
that X, ,1 = x. To simplify the discussion, suppose that Y, , ; isscalar (p = 1). Let
A,(-,Fsp)denote the cdf of A;+B;x and let F4 g , denote an estimator based on S,
which converges weakly to F4 g in probability. Consider the prediction interval
Dy, , for Y, .1 whose lower and upper endpoints are respectively the estimated
quantiles A7 [(1 — a)/2,F4p, ;] and A7 (1 + @)/2,Fap ). If Fap is absolutely
continuous with strictly positive density, then

(1.4) PI‘[Y,H.l EDx,nIXn+1 =x] —

as n increases, for every support point x of the distribution of X,, . ;. The essential
reasoning for (1.4) is Proposition 1 in Beran (1990).

To better understand the problem of estimating the coefficient distribution
F, g, consider the simplest case, where A;, B;, X; are random scalars and (A;, B;)
has Lebesgue density f4 . Then the conditional density fy|x of Y; given X; = x is

(L5)  Frix(e19) = [ fasty - o p)dp,

the integration being over the real line. The right side of (1.5) is the Radon
transform T'(f4g) of the density f4 g [cf. Deans (1983)].
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In a seminal paper, Radon (1917) proved that, under tail conditions on fag,
there exists an inverse transform T-! such that

(1.6) fas =T (fr\x)

and gave an explicit formula for 7-!. Radon’s result suggests estimating fsp
by T-1( fr|x,n), where fy|x , is a consistent nonparametric estimator of the
conditional density fy | x. Unfortunately, this plausible approach need not yield
a consistent estimator of f4p. Like the differentiation operator, the inverse
Radon transform is not continuous in familiar metrics on nonparametric den-
sity estimators.

The extensive study of tomographic reconstruction [cf. Devaney (1989)] has
generated several algorithms for numerical inversion of Radon transforms.
These results do not solve the problem of estimating the density f4z consis-
tently, for two reasons:

(a) In tomography, the measurement process provides an accurate dis-
cretized version of the function analogous to fy|x. In our problem, we begin
with only a sup-norm (say) consistent estimate of fy | x.

(b) The tomographic algorithms handle projections of a two or three-dimen-
sional object. In model (1.1), F4 g is a distribution on R? *9, where p + q is often
much larger than 2 or 3.

These considerations suggest that estimating F, g consistently differs from to-
mographic reconstruction and requires new ideas.

If the support of F,p is compact, then the moments of F4 g determine the
distribution uniquely. Thus, we might estimate r, moments of F g from the
data, where r,, tends to oo slower than n, and then devise an estimate of Fup
whose moments match the estimated moments well. Beran and Hall (1992)
pursued this strategy in the special case where A; and B; are independent ran-
dom scalars, thereby constructing consistent nonparametric estimators of the
marginal distributions F4 and Fp. It seems very difficult to extend their mo-
ment method and its consistency result to the general case of model (1.1), where
A; and B; are not necessarily independent and p or ¢ may exceed 1. Too many
moments are then required to approximate F4 g reasonably.

This paper proposes and studies and entirely different nonparametric esti-
mator for Fsp in model (1.1)—a minimum distance estimator that overcomes
several of the difficulties just described. Let Fx denote the distribution of X;, let
P(F4p,Fx) denote the distribution of (Y}, X;) under model (1.1) and let Fx , de-
note the empirical distribution of the observed {X;: 1 <i < n}. Thekeyideais to
choose the estimator Fy g , so that the fitted distribution P(Fsp ,,Fx,,) under
model (1.1) is close to the empirical distribution of the sample S,,. Closeness is
measured in any metric d for weak convergence of probabilities on R?P tpe,

~ The consistency of the nonparametric minimum distance estimator Fup ,
under very general conditions is the main subject of Section 2.1. Section 2.2
narrows the choice of the metric d, on various theoretical and computational
grounds, to metrics generated by Ly-norms on characteristic functions. Section 3
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presents an explicit numerical algorithm for f‘A B, The consistency results in
Section 2 finesse the estimation of an inverse Radon transform in dimension
p +q. The intrinsic difficulty of this task, discussed earlier, does not entirely van-
ish: the numerical minimization of the distance criterion may encounter many
relative minima. Nevertheless, our minimum distance approach translates an
unfamiliar problem—consistent nonparametric estimation of F4 g—into a min-
imization problem for which numerical methods, such as simulated annealing,
already exist.

