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MAXIMUM LIKELIHOOD ESTIMATION WITH PARTIALLY
CENSORED DATA!

By AAD VAN DER VAART

Vrije Universiteit

Suppose one observes independent samples of size n from both the
mixture density f p(x|2)dn(z) and from the distribution 7. The kernel
p(x|2) is known. We show asymptotic normality and efficiency of the maxi-
mum likelihood estimator for 7.

1. Introduction. If one observes a sample of independent, identically dis-
tributed random elements Z;,...,Z, from a completely unknown probability
distribution 7, then the usual estimator for 7 is the empirical distribution
n=n 12”_ 18z;. Consider the situation wherein the observed Z,,...,Z, are ac-
tually part ofa larger number m+n of replications of some experlment Unfortu-
nately, m out of the m +n times the Z-value is not observed, but instead one gets
to see X which conditionally on Z =z has a known density p(x | z) with respect to
a fixed measure .. Hence the total set of observations is X3, ..., Xn, Z1,...,Z,;
all observations are independent and their joint distribution can formally be
written as

H/P(xi ly) dn( [ [ dnz.
i=1 j=1

(The first factor in the product is a density with respect to 4"; the second factor
is just formal notation.)

In this situation the set Z1,...,Z, clearly contains much more information
about n than the set X, ..., X,,. Nevertheless, one would certainly want to take
the information available in X3, . . . , X}, into account and obtain an improved es-
timator for 7 relative to using 7, the empirical distribution of the second sample.
Surprisingly enough there may be a considerable gain in using Xj, ..., X, even
in situations where the information (in the technical sense of semiparamet-
ric theory) in X3, ...,X,, alone is 0 and /n-consistent estimators based on the
first sample alone do not exist. For m = n use of the additional sample always
becomes visible as a cut in the asymptotic variance of the estimator.

It is thus of interest to study estimators for n based on the whole set of
observations. In this paper we show under some smoothness conditions that
the maximum likelihood estimator for n attains a y/n-rate and is asymptotically
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efficient for estimating 7 in the semiparametric sense. For a definition of this
efficiency concept, see, for example the monograph of Bickel, Klaassen, Ritov
and Wellner (1993). For general notes on nonparametric maximum likelihood
estimation, see Gill (1989).

Actually we obtain this result for a slightly simpler version of the model.
While our methods apply with inessential changes to the case that m and n are
of comparable magnitude, it is assumed for simplicity of notation that m = n.
Then the observations can be paired and the total set of observations can be
rearranged as an i.i.d. sample (X3,Z,),...,(X,,Z,) from the distribution given
formally as

/ p(x]y) dn(y)dn(z).

For definiteness let (X, A) and (Z, C) be the sample spaces for each X; and Z;, re-
spectively. It is assumed throughout that the function (x,z) — p(x|z)is (jointly)
measurable. In most of our examples the space Z is an interval in the real
line or the plane. The density of X; is (with abuse of notation) written as
plx|n) = [plx|2)dn(z).

The model as defined here has been studied by Hasminskii and Ibragimov
(1983), Bhanja and Ghosh (1988), Vardi (1989), Vardi and Zhang (1992) and
Bickel, Klaassen, Ritov and Wellner (1993). Vardi and Zhang obtain asymptotic
normality of the maximum likelihood estimator for one particular kernel p(x | z),
while Bickel, Klaassen, Ritov and Wellner (1993) and Bickel and Ritov (1993)
discuss the general model, but not the maximum likelihood estimator. In the
literature the type of distribution of each X; is called a mixture model and
sometimes a structural model. Estimation of by maximum likelihood based
on X, ..., X, alone has been considered among others by Kiefer and Wolfowitz
(1956), Laird (1978), Jewell (1982), Lindsay (1983), Heckman and Singer (1984),
van der Vaart (1988), Pfanzagl (1988) and Groeneboom (1991). This problem is
completely different from the present one.

For the present problem van der Vaart and Wellner (1993) obtained the exis-
tence and consistency of the maximum likelihood estimator for the weak topol-
ogy under a smoothness condition on the map n — p(x|7n). Moreover, by the
argument of Lindsay (1983) there is always a maximum likelihood estimator
that is a discrete distribution with at most 2n support points. Although the
condition for consistency in van der Vaart and Wellner (1993) is simple and
weak, it nevertheless fails in a number of cases of interest. In such cases the
maximum likelihood estimator may be undefined and/or inconsistent. We refer
to the paper by Bickel and Ritov (1993). We note that roughly the maximum
likelihood estimator is consistent in the present model whenever it is consis-
tent in the mixture model. Thus having the “good” observations Z;,...,Z, in
addition to the “bad” observations Xj,...,X, causes no trouble for the maxi-
mum likelihood estimator if it was not in trouble already. Conversely, the fact
that the maximum likelihood estimator based on the “good” observations (the
empirical distribution of the Z’s) behaves very well, does not guard against bad
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behavior of the maximum likelihood estimator in the model with both “good”
and “bad” observations.

The organization of the paper is as follows. In Section 2 it is shown that the
maximum likelihood estimator is an M-estimator in the sense that it satisfies
an (infinite) set of equations. Furthermore, a theorem on asymptotic normality
of infinite dimensional M-estimators is formulated in general and next specified
to the present problem. Section 3 contains the main results of the paper. It is
explained how the general results of Section 2 can be applied and several results
give conditions that are relatively easy to check. One condition that appears
harder to verify by elementary methods is discussed separately in Section 4. In
Section 5 and 6 we discuss concrete examples. Some proofs have been omitted,
but can be found in a technical report.

Our main method to prove asymptotic efficiency of the maximum likelihood
estimator for functionals of the type [ hdn (for a fixed h such as an indicator)
is to write up and invert a convenient collection of likelihood equations, one
of which is indexed by the functional of interest and the others of which are
chosen for technical reasons. This approach is explained in Section 3.

2. The likelihood equations. For a measure 7 write n{z} for the mass
that 7 gives to the one-point set {z}. Given fixed (observed) values (x1,21), ...,
(%n,2,) a maximum likelihood estimator 7, is any probability distribution on 2
that maximizes the “likelihood function.” For our purpose this is the function

n— lik(n) = [ p(x: |n) [ [ nfz)}-

i=1 Jj=1

Van der Vaart and Wellner (1993) show under some weak conditions that 7,
exists (in other words, the supremum is achieved), is consistent for the weak
topology and can be taken finitely discrete with no more than 2n support points.
(Since the maximum likelihood estimator may be nonunique, the last does not
mean that the maximum likelihood estimator is necessarily discrete.)

