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BAYESTAN NONPARAMETRIC ESTIMATION FOR INCOMPLETE
DATA VIA SUCCESSIVE SUBSTITUTION SAMPLING!

By HANI Doss
Ohio State University

In the problem of estimating an unknown distribution function F in the
presence of censoring, one can use a nonparametric estimator such as the
Kaplan—Meier estimator, or one can consider parametric modeling. There
are many situations where physical reasons indicate that a certain para-
metric model holds approximately. In these cases a nonparametric estimator
may be very inefficient relative to a parametric estimator. On the other hand,
if the parametric model is only a crude approximation to the actual model,
then the parametric estimator may perform poorly relative to the nonpara-
metric estimator, and may even be inconsistent. The Bayesian paradigm
provides a reasonable framework for this problem. In a Bayesian approach,
one would try to put a prior distribution on F that gives most of its mass
to small neighborhoods of the entire parametric family. We show that cer-
tain priors based on the Dirichlet process prior can be used to accomplish
this. For these priors the posterior distribution of F given the censored data
appears to be analytically intractable. We provide a method for approximat-
ing this posterior distribution through the use of a successive substitution
sampling algorithm. We also show convergence of the algorithm.

1. Introduction and summary. There are many situations arising in sur-
vival analysis and reliability theory where one is faced with the problem of
dealing with incomplete data. A data set can contain some observations which
are censored on the right (or equivalently on the left). A more complicated case
occurs when some are censored on the right and some are censored on the left.
A still more general form of censoring is interval censoring, in which associated
with each observation there is a set within which the observation is known to
lie. Turnbull (1974, 1976) gives a way of obtaining a nonparametric maximum
likelihood estimator of a distribution function F for the general case of interval
censoring. By far the most common case of censoring is right censoring, and for
this case the nonparametric maximum likelihood estimator is the well-known
Kaplan—Meier (1958) estimator.

There are many cases where there are physical reasons that indicate specific
parametric families. Exponential distributions arise in a very large number
of contexts; extreme value distributions arise frequently in reliability theory
because they are the limiting distributions of the lifelengths of series or parallel
systems with a large number of identically distributed components. In these
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situations there would be a loss of efficiency if one were to use a nonparametric
maximum likelihood estimator instead of using a parametric estimator.

Miller (1983) focuses attention on the loss of efficiency of the Kaplan—Meier
estimator vs. a parametric estimator when the parametric model is true, and
shows that this loss can be quite substantial. He also points out the obvious
fact that when the parametric model is incorrectly specified, in the limit, as the
sample size goes to co, the mean squared error of the Kaplan—Meier estimator
tends to 0, but the same thing cannot be said for the parametric estimator.

This problem is complicated by the fact that a parametric model is put down
only as an approximation to the true model; for example, limit theorems indicate
a distribution which is only approximately normal or only approximately of
an extreme value type. What one wants is an estimator that avoids the loss
of efficiency due to ignoring partial information about a parametric model but
that at the same time avoids the pitfalls connected with an incorrectly specified
parametric model.

In this paper we consider a Bayesian framework in which we study prior
distributions on F which give most of their mass to “small neighborhoods” of an
entire parametric family. The prior distributions that we investigate are derived
from the Dirichlet process priors discussed by Ferguson (1973, 1974). Before
proceeding we first define these Dirichlet process priors and review their salient
features. Let P be the space of all probability measures on the real line R. The
Dirichlet process priors are probability measures on P parameterized by the set
of all finite nonnull measures on R. Let o be a finite nonnull measure on R. The
random distribution function F has a Dirichlet process prior distribution with
parameter o, denoted D, if for every measurable partition {B, ..., B, } of R the
random vector [ F(B,),...,F(B,,)] has the Dirichlet distribution with parameter
vector [a(B1), . . ., a(By,)] (here and throughout the rest of the paper, probability
measures are identified with their cumulative distribution functions, and the
same symbol is used to denote both a measure and its distribution function
whenever convenient). When a prior distribution is put on P, then for every
t € R, the quantity F(¢) is a random variable. Write H = a;/a(R), so that H is a
probability measure on R. It turns out that if F is distributed according to D,
then EF(¢t) = H(¢), while the quantity a(R) indicates the degree of concentration
of D, around its “center” H. For example, it is well known that as a(R) — oo, D,
converges to the point mass at H in the weak topology. The Dirichlet priors
have the attractive feature that the support of D, is the set of all probability
measures whose support is contained in the support of H; in particular, if the
support of H is the positive real axis, then the support of D, is the set of
distributions of all positive random variables. Another property of the Dirichlet
distributions is that they give mass 1 to the set of discrete distributions.

Susarla and van Ryzin (1976) considered the problem of right censoring, put
a Dirichlet prior on the unknown distribution function F and obtained in closed
form the mean of the posterior distribution of F' given the data. A problem with
this is that it is rare that one has a priori knowledge that the true distribution
function F is close to a specified H. It is more reasonable to assume that a given
parametric family holds approximately.
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In the present paper we deal with the general form of censoring described
earlier, and consider the situation where a parametric family Hy,8 € © C R? is
specified. We put a prior distribution on F as follows: first choose § according to
some prior measure v; then, after having selected a number a(R) > 0, choose
F from Dyg)p,. The prior on F is then a “mixture of Dirichlets”; see Antoniak
(1974). The posterior distribution of F given the data appears to be intractable,
and interesting features of it, such as the mean of the posterior distribution of
F(¢) for fixed ¢, may be very difficult to obtain in closed form. Instead, we develop
a method for simulating from the posterior distribution of F given the data. Our
approach is based on the method of successive substitution sampling, originally
developed by Geman and Geman (1984) in the context of image reconstruction.
See Gelfand and Smith (1990) for a review and description of this method and of
its properties. This approach has some strong advantages. If one can simulate
from the posterior distribution of F, then one can also simulate various easily
interpretable quantities connected with F, such as the mean of F'. One can then,
by repeated simulation, obtain an estimate of the posterior distribution of such
quantities. It should be mentioned that the algorithm presented in this paper
provides a way of obtaining posterior distributions for various parameters of
interest in the situations discussed above for the special case where there is no
censoring, and the algorithm should be useful even in that case.