Section 4 treats semiparametric estimation of F4p. In the semiparametric
version of model (1.1), the unknown distribution Fy of X; is unrestricted but the
unknown distribution of (4;, B;) belongs to a parametric family {F45(6): 6 € ©}.
We give conditions and examples under which the minimum distance estimator
of 6 is n/2-consistent.

2. Consistent nonparametric estimation. This section defines the min-
imum distance estimators for the unknown distribution of (A;, B;) in nonpara-
metric model (1.1), establishes the consistency of these estimators and then
narrows the choice of the distance on computational and theoretical grounds.
Proofs are deferred to Section 5.

2.1. Definitions and consistency. Inmodel (1.1), let us introduce the follow-
ing notation:

Fy g for the joint distribution of (4;, B;), which is restricted to a nonparamet-
ric family of distributions F4 5 on RP*+9;

Fx for the distribution of X;, which is restricted to a nonparametric family
of distributions Fx on R"9;

P(F4p, Fx) for the joint distribution of (Y;,X;) under model (1.1);

d for any metric that metrizes weak convergence of probability measures on
RP+PY,

A sequence of distributions for (4;, B;) will be indicated by {Fag,»}, and simi-
larly for distributions of X;.

The functional P defined above has two interesting properties that are im-
portant for understanding the minimum distance technique to be introduced
shortly. The first of these is “continuity.”

PRrOPOSITION 2.1 (Continuity). Suppose, as n — oo,

d(FaB,n,FaB,0) — 0,
d(Fx, n,Fx,0) — 0.

Then

d[P(FaB,n,Fx,n), P(FaB,0,Fx,0)] — 0.
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The second important property is “strong identifiability.” Simple identifia-
bility of F4 g, in the usual sense employed in statistical inference, would assert
that if P(Fp,1,Fx) = P(Fap,0,Fx),then Fap 1 = Fap . Strong identifiability is
a locally uniform version of simple identifiability, described in the next propo-
sition. Let C* denote the adjoint of any matrix C and let supp(G) denote the
support of any distribution G.

PROPOSITION 2.2 (Strong identifiability). Assume that:

Fap consists of probabilities supported by a fixed compact
2.1) and {x*t: x € supp(Fy, o)} contains an open set in R for
every t #0 in RP.

If
d[P(FAB,mFX,n)a P(FAB,O,FX,O)] - 0,
then

d(FaB, n,Fag,0) — 0.

When p = ¢ = 1, so that Y;, X;, A;, B; are all real, a stronger variant of Propo-
sition 2.2 is available. Let Fz denote the possible distributions for B; when F 5
is in the family F4 p.

PROPOSITION 2.2". Assume thatp =q =1 and

. Fap is tight; Fg consists of distributions all supported
(2.2) within a fixed compact; and Fx o has a cluster point within
its support.

If
d[P(FB,n,Fx,n), P(Fapg,o,Fx,0)] — 0,
then

d(FpB n,Fap,0) — 0.

To state the minimum distance method and its corisistency, we require addi-
tional notation. Let:

" P, be the empirical measure of the sample which gives mass n~! to each of
the {(Y,’,Xi)Z 1 < i < n};
Fx , be the empirical measure of the {X;: 1 <i <n}.
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Define fv’A B,n to be the nonparametric minimum distance estimator of Fyp—
that is, any distribution in F4 g that satisfies

@3 inf d[P(Fas,Fx,n),Ba| = d[P(Fap,n Fx,n), Bu] +0p(n172).

Fpp€Fyp

We shall henceforth write this definition of f‘A B, in the following shorter form:

(2.4) Fup,n = arginf d[P(Fup,Fy, ), Py).
Fap€Fyp

PRroOPOSITION 2.3 (Consistency of fv’A B,n). Assume (2.1), or (2.2) in the case
p = q = 1. Suppose that the true distributions in model (1.1) at sample size n
are given by Fap, , and Fx, ,, where d(Fap n,FaB,0) — 0 and d(Fx, ,,Fx o) — O.
Then

d(Fyp,Fap.0) — O in probability.