Our proof of asymptotic normality proceeds by showing that any maximum
likelihood estimator solves a collection of likelihood equations. Next the totality
of equations is treated as a map of the parameter space into a function space, to
which a general theorem of infinite-dimensional M-estimation can be applied.
The latter is a straightforward extension to infinite dimensions of results due
to Huber (1967) and Pakes and Pollard (1989) and results of this type can also
be found in Bickel, Klaassen, Ritov and Wellner (1993).

To set up a set of estimating equations consider a class }' of bounded func-
tions h: Z — R. (The prime notation is used in this section to separate the
present class of functions from a more fundamental class of functions introduced

‘later.) Then for each fixed probability measure 7, each h and every sufficiently
small real number |¢|, we can define a probability measure 7; by

dn = (1+t(h — Ezh)) d7.



MLE WITH CENSORED DATA 1899

For 77 equal to the maximum likelihood estimator evaluated at fixed data points,
the map ¢ — lik(7;) is maximized over a neighborhood of 0 at ¢ = 0. Take the
derivative with respect to ¢ at £ = 0 to obtain a likelihood equation. Varying h
over the class J{’ yields a large class of equations.

In the present case the equations take the following form. Define operators
A, and [, by

A, h(x,2) = 1,h(x) + h(z)

_ JRp(x]y) dnly)

h(z).
p(x|n) +hee)

Then the maximum likelihood equation for the one-dimensional submodel ¢ —
1 i1s W, (n)h = 0 for W,, given by

Wo(h = P, Aph — P, Anh.

Here 13n is the empirical distribution of the observations, P, is the distribution
of (X, Z) and we write Pf for [ f dP. It can be checked directly from the formulas
that any maximum likelihood estimator 7, indeed satisfies W,,(7,)h = 0. Alter-
natively, it is helpful to note that A, is the “score operator” in a missing data
problem. View each observed data value (X, Z) as arising from a triple (X,Y,Z)
in which (X,Y) is independent from Z and X given Y has conditional density
p(x|y). Score functions for the unobserved data (X,Y, Z) take the form

) +h@) = 2| logp(x|y) dn(y)dnz).
Ot|,-o

The operator A, turns these into score functions for the model of the observed
data through

ANX,Z)=E,(h(Y)+h(2)|X,Z).

Again these formulas can be checked directly for the present case. Alterna-
tively, connections of this type can be deduced very generally when using an
Ly-type definition of scores (as derivatives of root densities) and are intimately
connected with asymptotic efficiency theory. From the Ly-theory we borrow the
notation for the “adjoint” operator

Ig(x) = / g(p (x| 2) dpu(z),

which maps functions of x into functions of z. According to semiparametric
efficiency theory a best estimator sequence T), for the “parameter” n — [ hdn

- satisfies that \/n(T, — [ hdn) is asymptotically normally distributed with zero
mean and variance

o2(h) = / (A, +1°1,)"(h — E,h)] 2 dP,,.
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We do not discuss the efficiency theory in this paper, but show that T}, = [k d7,
is asymptotically mean zero normal with the given variance.
Define W as the expected version of W,, under the true parameter 7y. Thus

Wn)h = PyAyh — Py Ak,

where here and in the sequel the subscript 0 is short for . Since A, is a
conditional expectation operator, the map A — A,h(x,y) is bounded if 4 ranges
over a uniformly bounded set of functions #'. Thus both n — W,(n) and n —
W(n) can be viewed as maps into the space [*°(H’) of all uniformly bounded
functions z: H' — R. The domain of these two maps is the set P of all probability
distributions 7 on Z. These will be identified with maps

n:h—)/hdn,

evaluating the expectations of a class H of functions A: Z — R. This second
class H need not have any relationship to the class ' introduced earlier. Ba-
sically, the class H' is chosen for convenience, to make the proofs work. On
the other hand, the choice of the class H determines the nature of our limiting
results, We shall obtain asymptotic normality of v/n([d7j, — [ hdn) for every
h € H (uniformly in K).

It is assumed that the functions in J are also uniformly bounded. In that
case W, and W can be viewed as maps

W, W,: P CI®(H) — I°(H).

We make specific choices for 5 and 3’ Jater on. The two [*-spaces are both
equipped with the uniform norm. In the case of the first this is the norm |z||5
= sup{|z(h)|: h € 3}. The proof of asymptotic normality of \/n(7, — 1) is based
on the following general result.

Let W, and W be random and fixed maps as in the last displayed equa-
tion that satisfy the following three conditions. For every sequences ¢, | 0 and
1n, — Mo Within the domain of W,, and W,

2.1) | suﬁ) |lvVR(W, — W)(n) — v/n(W,, — W)(no)|| —p 0,
ln = noll < &n

(2.2) VW, — W)(ne) ~ G,

(2.3) W(n,) — W(ne) = Won — no) + o(||m — moll).-

Here in the third condition W, is required to be a linear map with domain the
linear span of the domain P of W,, and W. The convergence in the second condi-
tion is weak convergence in [*°(}'), where we use the definition of “convergence
inlaw without defining laws” due to Hoffmann-Jgrgensen (1984) to avoid mea-
surability problems. [See Dudley (1985) for a partial review.] Similarly, in the
first condition the convergence is understood to be in outer probability if the
variables are not measurable.
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THEOREM 2.1. LetW,,W: P C l°°(9£) — [°°(H') be maps such that (2.1)~(2.3)
hold for a linear and one-to-one map Wy: lin? — 1°°(H") whose inverse is con-
tinuous on the range of Wy. Let 7, be random maps into the domain P of W,
and W with W,(,) — W(no) = op(n=Y2). If §j, —p no in 1°(H), then +/n(7, — no)
converges weakly to —Wy 'G. In fact, one has Wo/n(#, — o) = —v/n(W, — W)(no)
+ op(1).

The previous theorem gives a fair amount of flexibility to choose the classes H
and H'. The three main conditions to be verified are the differentiability (2.3) of
W, the continuity of the inverse W, and the tightness properties (2.1) and (2.2)
of the processes /n(W, — W)(n). For our special choice of W,, the latter conditions
can be expressed in the language of empirical process theory; cf. Dudley (1984).
Condition (2.2) is exactly that the class {Aoi’{'} be Py-Donsker. Condition (2.1)
can be checked with the help of exponential inequalities, but for our purpose it
suffices that it is implied by the class of functions {A,h: ||n — no|| <€, h € H'}
being Donsker for some ¢ > 0 plus a second moment condition.