This paper is organized as follows. In Section 2 we describe the algorithms
for simulating from the posterior distribution of F' given the data. In Section
3 we illustrate our method on a data set from a clinical trial on survival after
estrogen treatment for prostate cancer patients. In Section 4 we give a proof
that the algorithm converges to the true posterior distribution. In Section 5 we
discuss very briefly issues of consistency of the posterior distribution of F' given
the data.

2. The Algorithms.

2.1. Preliminaries, successive substitution sampling and Sethuraman’s con-
struction of the Dirichlet process. The prior on F described in Section 1 is a
mixture of Dirichlets:

(21) FN/'DO,(R)HGV(dQ).

We have Xj,...,X,iid. ~ F. The X’s are not directly observed; instead, we
know only that X; € A;, where the A;’s are subsets of R. In the case of standard
right-censored data, A; is a singleton if X; is uncensored, and A; = (¢;, 00) if X;
is censored on the right by ¢;. We wish to obtain the posterior distribution of '
* given the (incomplete) data, and we will develop an algorithm for generating a
random distribution function from this conditional distribution. A by-product
of our procedure is that we will also be able to generate an observation from
distributions such as L(u(F)|data), L(med(F)|data) or L(X, . |data). Here,
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wF) = [xdF(x), whenever this is defined, med(F) is the median of F' defined
by med(F) = sup{¢; F(t) < 1/2} and X,, . ; denotes a future observation; also, for
random variables V and W, L(V | W) denotes the conditional distribution of V
given W.

As mentioned in Section 1, our approach is based on the successive substi-
tution sampling algorithm discussed by Gelfand and Smith (1990), and, before
proceeding, we review this algorithm. Let fy, ..y, be the joint distribution of
the (possibly vector-valued) random variables Y5, ...,Y,. We suppose that we
do not know the form of fy, . y,, but that we know the conditional distribu-
tions in|Yj, j#i 1 = 1,...,p, or that at least we are able to generate obser-
vations from these conditional distributions. The objective is to generate an
observation from the joint distribution of Y7,...,Y}, or simply an observation
from the marginal distribution of Y;. The algorithm to generate an observa-
tion from fy, ...y, proceeds by an iterative scheme as follows. Fix an arbitrary
starting point Y,?, ..., Y®, generate Y from fy, v, i#1(, Y9, Y9), gen-
erate Y,V from fy, Y, ) # (Y YO Y,?) and so on until YV is generated
from fy, |v,,j # p(¥1, .. ,Yp(l_) 1»)- This completes one iteration of the scheme.
After £ iterations we obtain a random variable (Y;?,...,Y,®). It is not diffi-
cult to see that the sequence (YI(J), . ,Yp(f)), j=1,2,...,is a Markov chain,
and that fy, v, is a stationary distribution of the chain. If one can estab-
lish that this chain converges to its stationary distribution, then for large
E, (Y, .., Y®) has a distribution which is approximately equal to fy,, .y,
Thus, by repeating this algorithm independently a large number M of times,
one obtains (Yl(m’k), ... ,Yp('"’k)), m = 1,...,M, which can be used to estimate
fr,,....y,- Similarly, Yl(m’k), m =1,...,M, can be used to estimate the marginal
distribution of Y;.

We now give a preliminary explanation of how in our censored data setup
a certain version of the algorithm can be implemented. We take p = 2 and Y;
=F,Y; =(Xy,...,X,). We wish to obtain L(Y;,Y; | data) [actually, our primary
interest is in £(Y; | data)].

Fix starting values F© and (X?,...,X,®).
Fork=1,... K,

1. Generate F® ~ L(F| (Xl(k -V X%-1 data).
2. Generate (X?,..., X®) ~ L(X;,...,X,) | F®, data).

It is not immediately clear how one would generate the random variables
required in steps 1 and 2. The Dirichlet prior has already been defined in Section
1. We will now review a constructive definition of the Dirichlet prior, given in
Sethuraman (1994), which is particularly convenient for simulation purposes.
As in Section 1, let o be a finite nonnull measure on R and write o = o(R)H.
Let By,Bs, ... beii.d. ~ Beta(1,a(R)), let V;,V,,... be i.i.d. ~ H and assume
that the sequences {B;} and {V;} are mutually independent and are all defined

on some common probability space (2, ¥, Q). Let P; = BjHj ~ X1 - B,) and form

r=1
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the random distribution function

(2.2) F=) P;éy,

where §, denotes the probability measure giving unit mass to the point a.

Sethuraman (1994) showed that this F' has the Dirichlet distribution with
parameter measure «. [ More precisely, let By be the smallest o-field in P such
that the function P — P(A) is measurable for each Borel set A. Then (2.2)
defines a measurable map from (2, F, @) to (P, Bp), and the induced distribution
on F is the Dirichlet distribution with parameter measure a.]

From this construction we see that we can easily generate an F with dis-
tribution approximately equal to D,: fix some large integer J, draw By, ...,B;
i.i.d. from Beta(l, a(R)), V1,..., Vs iid. from H and form

J
(2.3) Fy=) Pjby,
j=1

However, if we let J in (2.3) be random, we can generate an F; with sufficient
accuracy to be able to generate Xj, ..., X, which are exactly i.i.d. ~ F. This is
done as follows. Recall that F is given by (2.2). Thus, to generate X; ~ F, we
need to choose a random index JJ; according to the distribution

(24) ' P{J1=j}=Pj, j=1,2,...,

and set X; = V;,. We choose the index J; by using a U(0, 1) random variable
Uy, as follows. Let J; be such that £717'P; < Uy < %71,P;. It is clear that
J; satisfies (2.4). This gives a random variable X;. To obtain Xj,...,X, iid.
~ F, we repeat this n times using n independent U(0, 1) random variables
Ui,...,U,. The sequences B1,Bs,... and V;,V,,... are held fixed through-
out the n repetitions. Note that to do this we need only know By,...,B; and
Vi,...,Vy, where J = max{Jy,...,J,}; that is, J is such that E;’= P = Uy,
where U,y = max{Uj,...,U,}. Notice that for any i, X; ~ H, but the X;’s are
not independent, since for i; #i3, X;, and X;, are equal with positive probability.