The tail conditions (2.1) or (2.2) in this proposition are not surprising be-
cause Radon’s (1917) inversion theorem already requires tail conditions. The
triangular array formulation of Proposition 2.3 entails that the convergence
in probability of F4 g , to F4 g is uniform over every compact subset (in metric d)
of F4 g. Moreover, by an obvious change in the proof, the pointwise convergence
of Fop , to Fap ¢ is almost sure.

As it stands the definition of the nonparametric estimator F4p , via (2.3)
appears computationally intractable, because the infimum is taken over a pro-
. hibitively large set of measures Fp. Therefore, we next provide a feasible
variant of (2.3) this is also consistent. To understand the motivation, recall
that the estimation of F4p in model (1.1) is hard because we observe only the
{(¥;,X;): 1 <i <n}. If we could observe the corresponding {(4;,B;): 1 <i < n}
directly, then their empirical distribution would obviously be a consistent esti-
mator of F4 p—an estimator that is n'/2-consistent in many metrics. This ideal
empirical distribution is supported on at most n points—the distinct values
among the {(A;,B;): 1 < i < n}—with mass at any given support point being
an integer multiple of n~!. Perhaps, in constructing a nonparametric minimum
distance estimator, we need only minimize over such discrete distributions Fy g
rather than over the full family F4 5.

To set this up rigorously, let {m,} be any sequence of positive integers that
goes to co with n and define

C(m,) = {all F4p € F4p that are supported on at most m,,
(2.5) points, with mass at each point being an integer multiple
of m;1}.

Define the discrete nonparametric minimum distance estimator fv’A B,n to be

(2.6) arg inf d[P(Fap,Fx,,),Py]
FAB € C(mn)
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by analogy with (2.4). The minimization in (2.6) is over a space of finite dimen-
sion (p + q)m,,.

PROPOSITION 2.4 (Consistency of Fy B,n). Under the hypotheses of Proposi-
tion 2.3,

d(FAB,n,FAB’Q) — 0 in probability.
provided that m, — oo.

Note that there is no rate in this proposition on the convergence of m, to co.
The heuristic motivating the class C(m,) suggests that m, = n would be suffi-
ciently large. According to the heuristic one might then get nl/2_consistency
from Fyap, ,. Unfortunately, n!/2-consistency in general is impossible in this
problem. See, for instance, Fan’s (1991) analysis of rates achievable in the sub-
model for nonparametric deconvolution. On the other hand, Section 4 shows
that nl/2-consistency is achieved by minimum distance estimators in a semi-
parametric version of model (1.1).

2.2. Choice of the metricd. The theoretical results of Section 2.1 allow enor-
mous freedom in the selection of the metric d that determines the minimum
distance method. What is a reasonable specific choice of d? Here are several
factors to consider:

(a) To ensure consistency of f‘A B,n OT FA B,n, the distance d must metrize
weak convergence of distributions on RP P,

(b) For the sake of feasibility, the distance d should be relatively easy to
calculate. N

(c) To facilitate theoretical investigation of F4p , beyond consistency, the
distance d should be generated by a norm on a nice linear space. This approach
involves representing P, and P(Fy4 g, Fx) as elements of the chosen linear space.
[See, for instance, Pollard (1980) and Millar (1984)].

(d) A Hilbertian norm is particularly attractive from the standpoint of both
(b) and (c).

These considerations led us to define d through an L, norm on characteristic
functions. More specifically, suppose that P, and P, are any two distributions
on RP*P1 with characteristic functions ¢,(¢,u) and ¢9(¢, u), respectively, where
t € RP, u € RP1. Define

1/2
o d(Py, Py) = { [ 16,0 - a0 dc, u)}
= ”¢1 - ¢2”1 say,

where @ is a probability on RP *P? that has full support. Obviously, d so defined
metrizes weak convergence.
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The minimum distance application of this distance d requires the character-
istic function of P, and of P(Fsp,Fx, ). The former is just

Fat,w) =01 exp(i(t, Y ) +i(u, X)),
Jj=1

where (-,-) denotes the appropriate inner product. The characteristic function

~

OfP(FAB,FX,n) is

S, am,xtw) =01 pap(t, X}t)exp(ifu, X)),
j=1

where ¢4p denotes the characteristic function of F4p and * denotes adjoint.
For d as in (2.7), the definition (2.4) of the minimum distance estimator of
F4p becomes

(2.8) FAB,n = arg inf ||$n - $n,AB,X||‘

Fup €Fyp

Replacing F4p with C(m,) in (2.8) gives the corresponding definition of the
discrete minimum distance estimator Fy g ,.