Informally the derivative of W can be derived as follows. For 1 ~ 7,

(W(TI) - W(T]()))h = — /Anhd(P,,, — Po)
~ - / Aohd(P, — Po)
= - /(I+ Xlg)hd(n —no) = Wo(n — no)h,

where we use the definition of Ay and Fubini’s theorem in the third step. (Alter-
natively, this step is an immediate consequence of the fact that /* is the adjoint
of both /,, and [;.) These remarks lead to the following reformulation of the
previous result.

COROLLARY 2.2. Let H and H' be classes of bounded functions h: Z — R.
Assume that for some € > 0,

(2.4) {Anh: h € H', ||n — nollsc < €} is Po-Donsker.

Furthermore, assume that as n — ng within the range of the estimators 1,

(2.5) sup Eo[A,h(X,2Z) - Aoh(X,2)]* — 0,
heXH

SUpy ¢ g¢ | [1*(15 = lo)h dln — nol]

— 0.
supy, ¢ 5¢| SR dn — nol|

(2.6)

" Moreover, assume that for every probability measure 1y, 73,

supy, ¢ g¢ | [ +1*1)h d(ny — 1o)|

>e>0.
Supheﬂ{lfhd[nl — 7l

(2.7
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Then /n(7, — no) converges under ng to a tight Gaussian process in 1°°(H), pro-
vided 7, is consistent for 1o in this space. In particular, the sequence /n([ h d,
— [ hdng) converges under ng in distribution to a zero-mean normal distribution
with the optimal variance o2 (h) for every h € .

3. Main results. This section gives sufficient conditions for asymptotic
normality of the maximum likelihood estimator that are more readily verifiable
than those of the previous corollary, although they are still sufficiently abstract
to apply to a variety of examples. The main idea is to translate the conditions
of the previous corollary into simple conditions on the score and information
operator. It will be required that the operators /* and [, are themselves con-
tinuous or compact with respect to a suitable norm, for which, moreover, the
dependence n — [, is continuous. Appropriate norms for our examples will
be specified in the next sections and typically involve Lipschitz or variational
norms, the uniform norm being too weak. These choices correspond to the fact
that/, and [* are often smoothing operators: they transform bounded functions
h: Z — R and g: X — R, respectively, into smooth functions on the other space.
This is immediately clear if the kernel p(x |z) is smooth in either z or x, but is
even true for such irregular kernels as the uniform ones.

A first result of this type is as follows. In all our examples the total variation
distance between the probability measures with densities p(-| z1) and p(- | z2)
is proportional to the Euclidean distance ||z; — z3||. As a consequence [* trans-
forms bounded functions into Lipschitz functions and this operator is compact
with respect to a lower-order Lipschitz norm. Given a semimetric space Z, let
C*(Z) be the set of all uniformly bounded functions 4: Z — R that are Lipschitz
of order « € (0, 1]. Equip this space with the norm

|h(z1) — h(z2)|
Al = ||Pllo V su ————,
I17]lec = 17| &’ T denze

Recall that an operator from one normed space into another is compact if it
maps bounded sets into precompact sets. Equivalently, A: X — Y is compact if
the sequence Ah, is relatively compact in Y (every subsequence has a further
converging subsequence) for every sequence &, in X with ||A,|| < 1.

LEMMA 3.1. Let Z be a semimetric space and assume that
/ |p(x]21) —p(x|22)| dulx) < d*(zy,22),
for some o > 0. Then the range of I* is contained in C*(2) and I*: [®°(X) —
C* (Z) is continuous. Consequently, if Z is totally bounded, then the operators

1*: 1°°(X) — CP(2) and 1*1,: 1°(2) — CP(2) are compact for every 3 < a.

PRrOOF. Since [* is a conditional expectation operator, we have ||I*g|lcc <
lglloo for every g. The continuity assertion is an immediate consequence of this
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and the inequality
|I*g(z1) — I"g(22)| < / |g(®)||p(x]21) — p(x|22)| dulx).

To prove the second assertion, let g, be a sequence with || g,||co < 1 for every
n. Then ||I*g,||« is uniformly bounded by continuity of {*. By an extension of
the Arzela—Ascoli theorem, this implies that the sequence l*g, is precompact
in lower-order Lipschitz norms. Hence [* is compact for the bounded Lipschitz
of order 8 < a.

The composition of a compact and a continuous operator is always compact, as
is easy to see. Therefore the final assertion follows from the second assertion and
the observation that /,, is a conditional expectation operator, hence is continuous
for the uniform norm. O

For verification of the condition that W; is continuously invertible, we will
need the fact that the operator I +[*lj is continuously invertible for a suitable
norm. A well-known result from functional analysis asserts that the sum of a
continuously invertible operator (such as the identity) and a compact operator
from a Banach space into itself is Fredholm. In particular, it is onto and has
a continuous inverse if and only if it is one to one. We use this result for the
operator I + [*, which is usually one to one. Recall that u is the dominating
measure for the set of densities x — p(x|z).

LEMMA 3.2. Ifu < Py, then the operator I +1*1y: [°°(Z) — 1°°(Z)is one to one.

Proor. Suppose that (I +[*ly)h = 0. Since [*[ is a self-adjoint, positive-
definite operator of the Hilbert space Ly(1) into itself, the spectrum of the
operator I + [*ly is contained in the interval [1,00) and I + I*[, is certainly
continuously invertible with respect to the Hilbert space norm. In particular, it
follows that 2 = 0 in the Hilbert space sense, which means almost surely under
no. Then loh = 0 almost surely under P, by the definition of [, and therefore
almost surely under u by assumption. Finally, 2 = —I*[yh is identically 0 by the
definition of [*. O

It was seen that the operator [* has good properties with respect to the
bounded Lipschitz norm ||-||, under fairly weak conditions on the kernel p(x | 2).
Since the norm || - ||, is not strong enough for all applications, in particular when
Z is higher dimensional, the main result of this paper will be formulated for a
general norm, denoted ||-||. Let (H, || - ||) be a Banach space of bounded functions
h:Z — R and let H; be its unit ball {A: |&|| < 1}, Special choices of H are
made later on with a minimal requirement being that the operator I*/, maps
H into itself. The following theorem assumes in addition that /*/; is compact
and that the map n — [*[, is continuous in the operator norm of H. Together
with two weak regularity conditions these conditions suffice for verification of
(2.5)—(2.7). Unfortunately, it appears difficult to express condition (2.4) that the
class of functions A, 4 be Donsker in simple conditions on the kernel p(x | z). This
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condition is simply restated in the following result and is addressed separately
in a later section.