2.2. The posterior distribution of F when the prior on F is a simple Dirichlet.
Although our prior on F is a mixture of Dirichlets, it may be useful at this
point to first describe in detail the algorithm for the simpler case where the
prior on F is a single Dirichlet. So assume that F' ~ D, where o = a(R)H and
the data are that X; € A;, i = 1,...,n. We want to simulate an observation
from L(F |data). An important property of the Dirichlet process prior is that if
F~D,and Xj,...,X, arei.i.d. ~ F, then

(25) L(FIXl, “e ,Xn) = Da+2;’=l6xz‘;

tﬁat is, the posterior distribution of F given the X’s is again a Dirichlet, but
with an updated parameter measure; see Ferguson (1973, 1974). This fact will
play a central role in the algorithm described below.
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We will need to take starting values X\?,...,X. It is convenient to
introduce the following notation. If L is a distribution function, X is distributed
according to L and A is an event, then L, will denote the conditional distri-
bution of X given that X € A. We may take the starting values by generating
Xi(o) ~ Hy, independently for i = 1,...,n. (The issue of how to choose starting
values is addressed in more detail in Section 4).

Fork=1,... K,

1. Generate F® ~ Da+sp_ 6y
2. Generate (X/?,....X®) ~ L(X3,..., X)) F®, X; € Ajyi=1,...,n).

We now describe how step 2 above is carried out. Assume without loss of
generality that for i = 1,...,n,, the ith observation is uncensored, that is, we
observe X; = x;, while for i = n, + 1,...,n, we know only that X; € A; for some
sets A;. Generating X,® from L(X; |[F®,X; € A;, j=1,...,n)fori=1,...,n,
is trivial: We just take Xi(k) = x;. For the censored observations we use a simple
rejection method. Step 2 of the algorithm proceeds as follows.

2a. Fori=1,...,n,, setXi(k) =x;.
2b. Fori=n,+1,...,n,

(1) Generate Ui(l) ~ U(0,1).
(if) Choose J¥ such that =7, ~'P, < U® < 71 P,
(iii) If V;0 € A;, set Xi(k) = V,w; otherwise, repeat steps (i) and (ii) using
independent luniforms Ui“), ey Ufel") until Vi € A;.

The sequences Bq,Bs,... and V1, Vs, ... are held fixed throughout this process.
Note that to do this we need only know Bj,...,B  and V3,...,V , where JJ is

J 1 (en, +1) 1 (en, +2) 1
su(clz that &_,P; > max{Unu)‘Ll,...,Un“':1 , Urf,,)+2""’Unu"+2 oo, U
U=}

There is a slightly different way of implementing the algorithm. We may
think of the data as coming in two stages, where in the first stage we observe
the uncensored observations and in the second stage we observe the censored
observations. We wish to find L(F | X;,i = 1,...,n,,X; € Ajyi =n, +1,...,n),
where F has prior D,, and it is clear from (2.5) that this is equivalent to finding
L(F|X; € A;, i =n, +1,...,n), where F has prior DC'*E?L%' This is accom-
plished through the algorithm described earlier, except that the effective sample
size is now the number of censored observations. Although these two implemen-
tations of the algorithm are distinct, it follows from the convergence results of
Section 4 that after enough iterations, a random distribution function F gen-
erated by either method will be distributed according to L(F | data). We briefly
illustrate the algorithm on the data set used by Susarla and van Ryzin (1976),
which is the same as the data set used in the original paper by Kaplan and
Meier (1958). The data are 0.8, 1.0+, 2.7+, 3.1, 5.4, 7.0+, 9.2, 12.1+, where a “+”
denotes a censored observation. OQur illustration is not intended to give any new
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TABLE 1
Line 2 of the table gives the exact mean of the posterior distribution of F(t). Line 3 gives the estimate
of the mean of the posterior distribution of F(t) obtained by successive substitution sampling. Line
4 gives the Kaplan—Meier estimate of F(t)

t 0.80 1.00 2.70 3.10 5.40 7.00 9.20 12.10

Exact 0.1083 0.1190 0.2071 0.3006 0.4719 0.5256 0.6823 0.7501
SSS 0.1083 0.1190 0.2084 0.3011 0.4706 0.5261 0.6802 0.7476
KME 0.1250 0.1250 0.1250 0.3000 0.4750 0.4750 0.7375 0.7375

insight into the data, but only to make a numerical comparison of our algorithm
with the exact results obtained by Susarla and van Ryzin (1976). They took H
to be the exponential distribution with mean 1/0.12, and for a(R), they consid-
ered three cases, a(R) = 4,8 and 16, but for the sake of brevity we make our
comparison only for the case a(R) = 8. They obtained the mean of the posterior
distribution of F(¢) as ¢t ranges over the eight censored and uncensored points.
Our method gives an estimate of the conditional distribution of F(¢) for these
eight points, and we took the mean of this conditional distribution to make our
comparison. We took the mean number of iterations K to be 50 and the number
of repetitions of the algorithm M to be 500. Table 1 compares our results with
theirs, and for the sake of reference also gives the Kaplan—Meier estimate. We
see that the comparison is excellent.

2.3. The posterior distribution of F in the general case. We now return to
the situation of main interest, where we consider an entire parametric family
Hy, 6 € ©, and put as prior on F' the mixture of Dirichlets

(2.6) F~ / Day v (dH),

where for each 6 € 6, ay = ap(R)Hy and 0 < ay(R) < co. This is slightly more
general than the mixture (2.1) in that the a(R)’s are not assumed to be all
equal. This extra generality will most often not be needed, but we include it
because it does not really make our formulas more complicated; see Remark
1 below. Henceforth we will assume that for each Borel set B C R, the map
0 — ap(B) is measurable. A thorough development of the theory of mixtures of
Dirichlet priors may be found in Antoniak (1974).

To carry out the algorithm in this case we will need a formula, analogous
to (2.5), giving the posterior distribution of F when we observe the complete
values Xj,...,X,. This formula is provided by Theorem 1 below. We use the
notation X = (X3, ...,X,). Also, for a vector v € R", #(v) will denote the number
.of distinct values of vy,...,v,.