3. Calculation of F4p ,. This section describes an algorithm for comput-
ing the discretized nonparametric minimum distance estimator Fyp, ,, whose
consistency was established in Proposition 2.4. Since sample size n is fixed
in this calculation, we will drop that subscript here. Once F4 g has been found,
drawing bootstrap samples from it is a matter of sampling the m support points
of F4p with replacement. Thus, given Fj g, the prediction intervals described
in Section 1 are easily found.

Calculating Fa B requires three preliminary choices:

Choice of the compact K within which the support of F4 g is assumed to lie. For
expository simplicity, suppose that p = g = 1 in model (1.1). Let y; » denote the
(j,k)th moment of F4  and let i; ;, be a consistent estimation of ;.. We suggest
defining K to be a rectangle centered at ( &1, o, fio, 1), the lengths of the sides being
4 or more times the respective estimated standard errors (fiz,0 — 713 ()*/? and
(fio,2 — Big )*/%. The Chebyshev and Bonferroni inequalities are the rationale
for this proposal.

For each positive integer r, define the least squares estimates {i, _,2: 0 <
k < r} to be the values of the {¢, 1 :} that minimize

n r 2
(3.1) 3 [Y{—Z(;)m_k,k,X{‘] .

i=1 =

By the law of large numbers, these least squares estimates are consistent for
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each fixed r, whenever the moments of (4;, B;) and of X; are finite. The motiva-
tion for (3.1) is the relationship

r

(3.2) E(YD) =Y [ ]ur-siEXE).

k=0

Choice of m, the cardinality of the support of F4 5. The value of m should be
as large as is feasible computationally, in view of Proposition 2.4. ‘

Choice of the distance d that defines F4 . Tractability, both numerical and
theoretical, favors taking d to be the L?(Q) distance on characteristic func-
tions (cf. Section 2.2). The integration with respect to @ can be handled by
Monte Carlo methods. Note that the moments of F4p are determined by the
derivatives of its characteristic function at the origin. Thus, it is intuitively
plausible that @ should have most of its mass near the origin, while retaining
full support in RP*P9,

The algoritl}\m. Once K, m and d have been chosen, as discussed above, the
algorithm for F4 g consists of four steps:

1. Let S, = {(Y¥;,X;): 1 < j < n} denote the sample. Write a module to
calculate the empirical characteristic function of S,,,

n
(3.3) ¢(t,u) =n"1> "exp(ift,Y;) +i(u, X)),
j=1
where t € R, u € RP? and (-, -) denotes inner product in these spaces.

2. Let the {(az,b:): 1 < k < m} be the m candidate support points of f‘AB,
which assigns to each of these the probability m~1. Write a module to calculate

the characteristic function of f‘A B>

(3.4) $apt,v)=m™1>" exp(i(t,as) +i(v,by)),
k=1

where ¢t € RP and v € R?. Write a further module to calculate the characteristic
function of the estimated distribution for (Y ;, X ;) under model (1.1),

n
(3.5) ¢ap,xt,w)=n"1Y " ¢ap(t,X7t) exp(i(u, X)),
j=1
where ¢ € R? and u € RP9.
3. Let QN denote the empirical distribution of a pseudo-random sample of
size N from the distribution @. Write a module to calculate the following Monte
Carlo approximation to the Ly(Q) distance between ¢ and ¢4 x,

(3.6) Bo= [ 19,0~ Fan.xtw)f dQute,u).
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4. Minimize d2 ; in step 3 over all possible choices, within the compact K, of
the m support points for F4p. The uniform distribution on the minimizing
support points is the estimator F 5. Ties are permitted among support points,
in which case the uniform probabilities are added together.

