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DISCUSSION
BERNARD D. FLURY

Indiana University

The past 15 years have shown considerable progress in generalizations
and modifications of classical principal component analysis. This includes
distribution theory for sample principal components in elliptical families
[Muirhead (1982) and references therein], robust estimation and testing
[Campbell (1980), Devlin, Gnanadesikan and Kettenring (1981) and Tyler
(1981, 1983)], common principal components in several groups [Flury (1988)],
principal components of patterned covariance matrices [Neuenschwander
(1991) and Flury and Neuenschwander (1993)] and last but not least, general-
izations to nonlinear situations, which constitute perhaps the thorniest area.
Donnell, Buja and Stuetzle (DBS) give a fundamental building block in this
field, the previous most significant building block being the principal curves of
Hastie and Stuetzle (1989).

DBS stress that their method is rooted in the psychometric literature, but
there is at least one (to my knowledge) direct predecessor in the statistical liter-
ature as well: Gnanadesikan and Wilk’s (1969) Generalized Principal Compo-
nent Analysis, described in detail also in Gnanadesikan (1977), Seber (1984) and
Jackson (1991), which imitates the successful use of polynomials in regression.
Gnanadesikan and Wilk’s approach was to introduce powers and products of the
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original variables X, thus generating an expanded vector Y, and to compute the
eigenvectors and eigenvalues of Cov(Y). Indeed, if all N data points x1,...,xy
satisfy a polynomial equation r(x;) = 0 of degree (say) ¢, then the coefficients of
the polynomial, except for the intercept, can be recovered from the eigenvectors
associated with the zero root of Cov(Y), provided all the necessary powers and
products are contained in Y. By a vague continuity principle one would then
expect this approach to reveal approximate polynomial relationships in multi-
variate data, but practical experience suggests that generally the method is not
very successful because it is heavily affected by small errors in the data. This
is not too surprising because with every additional power or product in the list
the dimensionality of the problem is increased, giving small changes in the data
an opportunity to influence the summary statistics. What both Gnanadesikan’s
approach and APCs have in common is their focus on the “small” side by search-
ing for functions of the data which are almost constant. However, APCs go far be-
yond the mere addition of powers and products: they constitute what I consider
a genuine generalization of principal components (see the next paragraph),
and most importantly, they are theoretically well founded. Many data-analytic
methods, particularly when they are formulated in terms of an algorithm to
be applied to a finite number of data points, suffer from a lack of theoretical
understanding. I find it always enlightening to study the properties of a method
when it is applied to theoretical distributions rather than just to observed or
fictitious data. The theory of population APCs developed in Section 4 of DBS is
a prime example of what I mean.

Among the many attempts to generalize or modify principal components
[see Jolliffe (1986), Chapters 11 and 12], not all are equally well-founded, so
let me elaborate a bit on what I consider important criteria. What the more
successful generalizations mentioned earlier have in common is that they focus
on a defining property of principal components (like the ones at the beginning
of Section 2 of DBS), and then find more general situations or models in which
the same property still holds. In the case of common principal components, the
defining property is the existence of an orthogonal matrix which diagonalizes
the covariance matrix, and the generalization is to data in several groups. In
principal curves, the defining property is orthogonal least squares, and the gen-
eralization is to nonlinear manifolds. In the case of APCs, the defining property
is the minimization of variance, and the generalization is to sums of nonlinear
functions. This is quite different from applying a standard method to situations
for which it was not meant to work in the first place, like binary data or powers
and products. Even more importantly, good generalizations allow a theoretical
analysis; that is, there is a population (or model) version on which properties
of the method can be studied.

Although, as DBS explain, APCs and principal curves focus on opposite ends
of the spectrum, the two methods will inevitably be compared to each other.
Having studied both methods theoretically, but having no practical experience
with either of them, I believe that APCs will have more difficulty to become
a widely applicable methodology. What I am most concerned about, despite
the elegant horseshoe theory developed in Section 4.7, is the emergence of non-
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linear functions in the simplest of situations, the multivariate normal. Users
of multivariate statistical techniques often have a tendency to overinterpret
results, a tendency which is likely to be reinforced if APCs are used uncriti-
cally. Inevitably, people will attempt to interpret “almost-constant” nonlinear
relationships even if there is absolutely nothing in the data that would justify
nonlinearity, as is the case with the multivariate normal. Given that nonlinear
APC functions are found, how can we decide whether the structure is mean-
ingful (like in the example of Section 3.5) or whether it is an artifact? It seems
that the best solution is to recommend using only the smallest APC, but not
the subsequent ones.

Otherwise, I can only support DBS’s own remarks and precautions. Many
crucial problems remain open, most prominently the questions of how to choose
the class of nonlinear functions and how to handle multiple eigenvalues. The
importance of the latter problem is evident from the ozone example, where the
interpretation of the second and third smallest APCs might change drastically
under small perturbations of the data.
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