THEOREM 1. Assume that for each 6 € ©, Hy is absolutely continuous, with
a density hg that is continuous on R. If the prior on F is given by (2.6), then the
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posterior distribution of F given X;,...,X, is
@.7) [ Deursp s vxian),

where vx is the measure which is absolutely continuous with respect to v and is
defined by

(o)™ (as(R)

Tlao@®+n) @0

2.8) vx(d6) = o0 (]| o(X0)

“,”

where the “«” in the product indicates that the product is taken over distinct
values only, T is the gamma function and c¢(X) is a normalizing constant.

The theorem is a special case of Lemma 1 of Antoniak (1974).

The theorem enables us to carry out the successive substitution sampling
algorithm in the general case: from (2.7), we see that step 1 of the algorithm of
Section 2.2 should be replaced by:

la. Generate 6® from vxa-v.
1b. Generate F'® from Do 4 +xp 6, 4_ -

Here, we use X/ to denote the vector (X7, ..., X,).

REMARKS.

1. Inpractice, when dealing with the parametric family Hy, 6 € 0, it will be very
convenient to take ((ap(R))*®T(ay(R))/T(ag(R) + n))v(d8) to be a conjugate
prior, for then sampling from vx is particularly easy. The easiest way to
get ((ap(R))*®T(ap(R))/T(ap(R) + n))v(dB) to be a conjugate prior is to take
ag(R) to be constant in 6 and take v to be a conjugate prior. In this case

(2.9) vx(@9) = dX ([ ho(X0))(d9),

where d(X) is a normalizing constant.

2. If we consider the standard and simpler Bayesian model in which X3, ..., X,
are i.i.d. from the distribution Hy for some 6 € © and if we put the prior v
on 0, then the posterior distribution of 8 given X;,...,X,, is

2.10) vx(d9) = e(X)( T] ho(X0)) v(d6)

for some normalizing constant e(X), and this is the same as (2.9) except that
the product is over all the X;’s. When the X;’s are generated by successive
substitution sampling (step 2 of the algorithm of Section 2.2), there will be
ties, especially if the a(R)’s are small, and so there is a genuine distinction
between (2.9) and (2.10).
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3. It will be clear from the discussion in Section 4 that for the case where we
observe only incomplete data, we have

L(F|data) =/Da“};lpﬂgxlﬁ,(de,Xmdata),

where L(d6,d X | data) is the conditional distribution of (¢, X) given the data.
Thus, the posterior distribution of F' is still a mixture of Dirichlets. How-
ever, this representation is not useful because there is no way to obtain the
mixing measure.

3. IMlustration on prostate cancer data. We illustrate our method on a
data set involving a clinical trial of 211 individuals who had Stage IV prostate
cancer. These patients were treated with estrogen in a Veterans Administration
Cooperative Urological Research Group study. The data are studied in Koziol
and Green (1976), and the version of the data set we used is as in Hollander
and Proschan (1979). Of the 211 individuals, 90 died of prostate cancer, 105
died of other diseases and 16 were still alive at the end of the study. The 105
who died of other diseases and the 16 still alive at the end of the study were
treated as censored observations. One of the principal aims of the study was to
determine the benefits of the estrogen therapy. It is therefore of interest to study
F, the distribution of survival time if cancer of the prostate was the only cause
of death. As discussed in Koziol and Green (1976), prior experience suggested
that if the patients had not been treated with estrogen, the distribution of their
time until death if cancer of the prostate was the only cause of death would be
exponential with mean 100 months.

We analyzed this data set using our method taking our prior on F to be
(2.6), where Hy is the exponential distribution with parameter 9 (¢ being the
reciprocal of the mean), with ay(R) constant in 8 and we considered two cases,
ag(R) = 1 and ap(R) = 100. We took v to be G(33, 3300), where G(a, b) is the
Gamma distribution with shape parameter a and scale parameter . Our reason
for this is that we wished to center the prior around the family of exponential
distributions. The value ay(R) = 100 corresponds roughly to the situation where
we are reasonably confident about the assumption of exponentiality, whereas
the value ay(R) = 1 gives a more diffuse prior. We noted that the median of an
exponential distribution with parameter 6 is (log 2)/6, and if § ~ G(33, 3300),
then P(50 < (log 2)/6 < 100) = .95. The reason for taking a Gamma prior on
0 is that this is a conjugate family for the exponential distribution. If v is the
G(a, b) distribution, then [see (2.8)] vx is the G(a + n*,b + ¥*X;) distribution,
where n* is the number of distinct observations in X, and ¥*X; is the sum of
the distinct X;’s. It is routine to generate observations from this distribution.
We felt that these choices of prior on F were reasonable, although other choices
are also possible.

. A full listing of the data may be found on page 399 of Hollander and Proschan
(1979). It is useful to look at Figure 2, which gives an estimate of the density
of F' [obtained by smoothing the Kaplan—Meier estimate of F' by the method of
Ramlau-Hansen (1983)]. It should be mentioned at this point that a feature
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of this data set is that the large observations are very heavily censored (in
particular, there are only two uncensored deaths beyond 120 months and only
one beyond 150 months, 158 being the last uncensored observation), so it is .
very difficult to nonparametrically estimate a large portion of the right tail of
F. Figures 1(a) and (b) show the posterior densities of F(60), F(120), F(150) and
F(180), the 5-year, 10-year, 12.5-year and 15-year survival rates, for ap(R) = 1
and ap(R) = 100, respectively. It is interesting to note that for as(R) = 1 the
posterior density of F(180) has a spike near 1. Figures 1(a) and (b) were obtained
by running the algorithm with the number of iterations K equal to 100 and the
number of repetitions of the algorithm M to be 3000. Each of the plots is an
average of 3000 Beta densities.