REMARKS. (a) Numerical trials by the authors and by Jingou Liu, a student
of the first author, indicate that the distance being minimized in step 4 may
have many relative minima [see Liu (1994)]. The difficulty of estimating an in-
verse Radon transform is thus translated into a possibly difficult minimization
problem. We found simulated annealing to be more reliable than Nelder and
Mead [cf. Press, Flannery, Teukolsky and Vetterling (1992)] but neither was
fool-proof in the examples we studied. Considerably more work is needed on
the algorithmic aspects of computing the minimum distance estimator of F 5.

(b) If A; and B; are assumed to be independent in model (1.1), steps 2 and
4 should be modified as follows to calculate the discrete minimum distance
estimates for the marginal distributions F, and Fp:

2'. Let the {a;: 1. <k <m} and the {b;: 1 <k < m} be m candidate support
points for F4 and Fp, respectively. F4 assigns probability m~1 to each of its
support points, as does Fp. Write a module to calculate the characteristic func-

tions of F4 and Fp,

da®) =m™1 Z exp(i(t, az)),

(3.7 k=1

$5@) =m™1> " exp(ifv, bs)),
k=1

where ¢ € RP and v € RY. Put $45(t,v) = $a(t)g5() in (3.5).

4'. Minimize d%, over all possible choices, within the compact K, of the
m support points for F4 and the m support points for Fz. The uniform
distributions on the two sets of minimizing support points are F4 an
Fp, respectively. '

4. Semiparametric models. This section treats more extensively a semi-
parametric version of model (1.1) in which the unknown distribution Fx of X;
is unrestricted while the unknown distribution of (4;, B;) belongs to a para-
metric family {Fsg(0): 6 € ©}. Here O is an open subset of R*. The distance
d is taken to be the Ly(Q)-distance defined in Section 2.2. We given sufficient
conditions under which the minimum distance estimator of 4 is n1/2-consistent
and examples where these conditions hold.

Assumptions. Write P(6, Fx) for the distribution of (Y;,X;) under the semi
parametric model, in place of the earlier notation P(F, g, Fx). Let ¢(0, Fx) denote
the characteristic function of P(, Fx), let || - | be the Lo(@)-norm defined in (2.7)
and let (6, Fx, o) denote a fixed point in the parameter space of the model. We
make the following assumptions.
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C1. (Strong identifiability). If ||¢(0, Fx) — ¢(6o, Fx,o| — 0, then 6 — 6.

C2. (Norm differentiability). If Fx = Fx o and § — 6y, then there exists a
k x 1 vector function 79 = 7(6p, Fx,0), whose components belong to Ly(Q),
such that

4.1) |6 — 60|~ 1|(6, Fx) — $(60, Fx) — (6 — 60, m0) || — 0.
C3. (Nonsingularity). There exists a finite positive constant C such that
(4.2) 1€, mo)ll = Cle|

for every t € R®.

The hypothesis in C1 implies that Fx = Fx . Convenient sufficient condi-
tions for C1 to C3 are discussed later in this section. The minimum distance
estimator 6, satisfies

(4.3) 0y, = arg inf]|, — ¢(6,Fx,»)||
o

in the sense of (2.4). The following rate-of-convergence result is proved in
Section 5.

PROPOSITION 4.1.  Suppose that conditions C1to C3 hold, that {nl/ 2(6,—60)}
is bounded and that Fx , = Fx o. Then
(4.4) B = 0p + Op(n~1/2),

under the sequence of models {P(0,,Fx, n)}.

In treating examples, the relatively abstract assumptions C1 to C3 may often
be replaced by more convenient sufficient conditions:

Sufficient conditions for C1. By Proposition 2.2, if the parametric family
{Fap(0): € O} consists of distributions supported on a fixed compact and
{x*t: x € supp(Fx, o)} contains a nonempty open set in R? for every ¢ #0, then
the hypothesis in C1 implies

(4.5) Fap(0,) = Fap(fo).
Condition C1is now equivalent to strong identifiability of the parametric family.

Sufficient conditions for C2. The fundamental theorem of calculus and the
Cauchy—Schwarz inequality yield the following. Suppose that for every (¢,u) €
RP+Pe and for every (,Fx) in a neighborhood of (6y, Fx,o) the characteristic
function ¢(t,u; 6,Fx) has partial derivatives {ng r, ;¢ uw): 1 < j < k} with
respect to 6. Suppose as well that these partial derivatives are continuous over
aneighborhood of (6, Fx, o) and that the convergence § — 6y, Fx = Fx, o implies

(4.6) ”770,Fx,j” - ||770,Fx,o,j"a 1<j< k.
Then C2 holds with 1o = {ng,, Fy o, j: 1 <J < k}.
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Equivalent condition for C3. Because 6 is finite dimensional, nonsingularity
in the sense of C3 is equivalent to linear independence of the components of 7
[cf. Pollard (1980)].