THEOREM 3.3. Let (H,| - ||) be a Banach space contained in [°°(Z) such that

I lloo < II - | and as |ln — nollm, — O,
(3.1) {A,h: h € Hy,|n —nollw, < €} is Po-Donsker,
(3.2) u < Py,
3.3) I*ly: H — H is compact,
(3.4) sup |(I, —Ilp)h| — 0, Poy-a.s.,

h € H;
(3.5) sup ||I*(1, — lp)h| — 0.

heH,;

Then the conditions of Corollary 2.2 are satisfied for H' = H = H,. Consequently,
if |Tn — mollg, — O in probability under ng, then /n(i, — no) converges weakly
in the space [*°(H4) to a tight Gaussian variable, whose marginals have zero
means and variances afm(h).

Proor. By (3.2) and the preceding lemma, the operator I + [*I, is one to
one. Combination with the compactness (3.3) shows that I + [*]y: H — H is onto
and continuously invertible. Thus CH; C (I +1*ly)H; for the positive constant
C = ||(I +1*1p)~1||~1. This immediately yields the continuity (2.7) of Wo‘l.

Next (3.5) is a different way of saying that I*(I, — [()H, C e,H; for some
sequence ¢, with €,, — 0 as n — 7. Hence the quotient in (2.6) is bounded above
by &,.

Finally, (2.5) follows from (3.4) and the dominated convergence theorem. O

Clearly, in a particular application the norm || - || should be chosen so as to
satisfy conditions (3.1) and (3.3)-(3.5) at the same time. It is of interest that
the last three conditions can be relaxed considerably if the norm is chosen such
that the unit ball H; is totally bounded for the uniform norm. In view of the
Arzela—Ascoli theorem this would be the case, for instance, for |- || stronger
than a bounded Lipschitz norm on a compact metric space Z.

LEMMA 3.4. Suppose that in the situation of the previous theorem the unit
ball H, is totally bounded for the uniform norm. Then (3.3)-(3.5) are implied
by: for all h,

3.3) 1*: I°°(X) — H is continuous,
(3.4") |(Iy = lp)h| — 0, Py-a.s.,

n
(3.5 [|1*(1, = lp)h|| — O.

More precisely, condition (3.3') implies (3.3) and under (3.3') conditions (3.4)
and (3.5) are implied by (3.4') and (3.5'), respectively.
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Proor. The assumption that H, is totally bounded in [°°(Z) is a different
way of saying that the identity I: H — [°°(Z) is compact. Next Iy: [°°(2) — [°°(X)
is continuous, because it is a conditional expectation operator and I*: [*°(X) — H
is continuous by assumption (3.3’). The composition I*I4I: H — H of one compact
and two continuous operators is compact.

Since each of the operators /,, is a conditional expectation operator, the differ-
ence I, —ly: 1°°(2) — 1°°(Z) is continuous with norm bounded above by 2. Hence

| 0*(2y — Lodhy = 1*(Ly — Ldha|| < ||| 1Ly = LoX(R1 — Ro)|loo < ||2*|12]|R1 — P2l|oo-

Take an e-net H, over the unit ball H; for the uniform norm. Then
sup [|I*(ly —loh| < sup [|I*(Ly — o] + 2¢| 1"
h€H; heH.

The first term goes to 0 for every fixed ¢ by (8.5’). The second can be made
arbitrarily small by total boundedness of H;. Thus (3.5) follows.
It can be argued in a similar manner that (3.4) follows from (3.4’). O

A set of functions that is totally bounded for the uniform norm can have dis-
continuities at at most finitely many points in Z. This makes the assumption
of the preceding lemma that H; be totally bounded for the uniform norm in
certain situations unattractive. For instance, only finitely many indicator func-
tions A = 1(_ o, s can be included in H;. This has as a consequence that the final
result asserts asymptotic normality of [ A df, uniformly over a certain set of
smooth functions A and a finite set of indicator functions, but not uniformly over
all indicator functions. Since typically the finite set of indicator functions can
be varied, asymptotic normality for all such functions can be proved, albeit not
uniformly. Thus it is for instance obtained that the (normalized) marginals of
the cumulative distribution function 7,(¢) converge weakly, but the question as
to whether the distribution function converges weakly as a process is left open
by the previous lemma. In contrast, Theorem 3.3 can give a positive answer to
this question, provided its stronger assumptions can be checked.

A second lemma strengthens the assumption (3.3’) to compactness of 7*.
While the continuity (3.3') turns out to hold in all our examples, compactness
(for a sufficiently strong norm) typically requires more smoothness of the ker-
nel p(x|z) in z. Compactness allows us to drop the continuity condition (3.5) or
(3.5") on n — I*1, altogether.

LEMMA 3.5. In the situation of the preceding theorem or lemma, suppose
that the operator I*: [*°(X) — H is compact and || - ||oo < || - || Suppose that (3.2)
holds. Then (3.5) follows from (3.4) and (3.5') from (3.4").

Proor. Take any sequences A, in H; and 7, — 7. By the assumed com-
pactness of [*, the sequence I*(I,,, — o)k, is relatively compact for || - ||. Its limit
points can be identified from pointwise convergence. Now

I*(1n, — lo)hn(z) = / (In, — Lo)h(x)p (x| 2)dpu().
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Under (3.4) the integrand converges to 0 for Py-almost all x, hence for ;-almost
all x. By the dominated convergence theorem the integral converges to 0 for all
fixed z. This concludes the proof that (3.4) implies (3.5).

To prove the same implication, but with primes, apply the same argument
with h, = h fixed. O

4. Donsker classes. Unfortunately, there appears to be no simple way of
expressing the condition (3.1) that the class {A,H;: ||n — no|| < €} be Donsker
directly in properties of the kernel p(x|z). However, examples suggest that
the Donsker property is often satisfied. In this section we discuss two general
approaches toward verifying the condition. The first method is applicable if the
kernel x — p(x|z) is smooth in x, while the second is applicable in situations
where the random variables (X,Y) ~ p(x|y)dn(y) are positively dependent or
satisfy a related condition. We note that, while these two approaches cover all
our examples, recent advances in empirical process theory have yielded many
other potentially useful characterizations of Donsker classes.