Table 2 compares our results with the standard frequentist analysis. Line
2 gives the Kaplan—Meier estimate of F(¢) for ¢ equal to 60, 120 and 150.
Beyond 158, the Kaplan—Meier estimate is undefined. Lines 3 and 4 of the table
give the means of the posterior distribution of F(¢) for the four values of ¢, for
two values of ap(R). Line 5 gives the 95% confidence interval for F(¢) computed
using Link’s (1984) method. This method involves first finding a 95% confidence
interval for the cumulative hazard function A(¢) and then transforming this
into a confidence interval for F(¢) using the relationship F(¢) = 1 — exp(—A(®)).
This method is commonly used and is available, for example, in the statistical
computer package S. Lines 6 and 7 of the table give the 95% central intervals
of the posterior distributions of F(¢), for two values of ap(R).

For ¢ equal to 60 and 120, as well as for other values of ¢ in that range but
not shown here, the Bayes method with ap(R) = 1 agrees very closely with
the standard nonparametric frequentist method. However, differences emerge
for values of ¢ beyond which there are few uncensored observations, and it is
only for those values of ¢ that the choices made in specifying the prior had a
noticeable impact. For the case ap(R) = 100 the Bayesian analysis corresponds
more closely to a parametric analysis using the exponential distribution, which
is to be expected. It should be mentioned that this study involves a reasonably
large sample size, and so we expect that the “data swamps the prior,” at least
for the case ay(R) = 1.

Figures 3(a) and (b) show plots of a density estimate of the posterior distri-
bution of a future observation, for the cases ay(R) = 1 and ay(R) = 100. These
were obtained by running the algorithm for 100 iterations and first obtaining

TABLE 2
Comparison of our Bayes method with the standard frequentist procedure for estimation of F(t)
t 60 120 150 180
KME 0.528 0.628 0.681
Posterior mean, ag(R) = 1 0.519 0.630 0.683 0.786
Posterior mean, ag(R) = 100 0.485 0.669 0.736 0.805

Standard 95% interval
Bayes 95% int., ap(R) = 1
Bayes 95% int., ap(R) = 100

(0.437,0.605)
(0.436,0.602)
(0.416,0.555)

(0.528,0.707)
(0.540,0.716)
(0.592,0.742)

(0.531,0.783)
(0.573,0.815)
(0.657,0.809)

(0.621,1.000)
(0.724,0.879)
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FiG. 1a. Prostate cancer data: Posterior densities of F(t) given the data for four values of t,a(R) = 1.
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Fic. 1b. Prostate cancer data: Posterior densities of F(t) given the data for four values of t, o(R) = 100.
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FiG. 2. Prostate cancer data: Frequentist estimate of density of F obtained by smoothing the KME.
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Fi1G. 3a. Prostate cancer data: Density estimate of posterior distribution of a future observation given
the data, a(R) = 1.
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F1G. 3b. Prostate cancer data: Density estimate of posterior distribution a future observation given
the data, a(R) = 100.
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an F from L(F|data), and then generating a random variable X from this F.
This was repeated independently 3000 times. A density estimate was made of
the resulting 3000 points. Taking the 0.1 and the 0.9 quantiles of the distribu-
tions of L(X | data) gives the 80% probability intervals [15, 250] and [13.8, 246]
(the corresponding quantity in a frequentist setting is the “tolerance interval,”
which is difficult to interpret).

One would expect that Figure 3(b) gives a density that is closer to a power
law (the distribution of a future X under the parametric Bayesian model), but
that is actually true only in the part of the right tail where the data are sparse.
Further analysis showed that the posterior distribution of a future observation
does not look like a power law even for ay(R) = 2500. Thus, we conclude that the
exponential model is not appropriate, a conclusion also reached by Hollander
and Pefia (1992) in their analysis of this data set.

As noted by Hollander and Proschan (1979), the survival probability for the
untreated group is greater than that for the treated group in the “middle”
(30-90) months. This is confirmed by our analysis, which, however, also shows
the opposite for long-term survival. For example, when ag(R) = 1, the probabil-
ity that a future X in the treated group is greater than 150 is 0.310, substan-
tially larger than exp(—150/100) = 0.223, the corresponding quantity for the
untreated group. Even when ay(R) = 100 the Bayes estimate is 0.257, which
still indicates benefit of treatment for long-term survival.

FORTRAN programs to calculate the estimates are available from the author.

4. Convergence of the successive substitution sampling algorithm.
Recall that in the general case, the algorithm proceeds as follows.

Fix starting values (99, F© X©),
Fork=1,... K,

la. Generate 6% from vxa-».
1b. Generate F® from Doy +37, Seu-n-

2. Generate X® ~ L(X|F®, data).

Let Bo be the Borel field on ©, let Bx: be the Borel field on R* and recall that
By is the Borel field on P which is defined in the paragraph following (2.2).
Whenever we consider a product space, the o-field on this product space will be
the product o-field.

Note that if (69, F©@ X©®) are starting values, we actually need to know only
X© to start the algorithm. Suppose that we choose X © as follows. First choose
0 ~ v and then generate XL.(O) ~ Hpy 4, independently fori = 1,...,n. [Recall that
if L is a distribution function and A is a set, then L, denotes the distribution
function given by L4(S) = L(S N A)/L(A).] Let 7 denote the distribution of X(®,

We will use the following general notation: Py« refers to probabilities relat-
ing to the algorithm when the starting point is X(@; P refers to probabilities
relating to the model in which 6 ~ v, the conditional distribution of F given 6
is D,, and, given F, X;,...,X, areiid. ~ F.
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Our objective is to show that

sup  |Po{ (X0, 0, 7)< B)

(4.1) BGBkaﬂexﬁcp

~P{(X,6,F) € B|data}| > 0 for [7]-almost all X*”

(this convergence in total variation norm of the triples is stronger, of course,
than convergence in distribution). This will imply in particular that

sup |Pxo{F® ¢ B} — P{F € B|data}| - 0 for [r]-almost all X*.
Be€Byp

Let x be the conditional distribution of (6,X) given the data. Consider the
sequence of random triples (X% ~V ¢® F®) k = 12,.... Given a starting
point, we may obtain the distribution of (X%~ §® F®) by conditioning on
X®-1 and §®. Also, we may obtain L((X, 6, F) | data) by integrating the con-
ditional distribution of (X, 6, F) given X and # with respect to . Our plan for
proving (4.1) is to first establish convergence of the distribution of (X%*~ 1, 6®),
which is the heart of the proof, and then show via a simple argument that this
entails (4.1). For technical reasons, it is easier to first deal with the sequence
(6@, X®), k = 1,2,.... Let y% o(-) be the marginal distribution of (8%, X))
when the algorithm is started at X@. We will show that

(4.2) sup |phoB) —uB)| —0 I[rl-ae.
B€EBe X Bp

To do this, we will establish that (6%, X®), k = 1,2,..., satisfies the con-
ditions of an appropriate ergodic theorem for Markov chains on general state
spaces. Before proceeding, we review some definitions and concepts related to
Markov chains.