Three examples illustrate the usefulness of these sufficient conditions and
the scope of Proposition 4.1.

EXAMPLE 1. F4p(0) is a discrete distribution supported on r distinct sites
{si: 1 <i < r}in RP*9. These sites are ordered by their first coordinates, with
ties broken by second coordinate ordering and so on. The probability supported
on eachsite s; is 1/r. Here 8 = (sy, s2, . . ., s,) and the dimension of § is k = (p+q)r.

This model does not induce a classically regular semiparametric model in the
sense of Begun, Hall, Huang and Wellner (1983) because the support of F g(6)
depends on §. However, this semiparametric model is regular from the viewpoint
of our minimum distance estimate. For simplicity, suppose that p = ¢ = 1 so
that the sites in 6 = (sy,...,s;) have the form s; = (a;,b;), where a; and b; are
real. Here the characteristic function ¢(8, Fix) reduces to

(4.7 ¢(t,u,0,Fx) =11 explita; + ixtb;) exp(iux) dFx (x).
Jj=1

Suppose that [ t2dQ(¢)is finite and that u(Fx) = [ |x| dFx(x) is finite and weakly
continuous in Fy. The components of 79, r, (¢, u) are the k = 2r elements

ootu) rot / it exp(ita; + ixtb;) exp(iux) dFx(x),
Oa;
(4.8) 5
____¢:;: W _ -1 / ixt exp(ita; + ixtb;) exp(iux) dFx (x),
J

where 1 <j < r.The sufficient conditions for C2 hold by dominated convergence.

Since F4p(0) puts mass 1/r in each of the distinct sites {s;: 1 <j < r}, the
strong identifiability of the model {F4 g(6): 6 € O} is apparent. Consequently, C1
holds provided the support of Fx, ¢ contains a nonempty open set and the sites
{s;} lie within a given compact. Finally, C3 holds because the partial derivatives
in (4.8) are linearly independent.

EXAMPLE 2. {Fap(6): 6 € ©} is a canonical exponential family model sup-
ported on a fixed compact and © is the interior of the natural parameter space.
Unlike Example 1, this model F45(0) can be continuous. The induced semi-
parametric model satisfies conditions C1 to C3, by reasoning similar to that for
Example 1. Moreover, this semiparametric model is classically regular, in the
sense of Begun, Hall, Huang and Wellner (1983). The robustness of the mini-
mum distance estimate 6, against small departures from the semiparametric
model is an attractive feature of 4, when compared with possible likelihood-type
estimators for this example [cf. Millar (1984)].
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ExAMPLE 3. The support of F45(6) is discrete as in Example 1. The proba-
bility supported on the site s; is now p;, where p; > 0 and X;_; 1p; < 1. In this
semiparametric model, § = (sy,sg,...,Sr, P1,-...,Pr—1) and the dimension of ¢
is £ = (p + ¢ + V)r — 1. This generalization of Example 1 is also not classically
regular but satisfies conditions C1 to C3 for Proposition 4.1.

In Example 2, Proposition 4.1 and the differentiability in 6 of F4p(f) im-
ply that Fyp(8,) = Fap(6) + O,(n~Y/2) in supremum norm over any Vapnik—
Cervonenkis class. This reasoning breaks down in Examples 1 and 3, for lack
of differentiability. In Example 3, F45(0) is the probability measure on R?*¢
whose support points and probabilities are given by the appropriate elements
of 4. Define the double-variation norm (DV-norm) of F4 5(6) by

4.9 |FaB@llpv = 6],

where | - | is the Euclidean norm on R¥. The corresponding DV-distance be-
tween two probabilities F g(9), Fap(6'), is then ||F4 5(8) — F4p(6')|pv. Evidently,
if ||[Fa8(6n) — Fap(80)|lpv — 0, then the sites and corresponding probabilities of
F5p(6,) converge uniformly to those of F4p(6); and the DV-distance metrizes
weak convergence under hypothesis (4.1). Moreover, Fap(6,) = Fap(6) +
O,(n~1/2) in DV-distance by Proposition 4.1.