4.1. Smoothness of x — l,h(x). Itiswell known that classes of smooth func-
tions on a (bounded or unbounded) subset of Euclidean space are Donsker
classes. To define such classes, let for a given function g: X ¢ R? — R and
a>0,

bl

Dkg(x) — D*g(y)|
« = max sup|D¥g(x)| vV max su |
I&lle = max, sup DGl v ma, Sop e Ll

where the suprema are taken over all x,y in the interior of X with x # y, the
value | o is the greatest integer strictly smaller than o and for each vector & of
d integers D* is the differential operator

k ok

- k1 kd ’
Oxt -+ - Oxf

where k. = L k;. Note that for o < 1thenorm ||-| o is simply the Lipschitz norm of
order a introduced earlier, while for larger values of o the norm involves bounds
on the partial derivatives of g together with a Lipschitz norm on the partial
derivatives of highest order. Let C§(X) be the set of all continuous functions
g: X — R with ||g]lo < M. Giné and Zinn (1986) show that the class C1(R) is
P-Donsker if and only if £52 _  PY/2[j, j + 1) < co. The following extension of
their result is proved by van der Vaart (1993).

LeEMMA 4.1. Let X = |J}2,I; be a partition of R? into bounded, convex sets
whose Lebesgue measure is bounded uniformly away from 0 and oo. Let G be
a class of functions g: X — R such that the restrictions g, ; belong to C}i‘,_,j(Ij)
for every j and some fixed oo > d/2. Then G is P-Donsker for every probability
measure P on X such that $52 ,M ;P'/*() < co.
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The given tail condition on P is fairly weak. For instance, for a subset of the
real line, a partition in cells I; = {x: j < |x| <j + 1} and M; = Jj*, it suffices that
J x| dP(x) < oo for some m > 2k + 1.

Thus, for the class {l,h: h € Hj, ||n — no|| < €} to be Donsker, a uniform
a-smoothness condition on the functions /4 for some o > d/2 will usually
suffice. Under appropriate conditions on the map x — p(x | z), straightforward
differentiation yields

(4.1) l 2 (x) = cov, (h(Z) logp( |Z)>,

where for each x the covariance is computed for the random variable Z having
the (conditional) density z — p(x|z)dn(z)/p(x|n). Thus, for a given bounded
function A,

J16/0x)log p(x|2)|p(x dn(z)

fp(x |z)dn(z)
Dependent on the function (9/0x;)log p(x|z), this leads to a bound on the
first derivative and hence on the Lipschitz constant of order 1 of the function

x — lyh(x). If X is an interval in R, this is sufficient for applicability of the
previous lemma.

o
‘%znhu)} < oo

EXAMPLE 1 (Normal deconvolution). Let p(x|z) = z; '¢(z; *(x — 21)) be the
normal density with mean z; and standard deviation z,. Then (8/9x) log p(x | z)
= -z, ~2(x—z1). If n(6 <zp <6~1) = 1for some § > 0, then the preceding argument
gives the estimate

23’k — 21l(ey M x —20)) dn@) _ [ x— 2|
fzz_lqﬁ(zz_l(x —z1)) dn(2) - 6222

The right side is bounded by §=*(lx| + [ |z1|dn(2)). One possible conclusion is
that the set of functions /,i formed by letting ~ range over all functions with
|12l < 1 and 7 range over all probability measures on a fixed compact subset
of R x (0, 00) is Donsker.

0
'8—xilnh(x) < dn(z).

Similar arguments apply if X is a subset of a higher-dimensional Euclidean
space, although it becomes necessary to consider higher-order derivatives. For
instance, in dimension 2 any Lipschitz condition on the first-order partial deriva-
tives suffices (o > 1), while in dimension 3 we need a Lipschitz condition of order
>1/2 on these derivatives (oo > 3/2). Straightforward calculations show that

0?

2
T O lh(x)-covx(h(Z) o 0%, logp(x IZ)>

0
—COVy (h(Z)B_xi log p(x [Z))Exa—xj log p(x|2)

0 0
— cov, (h(Z)B_xj log p(x| Z))E"a_xl logp(x|Z).
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This expression can be bounded as before.
ExaMPLE 2 (Exponential family). Let p(x|z) = ho(x)c(2) exp(z’'t(x)) range

through a k-dimensional exponential family, where x ranges over a convex sub-
set of either R2 or R3 and ¢ is sufficiently smooth. Then

o k()] < 2B +4E,|Z/ 8‘9

l

0
E.|Z|'
xl | I—a it(x)'

8
6x, xj t(x)
These functions are appropriately bounded for application of the previous
lemma if ) ranges over all distributions on a given compact set and the partial
derivatives of ¢ behave well. Of course, the smoothness of ¢ can be assured by
parameterizing the exponential family in its standard form with #(x) = x.

4.2. Functions of bounded variation. In this section we assume that Z and
X are intervals in the real line. It turns out that in many examples the score
operator has the following property: if the function z — h(z) is nondecreasing,
then so is x — I,h(x). In view of the fact that [,A(X) = E,(h(Y) | X) where (X,Y)
has density p(x | y)dn( y), this property is equlvalent to the set of conditional
distributions PY | ¥ =% being stochastically increasing in x.

Since /,, also maps bounded functions into bounded functions, it follows that
l, is contmuous for the variation norm. For a function A: Z — R define the
bounded variation norm as

IAlsev = Al V sUp Y [AE: 41 — Alt:)],
i

where the supermum is over all partitions ¢y < f; < --- <, of Z. Let BBV(2)
and BBV;(2) be the Banach space of all functions with ||| ggy < oo and its unit
ball, respectively. Then for every /, with the monotonicity property as in the
preceding paragraph,

1, BBV1(Z) C 2 BBV3(X).

It is well known that every set of functions that is of uniformly bounded varia-
tion is universally Donsker. Consequently, under the monotonicity property as
in the first paragraph, condition (3.1) is verified for any subset H; of BBV1(2).
More generally, the same conclusion is valid in any situation where the opera-
tors /,: BBV(Z) — BBV(X) are equicontinuous.