Let {Y:} be a Markov chain on the state space (4,By) with transition
probabilities P,(C). Let P;‘(C) be the k-step transition probabilities defined by

PX(C) = Py(C) and P4(C) = [ P,(C)Pt~(dz) for k = 2,.... For any set C € By let
G,(C) = £ ,P%(C). This is the expected number of visits to C starting from y.

THEOREM 2 (Ergodic theorem for Markov chains). Let {Y,} be a Markov
chain with stationary probability distribution ; that is, T is a probability mea-
sure satisfying

m(C) = / Py(C)r(dy) forall C € By.

Suppose that there exists a set A € B, a probability measure p with p(A) =1, a
constant € > 0 and an integer ny > 1 such that

(4.3) G,(A)>0 forallycl,
4.4) PJ(C) > ep(C) forally € A, C € By.
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Assume further the aperiodicity condition

g.c.d.{m > 1: there is e, > O such that PJ{(C) > emp(C)
(4.5) foreachy € A, C € By} =1.

Then there exists a set Dy with w(Dg) = 1 such that

sup |PE(C) - n(C)| —» 0 for eachy € Dy.
CEBy

The theorem appears in Athreya, Doss and Sethuraman (1992).

Note that (4.3) is equivalent to the condition that for any point y in the state
space, the probability that the chain starting from y will eventually enter the
set A is positive. Also note that the aperiodicity condition (4.5) is automatically
satisfied if the ny appearing in (4.4) is 1.

We remark that there exist ergodic theorems for Markov chains on gen-
eral state spaces for which the basic assumption is that the chain is irre-
ducible with respect to the stationary distribution. This is, essentially, the con-
dition that starting from any point in the state space, the chain has positive
probability of eventually entering any set to which the stationary distribution
assigns positive mass. [For a precise statement of such a theorem, see Theorem
1 of Tierney (1994).] To check this condition, one needs to be able to identify
the sets which have positive mass under the stationary distribution. In our
case it is very difficult to get a handle on the stationary distribution, that is,
L((X, 4, F)|data). Even the marginal conditional distribution L((X, )| data) is
complicated, because of the dependence among the X;’s. By contrast, the condi-
tions required by Theorem 2 involve only the transition kernel and do not refer
to the stationary distribution.

We will now apply Theorem 2 to show that under additional assumptions on
the measures v and «y, if the starting point of the algorithm is chosen according
to 7, then the algorithm converges with probability 1.

Recall that we suppose that the observations are uncensored fori = 1,...,n,
and are censored for i = n, + 1,...,n. If X; is uncensored, the set A; is the
singleton {X;}. Also, A will denote ordinary Lebesgue measure on R.

THEOREM 3. Assume that there exists a set Eq C © with v(Eg) >0, a6 >0
and, fori =n, +1,...,n, disjoint sets E; C A;, with positive Lebesgue measure,
such that: A

(ia) vx(Co) > 6v(Cy) forallX € Ay x -+ xAp, X Ey, 11X -+ x E, and Cy C Ey,

(ib) Hy(C;) > 6XC;) foralld e Eyand C; CE;,i=n,+1,...,n,

(i) Pgo {(6®,X®) € EgxAy X+ xAp, xEy,, 41 %% E, for somek > 1} >0
for all X© ¢ R",
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(iii) there exists n > 0 such that

(ag(R))n—n"F(ag(R) +n)
I'(ap(R) +2n — ny)

>n forall § € Ey.

Then the Markov chain {(6®,X®) k = 0,1,...} satisfies the conditions of
Theorem 2, withng=1, A=Ey xA; x --- xAp, x Ep +1 % --- X E,, probability
measure p on A given by p = vg, X 8x, X -+ X 8, X Mm*1x ... x M and
e = 6"~ Mt lny(Bo)Ir e +1\E;). Here, XE: denotes Lebesgue measure restricted
to E; and normalized to be a probability measure. Sufficient conditions for (ii)
to hold are that

(4.6) vx(E9) >0 wheneverX;cA;,i=1,...,n,
and
4.7) Hy(E;) >0 foralli=n,+1,...,n, whenever 6 € E,.

Proor. We will first verify (4.4) with ny = 1. For the sake of unity of nota-
tion, welet E; = A; fori = 1,...,n,. Also, for an arbitrary measure K, K, = 6y,
fori = 1,...,n,. Let 0©9,X®) ¢ Ey x E; x --- x E,. Recall that to go from
(609 X©) to (4D, XD) we generate 6V ~ vgo, where vy is given by Theorem 1,
choose F from Doy + = and finally generate Xi(l) ~ Fy4, independently for
i=1,...,n.

By the monotone class lemma, it suffices to check (4.4) only for rectangles.
[Also, it suffices to check (4.4) only for sets C which are contained in A, since
p(A)=1.]LetC; CE;,i=0,...,n. We have

1550
i

PX«»{(O(D, XD) e Cyx - x c,,}

(4.8) / / HFA (C)D, @y + 2, 1 5p0) (dF)I/X(O) (dO(l)).
Co i

Now the inner integral in (4.8) is clearly equal to

[T FalCoDayssr s, odF) = / H d (C) Dary 37 50 (0P

(49) i=ny+1 i= n,,+1
H F(C )Daeﬂ) +2 X(O) (dF)
i=ny+1
Because for i = n, + 1,...,n the C;’s are disjoint, the last integral in (4.9) is

easy to compute since it is just a joint moment for the (n — n, + 1)-dimensional
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Dirichlet distribution. A calculation shows that this integral is equal to

F(OAg(l)(R) + n) n n |
F(agu)(R) +9n — nu) ( H (aou) + Z 6X§°’) (C,))

i=ny+1 i=1

P(ag(l)(R)"'n) ( ﬁ a9<1)(C')>

" T(agn@® +2n —n,) \, 1+

= (ag®)" " D(ago(R) +n) ( II Hgm(c,.))