Convergence in DV-norm is weaker than convergence in the usual variation
norm ||-||y. Thatis, | F4(6,)—Fap(6o)|lv — 0implies ||F4p(6,)—Fap(8o)|pv — O,
but the converse need not hold. However, if the support points of F4 3(6,,) coincide
with those of F45(6), then the two probability metrics are equivalent. Further
properties of the DV-metric will be described in Propositions 4.2 and 4.3. Note
that replacing Euclidean norm in (4.9) with an equivalent norm generates a
norm on probabilities that is equivalent to the DV-norm.

We conclude this section by relating the DV-metric to more familiar metrics.
Let pn, n = 0,1,..., be discrete probability measures with sites ¢, 1,...,¢n,»
and with probabilities p,; = pn({cs;}). For every n, the {c, ;} are restricted to
the common compact set K.

PROPOSITION 4.2.

(a) Let || - ||gL denote the bounded Lipschitz norm on probability measures. If
nY2||uy — pollpv is bounded, then so is n*/2 ||, — po||pL-
(b) Let |-||v denote variation norm on probability measures. Ifn 12|~ pollpv
is bounded and if cn; = c; for every n, 1 < i <r, then n'/2||u, — po|lv is bounded.

PROPOSITION 4.3. Suppose that the discrete probabzlzty measures {u,} are
supported on R and have cdf’s {p,(2)}.

(a) The convergence | i, — pollpv — 0 does not imply convergence in the Kol-
mogorov metric. [That is, sup, |y, (&) — po(t)| / 0 in general.]

(b) The convergence ||pn—po|lpv — 0 does imply convergence in the Skorokhod
metric or in any other metric for weak convergence.
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(c) Let | - ||, denote the Ly-norm on cdf’s:

1/p
lanlly = { / lun(t)l"dt} .
K

Ifn/2||u, — po|lpy is bounded, then so is n'/2||u, — uo||1. The implication fails
ifp>1.

These results, together with Propositions 2.3 and 4.1, are one indication that
supremum norms over Vapnik—-Cervonenkis classes may not be appropriate in
studying the convergence of estimators for Fy g, in general.

5. Proofs.
PROOF OF PROPOSITION 2.1. It suffices to show that the chfof P(Fsp ,,Fx, )

converges to that of P(F4p ¢,Fx,0). To set this up, let A,, B, have distribution
F4p, », and abbreviate Fx , by F,. We then wish to show that

/ &) E exp{i(t, An) +i(t, xBy) } Fo(d)
converges to
/ &9 E exp{ift, Ag) + i(t, xBo) } Fo(dz)
for all¢ € RP and all u € RP9. For fixed (¢,u) defined forn = 1,2,...and n = 0, let
folx) = & Eexp{i(t,An) +i(t,xB,)}.
With this notation, we then must show that
[ ) [ fooFotas
Note that £, (x), fo(x) are continuous, uniformly bounded (by 1), and that f,, con-
verges to fy uniformly on x-compacts. Since F, converges weakly to Fy, the

tightness implies that there is a compact K. carrying all but ¢ of the mass of
{F,} and F,. Thus

‘/fnan—/fodFo

<2+

/fnan—/ fodFy

Ke KeL

52e+/ o = fol dFn + / fod(Fy — Fo)
K¢ Ke

By the uniform convergence in compacts, the first integral on the right is less
than ¢ for all sufficiently large n, while the second goes to 0 by the definition of
weak convergence. This completes the proof. O
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PROOF OF PROPOSITIONS 2.2 AND 2.2/, Let us first establish the case for real
A,B,X, as in Proposition 2.2. The hypothesis implies that the chf of P(Fyp ,,
Fx,,) converges to that of P(Fap o,Fx,0). Let Ao, By have distribution F4p o.
Since F4p is tight, Fsp , has a subsequence converging weakly; let A;, B;
denote random variables with this limiting distribution. The convergence of
the chf’s and of Fx , then implies