For smooth kernels x — p(x|z) monotonicity of x — I, h(x) for a given mono-
tone k is most easily checked from formula (4.1) for the derivative. Since two
increasing functions A(Z) and f(Z) of the same variable are always positively
correlated, it follows that the derivative of /,h(x) is nonnegative whenever the
function z — (9/0x)log p(x|2) is nondecreasing.

EXAMPLE 3 (Unimodal deconvolution). Let p(x|z) = p(x — 2) for a smooth,
strongly unimodal density p. Then (8/8x)log p(x|2) = p’/p(x — 2) is increasing
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in z, because (by definition) log p is concave. Thus condition (3.1) is valid for
H, c BBV(2).

The smoothness condition on p can be relaxed by a direct argument, so as to
cover also the double exponential density.

ExAMPLE 4 (Exponential family). Let p(x|2) = ho(x)c(z) exp(z¢(x)) be a one-
dimensional exponential family. Assume that ¢ is differentiable. Then the func-
tion (0/0x)log p(x | 2) = hy/ho(x) +2t'(x) is increasing if #/(x) > 0 and decreasing
otherwise. It follows from a slight modification of the preceding argument that
condition (3.1) is satisfied for H; C BBV(Z) provided ¢’ has only finitely many
sign changes. The latter is certainly true if the exponential family is taken in
its standard form with #(x) = x.

For such kernels p( - | z) as corresponding to the uniform distribution on [0, 2]
or the uniform distribution on [z,z + 1], the function x — [, h(x) is not differ-
entiable for every 7, but the basic monotonicity property is still valid. More
generally, we have the following result.

LEMMA 4.2. Let p(x|2) = c(@)ho(x)1{d(x) < z < ¥(x)]} for fixed functions
¢, ¢: R — R that are either strictly increasing or else identically —oo or +00 and
strictly positive ho. Suppose the map z — h(z) is nondecreasing. Then the map
x — l,h(x) is nondecreasing on every interval where p(x|n) > 0 for every x. The
same is true if one or both of the inequalities in the definition of p(x | z) is replaced
by a less than or equal sign.

ProOF. Fix x; < x9. Each value l,,h(x) is a weighted average of h over the
interval (¢(x), ¥(x)). If ¥(x1) < ¢(x9), then the intervals are disjoint and I, 2(x;)
< I, h(xy) trivially. Otherwise write

Jipta, v P€ AN Jigap, wiapr €41

Jeptay, ween €8N Jipian), wiegn €M
f(wm) e 1€ AN Sy, iy € 9N
f(«p(xl) wa) €O Jigag), pan €N

L,h(x3) =

This expression has the form A\ + A3(1 — \), where A5 and A3 are weighted
averages of i over the intervals (¢(x2), ¥(x;)] and ((x1), ¥(x5)], respectively.
The expression is not smaller than 45, which is bounded below by A1 p + Ag(1 — 1)
for every p € [0, 1] and weighted average %, over the interval (#(x1), #(x2)]. This
can be made equal to /,h(x;) by appropriate choice of x and A,.

In the above argument the possibility that one of the denominators is 0 is
neglected. By the assumption that p(x; | n) > 0, only one of the two denominators
in each [, h(x;) can be 0. In that case A and x may be 0 or 1 and the equality
I,h(x1) < I h(x2) can be checked easily. O

ExAMPLE 5 (Uniform scale). For p(x|z) = (1/2)1{[0,2]}(x) the set of values
x where p(x|n) = f[ . oo)(1 /z)dn(z) is positive is an interval of the form (0, x)]
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which may or may not include its right endpoint. Thus /,, maps an increas-
ing function 4 into a function that increases on (0,x()] and is identically O
afterwards. If |As|| < 1, then the variation of /4 is at most 2. Hence the
maps [,,: BBV(2) — BBV(X) are equicontinuous, and (3.1) is satisfied for every
H 1 C BBVl(Z)

EXAMPLE 6 (Shifted uniform). For p(x|z) = 1{(z,z + 1)}(x) the set on values
x where p(x|n) = n(x—) — n(x — 1) is positive is a union of intervals. For all 5
that are sufficiently close to some 7 that charges every interval of length 1, we
have p(x|n) > 0 for all x. For such 7 the operator /,,: BBV(Z) — BBV(X) is norm
bounded by 2, and (3.1) is satisfied for every H; C BBV(2).

5. Smooth kernels. Given sufficient smoothness of the kernel p(x|z) in
z, the conclusion of Lemma 3.1 can be strengthened. The following lemma will
be suitable for dimensions 1 to 3. For higher dimensions additional smoothness
would be helpful, but we omit a discussion.

LEMMA 5.1. Let Z be a convex subset of R and assume that the maps z
— p(x|2) are differentiable for each x with partial derivatives (8/0z;)p(x|z)
satisfying

0 9 , )

/’é(z—ip(xIZ)

for all z,2' in 2 and fixed constants K and o > 0. Then 1*: [°(X) — C1**(2) is
continuous. Consequently, if Z is totally bounded, then the operator I*: [*°(X) —
C*8(2) is compact for every (3 < o

dulx) <K

5.1. One dimensional Z. In this subsection suppose that Z = [a, b] is a com-
pact interval in the real line. Our aim is to verify the conditions of Theorem
3.3 for H equal to the Banach space BBV (2) of all uniformly bounded functions
of bounded variation equipped with the bounded variation norm || - ||ggy. This
norm satisfies

lAllsBY < (B — @)V 1)|Al1,

where ||k||; is the bounded Lipschitz norm of order 1. If the kernel p(x | 2) sat-
isfies the conditions of the previous lemma, then *: I°°(X) — C%(2) is compact
for the Lipschitz norm, which is stronger than the bounded variation norm.
Therefore, certainly *: [*°(X) — BBV(Z) is a compact operator. Basically, this
leaves only the Donsker condition (3.1) of Theorem 3.3 to be checked. We have
the following result.

THEOREM 5.2. Let Z = [a, b] be a compact interval in the real line and let the
kernel p(x | z) satisfy the conditions of the previous lemma. Furthermore, assume
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that u < Py, that the true underlying distribution ng has no discrete component
and that {1,BBV1(2): |[n—no|| < €} is Po-Donsker for some € > 0. Then the condi-
tions of Theorem 3.3 are satisfied for Hy = BBV1(2). Consequently, the maximum
likelihood process /n(7, — ng9) converges weakly to the given Gaussian distribu-
tion in [°°(H4), provided 7, is consistent for the weak topology.