(4.10)

(aeu)(R) +2n — nu) imal
n

>pe~m [ MGy,

i=ny+1
the last inequality being a consequence of conditions (iii) and (ib). Combining
(4.8), (4.9) and (4.10), we see that
Pxo{ (6%, X¥) € Co x -+ x Cy }
> b, (CowEons™ ™ [[ (WFCINE) [] 6x (1X:3),
i=ny,+1 i=1

from which (4.4) follows.
Condition (4.3) follows immediately from condition (ii) of the theorem. We
will show that (4.6) and (4.7) ensure that

(4.11) wa,{(a(l), XD e Eyx - x E,,} >0 forallX? ¢ R",

from which it will follow that (4.6) and (4.7) are sufficient but far from necessary
to ensure condition (ii) of the theorem. We rewrite the probability in (4.11) as

/ / H FAi (Ei)gaa(l) +27_ 6.0 (dF)I/x(O) (de(l))
B0 P21 i

n—ny r 1 R) d
> /Eo (ag(n(R)) F( (ae()( +n) ( H Hg(l)(Ei)> Vxo (da(l’)

gy, (R) +2n —n,) ime1

and we see that by (4.6), (4.7) and the fact that 0 < a0 (R) < co for all § € O,
this is the integral of a positive function over a set of positive measure, and so
is positive.

The aperiodicity condition (4.5) follows from the fact ny = 1. As mentioned
earlier, the conditional distribution of (X, 6) given the data is a stationary dis-
tribution. This concludes the proof of the theorem. O
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REMARKS.

1. In practice, we will have ay(R) constant in 6, and so condition (iii) will au-
tomatically be satisfied, and condition (ia) will involve the simpler measure
given by (2.9).

2. Condition (ib) involves Lebesgue measure on R and therefore precludes the
possibility that the sets E; have infinite Lebesgue measure. We could have
stated condition (ib) in terms of different measures, but we did not do so
because in practice the sets E; will be chosen so that they are compact sets
and Lebesgue measure will then be the most natural measure to use.

3. The conditions of the theorem are actually extremely easy to verify for the
standard parametric families, if we take ag(R) to be constant and take v to
be a conjugate prior. In particular, condition (ia) then involves a posterior
that is available in closed form.

4. In the statement of the theorem the sets E,, .1, .. ., E, are assumed disjoint.
We do this so that we can obtain more easily a lower bound for Pyo{X® €
C; x - -- x C,} in the proof of the theorem. In practice, if we can find nondis-
joint sets E,, 11, .- . , E, which satisfy the conditions of the theorem, then we
should also be able to find disjoint sets that work also. It is possible to prove
a version of the theorem without the assumption that the sets E,,, +1,...,Ex
are disjoint, but the gains in doing so are outweighted by the complications
that arise in the proof.

Recall that p is the conditional distribution of (¢, X) given the data, and that
7 is the distribution on X©@ described just prior to (4.1). Given a starting point
(09, X), we need to know only X©. Let xX(-|data) and p’(-|data) denote
the marginal distributions of X and 6, respectively, when (8, X) ~ p; that is,
pX(-| data) and p(- | data) are the conditional distributions of X and 6, respec-
tively, given the data. From Theorems 2 and 3 we conclude that there exists a
set Dy C R" with the property that ;X(D, | data) = 1 and such that

sup  |iko(B) — uB)| — 0 forall X ¢ D;.
Be %e X BRn

So we need to generate the starting point from pX(-| data). Unfortunately,
pX(-| data) is unknown. If, however, we can establish that 7 is absolutely con-
tinuous with respect to xX(- | data), then it will suffice to generate the starting
point from the prior 7. The proposition below gives conditions that ensure this
absolute continuity.

ProPOSITION 1. If for every X such that X; € A;,i=1,...,n, we have
n N
(4.12) [[ReX) >0 for Vl-ace.9,
i=1
then

(4.13) 7 < uX(- |data).
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ProoOF. Here is a brief outline of the proof. We first show that condition
(4 12) implies that the prior v is absolutely continuous with respect to
1? (| data). Then we establish that for fixed 6, the distribution Hy A X XHg a,
[this is the distribution of (X{?, ..., X,®) when X© ~ Hj 4 and the X<°>’s are
independent] is absolutely contmuous with respect to the conditional distribu-
tion of X given ¢ and the data, and we argue that this proves (4.13).

More formally, the proof proceeds as follows. Suppose that S c R" is a set
such that P{X € S|data} = 0. Then

/ P{X € S |data, 6}’ (d6 | data) =

and thus

(4.14) P{X ¢ S|data,0} =0 for [u’(- |data)|-a.c.6.

We will now show that v « uf(- | data). Suppose Sy C ©is such that u°(S, | data)
= 0. By conditioning on X, we obtain

/ P{0 € So|data,X}dyX(dX|data) = 0
Ap X - XA,

and in particular there exists a point Xq € A; x --- x A, such that P{0 €
So |data,X(} = 0; that is, VX (So) = 0, where vx is given by Theorem 1. From
(4.12) this implies v(S,) = 0, and we conclude that v < (.| data). Therefore,
(4.14) gives

P{X € S|data, 0} =0 [v]-a.e.f.
We rewrite this as
n

Y P{X e S|data, 0 #(X) = r}P{#X) = r|data,0} =0 [v]-a..0.
r=1
It is easy to see that P{#(X) = n|data, 8} > 0 [v]-a.e.§, and this implies

(4.15) P{X e S|data,0,#X)=n}=0 [v]-ae.6.