/eiueritAo +ixtBOF0(dx) - / eiueritAl +ixtB‘F0(dx)

for all u,t € R1. This in turn implies that for all x in the support of Fy,
(5.1) EeitAo+ixtBo _ [oitAy +ixtBy

Since the possible distributions for B; are, by hypothesis, all concentrated on a
compact, the left and right sides of (5.1) are both analytic as function of x. Hence
(5.1) holds for all real x because supp(F,) contains a cluster point; it already
held for all ¢. Hence (Ag, By) and (A;,B;) have the same joint characteristic
functions, so their distributions are identical. We conclude that every weakly
convergent subsequence of Fsp , has the same limit, namely Fp o. This is
equivalent to the convergence of Fsp , to Fap, o, proving Proposition 2.2'. The
proof of Proposition 2.2 (the vector-valued case) is similar. Proceed in the same
way as above to see that

Eexp{i(Ay,¢t) +i(xBy,t)} = Eexp{i(Ao,t) +i(xBo,t)}

for allt and allx € supp(Fy). Writing (xB;, t) = (B;,x*t) and applying the hypoth-
esis that {x*t: x € supp(¥y)} contains an open set for every ¢ #0 then implies
that (A1, B1), (Ag, Bg) have the same characteristic function, and so the same
distribution. O

PROOF OF PROPOSITIONS 2.3 AND 2.4. To prove Proposition 2.3, note first
that
d(Fx,n,Fx,) £ 0,
d[P(Fap,n,Fx,n),Pa] £ 0

by Kiefer’s (1961) inequality, applied to the triangular array here. Next, by the
foregoing display, continuity (Proposition 2.1) and the triangle inequality

d[P(FAB,naFX,n),ﬁn] ﬂ) 0.

(5.2)

Third, note that the definition (2.3) of the minimum distance estimate I?'A B,n
then forces ‘

d[P(FAB,mﬁX,n)’ﬁn] 2 0.
Applying the triangle inequality with the last display and (5.2) shows
d[P(Fap,n,Fx,n), P(Fap,n,Fx,n)] 2 0.
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Hence, by continuity (Proposition 2.1),
d[P(FaB,n, Fx,n), P(Fap,0,Fx,0)] 0.
Strong identifiability (Proposition 2.2 or 2.2) now implies
d(f'AB,m Fag 050,

proving the proposition. Almost sure convergence holds if the triangular array
formulation here is dispensed with.

The proof of Proposition 2.4 is nearly the same. Indeed, if m,—o0, the dis-
tributions in C(m,) will approximate those in F43, and so the argument just
given applies with just one more use of the triangle inequality. O

PROOF OF PROPOSITION 4.1. By the triangular array weak law of large
numbers and Proposition 2.1,

(5.3) |6 — 660, Fx,0)|| 20,

under the models {P(6,,Fx,,)}. Hence, because of C1, 8, converges in probabil-
ity to 6g. R
By the definition (4.3) of 6, and the triangle inequality,
16(n, Fx, ) — ¢80, Fx, o)l
(5-4) < ||¢(0n,FX,n) - ¢(60:FX,n)” + ”an - ¢(amFX,n)” + ”¢n - ¢(0n:FX,n)”
< 2/[n — ¢6n, Fx, )|l + 1660, Fx, n) — ¢(60, Fx, )| + 0(n~V/?).

The first term on the right side of (5.4) is bounded above by

(5.5) 2/|n — $(Gn, Fx, )|l + 21|60, Fx ) — $(6n, Fx. )|

and is thus O,(n~1/2) by the central limit theorem in Ly(Q). The second term on
the right side of (5.4) is also O,(n~1/2) by C2 because {n'/2(d, — 6,)} is bounded.
Hence the left side of (5.4) is O,(n~1/2),

On the other hand, C2 and C3 imply that the left side of (5.4) is bounded
from below by C |6’ - 00| + o |0 — 6p|). In view of the previous paragraphs, the
proposition follows. O

PROOFS OF PROPOSITIONS 4.2 AND 4.3. Immediate from the definitions
and standard properties of the other probability metrics. The counterexamples
needed can be based on the two-site distributions

ﬂn({l - n—l/2}) =1/4, Hn({2}) =3/4,
po({1}) =1/4,  po({2}) =3/4. =
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