Proor. Inview of Lemmas 3.5 and 5.1 it suffices to verify (3.4). For fixed x
let F,, be the distribution function F,(z) = f[a 4P(x|8)dn(s). By partial
integration

‘ /h(z)p (x|2) dn(z) — /h(z)p (x]2) dnolz)
< |h®)| | (8) — Fry (8] + |h@)| |Fy{a}] + |Bllgev]|Fy — Fry |

Here |F,, — F, ||oc — 0, because z — p(x|z) is continuous (and hence bounded)
and 7o has no point masses. Thus the numerator of /,h(x) converges to the
numerator of [ph(x) uniformly in A € BBV{(2) for each fixed x. Deduce that
l,h(x) — loh(x) uniformly in A for each fixed x. O

ExaMPLE 7 (Deconvolution). Let p(x|z) = p(x — z), where p is a bounded,
positive, strongly unimodal density with respect to Lebesgue measure on R.
Assume that p possesses two bounded, continuous, Lebesgue integrable deriva-
tives. For instance, let p be the normal or the logistic density.

Let the maximization of the likelihood be carried out over all probability
distributions 7 that are supported on some fixed interval Z, that also supports
the true underlying distribution 7. Then the cumulative distribution function
of the maximum likelihood estimator 7, is asymptotically normal in [*°(R),
provided the true distribution is identifiable and has no point masses. [Identi-
fiability means that the Lebesgue measure of the set {x: p(x|ng) # p(x|n)} is
positive for every n # no.]

For the validity of this statement the smoothness conditions on p can be
somewhat relaxed. Furthermore, the unimodality is used only to ensure the
Donsker condition (through Example 3) and can be replaced by other conditions.

As a concrete example of alternative conditions, consider a bimodal density
of the form p(x) = Ap(x) + (1 — A)p(x — p) with A and p fixed known numbers and
¢ the normal density. In this case the Donsker condition follows from Lemma
4.1 combined with the estimate

1A' (x —2) + (1 = Mg/ (x — p — 2)| dn(2)
JAd(x —2) + (1 — Ng(x — p — z)dn(z)

< “h“ (f |¢I(x —Z)ldn(z) + f|¢/(x —2— N)dﬂ(Z))

= RN [éx —2)dni)  [¢(x—z—wdnk) )
This is bounded by a constant (depending only on the interval Z) times |x|

uniformly in uniformly bounded sets of A. Since the mixture of normal distri-
butions has very thin tails, the Donsker condition of Lemma 4.1 is certainly

0
)| <
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satisfied. Hence the maximum likelihood estimator is asymptotically normal
by the previous theorem.

5.2. Two and three-dimensional Z. In principle, the argument using func-
tions of bounded variation given in the previous subsection can be extended to
higher dimensions. This would lead to a proof of uniform asymptotic normality
of, for instance, the cumulative distribution function of the maximum likeli-
hood estimator. Here we restrict ourselves to proving asymptotic normality of
the maximum likelihood estimator indexed by finitely many indicator functions.
For the dimension d of Z equal to 2 or 3, this is an easy corollary of the results
obtained so far. For higher dimensions the same approach can be used, but since
C¢(2) is Donsker only if a > d/2 Lemma 5.1 needs to be replaced by a stronger
result involving higher-order partial derivatives of the map z — p(x|z). We
restrict ourselves to dimensions 2 and 3.

Given finitely many points z1,...,2; in Z, let Z = Uj Z; be a partition of Z in
finitely many rectangles, such that no z; is in the interior of some partitioning
set. (For instance, the intersection of all quadrants or octants defined by the
z;.) Let Hf be the set of all functions A: Z — R whose restrictions A|z; belong
to C’f(Z ;) for each j. Here 3 is a fixed number with 3 > d/2. Note that Hf is
precisely the unit ball in the Banach space of all functions A: Z — R for which
the norm

h| = hiz,
7= sup Azl

is finite. By Lemma 4.1 this is a Donsker class of functions for every probability
measure on the compact set Z.

THEOREM 5.3. Let Z be a bounded, convex subset of R* with d equal to 2 or 3
and let the kernel p(x | 2) satisfy the conditions of Lemma 5.1 for some oo > d /2—1.
Furthermore, assume that u < Py, that the true underlying dzstrzbutzon Mo does
not charge the boundaries of the partitioning sets Z j and that {1, H ln—mollgs <

1
€} is Py-Donsker for some € > 0 and 8 > d/2. Then the conditions of Theorem 3.3

are satisfied for Hf . Consequently, the vector (v/n(i,(z1) — no(21)), - - . , VR(n(2z)
—no(21))) is asymptotically normal, provided 7, is consistent for the weak topology.

ProoF. By Lemma 5.1 the operator *: [°°(X) — C#(2) is compact for all 8 <
1+ a, in particular for some S with d/2 < 8 < 1+ . Thus it is certainly compact
with respect to the weaker norm || - || of H f . By the Ascoli-Arzela theorem H' f is
precompact for the uniform norm. Combination of Theorem 3.3 and Lemmas 3.4
and 3.5 shows that it suffices to check that /,h(x) — Iph(x) for Py-almost all x.
and every h € H. B This is immediate from the definitions, the continuity of
z — p(x|2z) and the condition on the support of 79. O

ExampLE 8 (Normal deconvolution). Let p(x|2) = z; '¢(z5 '(x — z1)) be the
normal density with mean z; and standard deviation z,. Take Z a compact sub-
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set of R x (0, 00). Assume that the true underlying distribution 7, is Lebesgue
absolutely continuous. Then the cumulative distribution function of the maxi-
mum likelihood estimator is marginally asymptotically normal.

The normal density in this example can be replaced by any other smooth
density, provided the Donsker condition can be checked. For the normal density
the Donsker condition is verified in Example 1.

6. Some nonsmooth kernels. In this section we discuss three examples,
where the support of the density p(-|z) depends on z. In each of the three
examples the maximum likelihood estimator is asymptotically normal. This is
obtained directly from Theorem 3.3 by approximately the same method for each
of them. We discuss the method in detail for the first example and are brief for
the second and the third.