Now it is not hard to see that, conditional on the data, § and #(X) = n, the
distribution of the X;’s is that of n independent random variables with dis-
tributions Hpy, 4,. We argue as follows. This distribution is obtained by first
choosing F ~ D,, and generating Xj,...,X, independently from F. We then
condition on the event {#(X) = n}. At this stage, these X’s are i.i.d. from Hj [if
F ~ D, where a is nonatomic and Xj, .. .,X, areii.d. ~ F, then, conditional on
#(X), the distinct X’s are i.i.d. from « normallzed to be a probablhty measure;
this is a well-known fact, and can be seen from Sethuraman’s constructlon for
example]. We now further condition on the event X; € A;, i = ,n, and it is
clear that the distribution we obtain is that of n mdependent random Varlables
with distributions Hy, 4,. Thus, (4.15) is rewritten as (Hg, 4, % -+~ xHg 4, )8) =
for [v]-a.e.f, and therefore
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/(HO, A, X - x Hy 2,)(S)v(d) = 0.
This is the assertion that 7(S) = 0, and so the proposition is proved. O

We will now see that convergence of the distributions of the triples follows
easily from the convergence of the distributions of the pairs.

THEOREM 4. If the conditions of Theorem 3 and Proposition 1 are satisfied,
then (4.1) holds.

Our main tool is the following lemma.

LEMMA 1. Let u be a sequence of measures and let 1 be a measure on the
measurable space (2, F) such that

(4.16) sup |1(C) — u(C)| — 0.
Ced

Let ® be the collection of all measurable real-valued nonnegative functions which

are bounded above by 1. Then
[ o~ [odu| o

This lemma is well known and, in fact, many authors prefer (4.17) to (4.16)
as the definition of convergence in total variation norm. We omit the straight-
forward proof.

(4.17) sup
ped

PROOF OF THEOREM 4. When the conditions of Theorem 3 and Proposition
1 are satisfied, then, if the starting point X© is chosen according to 7, the
distribution of the Markov chain (§V,XV), (@, X®), (¢® X®) . . convergesin
total variation norm to £((#,X) | data). For the purpose of proving (4.1), it is more
convenient to work with the chain (X©@, 1), (X(V, §®), (X®, §®) and we show
below the fairly intuitive fact that this chain converges in total variation norm
as well. More precisely, let ii%,(-) be the marginal distribution of (X®*~ ¥, 6®)
when the algorithm is started at X¥ and let /i be the conditional distribution
of (X, ) given the data. Then

(4.18) sup |fko(B)—iB)| -0 [rl-ae.,
Be 3}2], X Be “

a statement analogous to (4.2). To see (4.18) let B € Bg: x Bo. Then
Pxo{(X*~?, 6%) ¢ B} = / Pxo{ (X9, 6%) € B| X%V}
X Pxo (dX‘k‘D) .

(4.19)
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Theorem 3 implies in particular that for [7]-a.e. X9, the conditional distribu-
tion of X*~1 given X converges in total variation norm to L(X|data). Let
¢B(x) denote Pxo {(X*-1,§®) ¢ B|X*® -1 = x}, This is clearly nonnegative and
bounded above by 1, and so by Lemma 1 the right side of (4.19) converges to
[ ¢p(x)*(dx|data), which we recognize as [i(B).

To prove (4.1), we argue in a similar way. For B € Bg:r x Bg x By we have

|Pxo { (X*-2,6%, F¥) € B} - P{(X,0,F) € B| datal)
(4200 = ) / Pxo {(X*=2,6%, F®) & B|X* =V, g% 17, (4 X* D, do®)

- /P{(X, 0, P cB |X,0}L(dX,d0)’.

Letting ¢g(x,6) denote Pxo {(X* 1, ® F®) ¢ BX*-V = x 6® = g}, we see
that the expression to the right of the equals sign in (4.20) is

(4.21) / 6%, O o(dx, d8) — / (%, O)ji(dx, de)).

Note that the same ¢p appears inside the two integrals in (4.21). Since 0 <
¢B(x,0) < 1, (4.18) and Lemma 1 together imply (4.1). O

5. Remarks on the consistency of the posterior distribution of F
given the data. We begin by defining the notion of consistency of the poste-
rior distribution of F' in the present context. We assume that {A;} is an infinite
sequence of sets that is fixed in advance of the experiment. Let data(n) denote
the data at time n. We say that the posterior distribution of F is consistent at
FO if for X3, X,, ... i.i.d. ~ F©, we have, with probability 1, L(F | data(n)) con-
verges in distribution to the point mass at F©. The convergence is in the weak
topology on P [this is the topology generated by the o-field By defined in the
paragraph following (2.2)]. We shall say that the posterior is consistent if it is
consistent for every F© ¢ P. This notion of consistency refers to the posterior
and not to estimators.

Diaconis and Freedman (19864, b) and Doss (1985a, b) studied the question
of consistency in the following setting. We observe data X3, ...,X, iid. ~ Kj,
where Ky(x) = K(x—6), and both 6 and K are unknown. A prior is put on the pair
(K, 0) by taking 6§ ~ v, K ~ D,, and taking § and K be independent. Here, v is
an arbitrary probability measure on R. In this situation the marginal posterior
distribution of 6, v(- | X3, ...,X,), can be obtained and Diaconis and Freedman
(1986b) and Doss (1985b) show that this posterior can be inconsistent in the
following sense: there exists a pair (K9, ) € P x R such that if X7, X», ... are
iid. ~ Ké?o)), then v(-|Xj,...,X,) can fail to converge to the point mass at 6
with probability 1.

On the surface it appears that these results show that in our case also the
posterior is inconsistent, since our situation generalizes theirs in two ways: the
parametric family Ky that we consider is not restricted to be a location family,
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and we do not necessarily observe all the X;’s. However, there is an important
difference between our setup and theirs. We are interested in consistency of
L(F|data(n)) [i.e., L(Kp|data(n))] and this may happen even if the marginal
posterior distribution of 6 is inconsistent. Diaconis and Freedman [(1983), Sec-
tion 5], show that in the setup where we observe complete data Xy, ..., X, ~ F©,
the posterior is consistent if ag(R) is bounded. This leads us to believe that it
should be possible to establish consistency of the posterior for at least some
models that involve censoring.
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