6.1. Shifted uniform. Let p(x|z) = 1{[z,z + 1]}(x) be the density of the
uniform distribution on [z,z + 1]. Then

p(x|n) =nlx) —nlx - 1-),
Jiz— 1,0 @ dn()
p(x|n)

') = / g(x)dx.
[z,z+1]

9’

L,h(x) =

Inspection of the likelihood function shows that the maximum likelihood esti-
mator is not uniquely determined in this problem. For instance, the likelihood
remains unchanged if mass is moved left in any interval with right endpoint
x;, provided the mass is not moved farther left than some other observation
or some x; — 1. Since the likelihood is nondecreasing if mass is moved to the
closest x; or z; to the right, there always exists a maximum likelihood estima-
tor that is supported on the observations x;,z;. A similar argument shows that
there always exists a maximum likelihood estimator that is supported on the
points x; — 1,z;. For consistency the nonuniqueness does not make any differ-
ence: van der Vaart and Wellner (1993) show that any sequence of maximum
likelihood estimators is consistent under every 7.

There always exists a maximum likelihood estimator that is supported on the
interval [minx; A minz;, max(x; — 1) V maxz;]. This has the pleasant property
that it is supported on the convex hull of the support of the true distribution 7.
Here we prove asymptotic normality of maximum likelihood estimators with
this additional property, under the assumption that 7, has compact support
(which need not be known). Maximum likelihood estimators without this addi-
tional property are shown to be asymptotically normal under every compactly
supported 79 whose support contains the far left and right ends of Z. (The point
is that the last, unnatural condition on 7 is not necessary if the maximum
likelihood estimators are constructed to have support within the convex hull of
the support of 7,.)
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The proof is based on Theorem 3.3 applied with the norm

|h(z1) — h(z2)| |h(z1) — h(z2)|
h| = su —— TV ||A Vv su 2
” ” 2 #z2£a+s |zl_22,l/2 ” ”BBV 2 #zz>pb—e |zl —22|1/2

Here the interval [a, b] is the convex hull of the support of 79 and € > 0 is fixed.
Note that the norm is made to depend on the true underlying parameter. The
two Lipschitz parts in this norm are motivated by the technical problem that
the denominator p(x|ng) of [oh(x) converges to 0 as x | @ or x T b. The extra
control over h provided by the Lipschitz norms counterbalance this.

Let H be the set of all functions : [a,b] — Rwith ||k|| < co. Akey observation
is the following lemma.

LEMMA 6.1. Let ny have no discrete component and compact support.
Moreover, assume that ny charges every interval of length 1 contained in the
convex hull [a,b] C R of its support. Then ly: H — [°°(X) is compact.

Proor. Take any sequence k, in the unit ball of H. Since || -|| includes a Lip-
schitz norm on (a,a+¢) and (b — ¢, b), there exists by the Arzela—Ascoli theorem
a subsequence h,- whose restrictions to these intervals converge uniformly to a
limit. By the definition of [, it follows that [yh,s converges uniformly on (a,a +¢)
and (b+1—¢,b+1).

Since the sequence &, is of uniformly bounded variation, there exists by
Helly’s theorem a further subsequence along which the positive and negative
variations h}, and h_, converge pointwise to monotone functions k; and hy
at every continuity point of 2; and A5. The set of discontinuity points consists
of at most countably many points, hence is a null set for n. By the definition
of Iy we have lyh}, — lohy and lhh,,, — lohy for every x € (a,b + 1). Since
every function of the form x — [yh(x) is continuous and the functions /yh;; and
loh;; are monotone, the convergence is uniform on every compact subinterval
[a+e,b+1—¢].

Combination of the two previous paragraphs yields that [oh, converges uni-
formly on (a,b6 +1). O

By Lemma 3.1 the operator [*: [*(X) — C'[a,b] is continuous. Combina-
tion with the previous lemma shows that [*lo: H — C'[a, b] is compact. For a
compact interval the Lipschitz norm of order 1 is stronger than the bounded
variation norm. Thus [*ly: H — H is compact, verifying a key condition of
Theorem 3.3. It is of interest that in this example the compactness results from
ly, rather than from [* as in the case of smooth kernels.

THEOREM 6.2. Let 1y have no discrete component and compact support that
has no holes of length 1. Then the conditions of Theorem 3.3 are satisfied for the
norm || - || as specified in the present subsection. Consequently, for any sequence
of maximum likelihood estimators 7, that are supported on the convex hull of
the support of ng, the process /n(7j,(¢) — no(¢)) converges weakly in [°°(c,d) for
every interval [c,d) that is strictly within the convex hull of the support of ng.
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6.2. Uniform scale. Letp(x|2z)=(1/2)1{[0,z]} be the density of the uniform
distribution on [0,z]. By a careful analysis of this special kernel, Vardi and
Zhang (1992) show that the maximum likelihood estimator is consistent and
its cumulative distribution function is asymptotically normal in [°°(0, c0). Our
general method does not yield a result as strong as this, but it comes close under
the condition that the true parameter has compact support.

Precisely, assume that 7 has compact support in (0, co) and no discrete com-
ponent. Then it can be shown by our method that the maximum likelihood es-
timator is asymptotically normal in [°°(0,d) for every d such that 7(d, co) > 0.
The method of proof is almost identical to the method used for the shifted uni-
forms in the previous subsection and will only be indicated briefly. We have

Jix, 00 B2 ™1 di(2)
f[x, oo)z_1 dn(z) ,

I*g(z) = —1-/ g(x)dx.
z Jo

1,h(x) =

In this model the denominator of /oA (x) is ill-behaved as x increases to the upper
endpoint of the support of 7. This motivated the use of the norm

|h(z1) — h(zg)|
k|| = |k \Y; su —_
2]l = lIkllBBY L I o 17

Here b — ¢ is strictly less than the upper endpoint of the support of 79, so
that the norm is dependent on the true underlying parameter. Let [a, b] be the
convex hull of the support of the true parameter 7y and H be the set of all
functions 4: [a,b] — R with ||| < co. In analogy with the previous subsection,
lo: H — [°°(X) is compact, provided 7o has no discrete component. This verifies
a key condition of Theorem 3.3. For completeness we formulate the corollary
that can be drawn from this general theorem for the special example. However,
as noted previously, Vardi and Zhang’s (1992) result is stronger than ours.

THEOREM 6.3. Let 19 have compact support in (0, co) and no discrete compo-
nent. Then the condition of Theorem 3.3 are satisfied for the norm ||-|| as specified
in the present subsection. Consequently, any sequence of maximum likelihood
estimators 7, satisfies that \/n(7,(t) —no(t)) converges weakly in [°°(0, d) for every
d with no(0,d) < 1.
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