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IMPROVING ON THE JAMES-STEIN POSITIVE-PART ESTIMATOR

BY PETER YI-SHI SHAO AND WILLIAM E. STRAWDERMAN!

Rutgers University

The purpose of this paper is to give an explicit estimator dominating the
positive-part James—Stein rule.

The James-Stein estimator improves on the “usual” estimator X of a
multivariate normal mean vector 6 if the dimension p of the problem is at
least 3. It has been known since at least 1964 that the positive-part ver-
sion of this estimator improves on the James—Stein estimator. Brown’s 1971
results imply that the positive-part version is itself inadmissible although
this result was assumed to be true much earlier. Explicit improvements,
however, have not previously been found; indeed, 1988 results of Bock and
of Brown imply that no estimator dominating the positive-part estimator
exists whose unbiased estimator of risk is uniformly smaller than that of
the positive-part estimator.

1. Introduction. This paper gives explicit improvements to the James—
Stein positive-part estimator of a multivariate normal mean vector.
Let X ~ N,(0,I) and 6(X) be an estimator of the mean vector 6 with loss

(1.1) L(6,6) = |5 — 6] 2.

The estimator 63(X) = X is the MLE, uniformly minimum variance unbiased
estimator and is minimax. It is also admissible if p = 1 and 2. If p > 3, X
is inadmissible [Stein (1956)] and a well-known dominating estimator is the
James—Stein estimator [James and Stein (1961)]

-2
(1.2) §78(X) = (1 - p—)X.
X112
Baranchik (1964, 1970) showed that the James—Stein positive-part estimator
-2
(1.3) 535(X) = (1-” ) X
¥ 1X12 /.,

dominates (1.2), where

@ _{a, ifa > 0,
= 0, otherwise.

Ithaslong been known that the positive-part estimator (1.3) is itselfinadmis-
sible [see, e.g., Brown (1971)]. Bock (1988) and Brown (1988) showed that there
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does not exist an estimator whose unbiased estimator of risk [Stein (1981)] is
everywhere less than that of the positive-part estimator. These results imply, in
a technical sense at least, that improving on the positive-part estimator is diffi-
cult and that the now standard method in the normal theory case [the unbiased
estimator of risk given by Stein (1981)] will not work in this case. The results,
however, also help in directing attention to alternative approaches. Results of
Chow (1987) and Chow and Hwang (1982) for the estimation of the noncentral-
ity parameter of a noncentral chi-square also had an impact on our search for
an improved estimator. Their results essentially indicated that an improving
estimator had to “wiggle” sufficiently about the estimator to be improved. The
close connections between their problem and the present one indicated that
something similar would hold in our case as well.

Our results fall into two broad classes. The first set of results describe explicit
estimators which change §5(X) only on the set p —2 < || X||2 < p. These results
depend on some properties of central chi-square distributions with degrees of
freedom greater than or equal to p. These results and other preliminary results
are given in Section 2. In Section 3, we will study alternative estimators of
the form

ag (|1 X/1?)
(1.4) 8a,g,X) = 675(X) - W“Xf{p—zs IXI2 < 1}

where g(-) is an even symmetric piecewise linear function about | X|2=p — 1
withg(p —2)=g(p) =0, g'(p —2) <0 and |g'(¥)] = 1 a.e. on [p — 2, p]. Hence,
the simplest function g( - ) is “W”-shaped on [p — 2, p]. To specify é(a, g, X) fully,
it then suffices to specify the constant a and a value p* in (p — 1, p) such that
g(p*) attains its minimum value. Values of @ and p* are given such that 6(a, g, X)
dominates §/5(X). In Section 4, we study estimators of the form (1.4) for certain
non-piecewise-linear g. It is easy to see that estimators of the form (1.4) cannot
themselves be admissible. Therefore we investigate a more general class of
estimators in Section 5.
This second class of estimators is of the form

X 2
(15)  8(X)=65(X)-a g(”“}(-—IIHZ)I{"X”zZq}+kh(”X“2)I{”X”2<q} X.

We give conditions on @, %,q, g and & such that (1.5) dominates 6/5(X). In this
case, g(-) will be “W”-shaped on [g, co0), and A( - ) will be bounded continuous and
nonpositive. We believe but have not proved that admissible improvements can
be found in this class.

Some proofs of technical results are given in the Appendix.

2. Preliminaries. Our first result in this section is a lemma analogous to
Stein’s (1981) lemma for the evaluation of expectation of cross products appear-
ing in risk functions. Its proof is straightforward and is omitted.
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LEMMA 2.1. Let X ~ N,(8,1); let H(-) be a continuous function on [a, b]; and
let H'(-) have at most a finite number of discontinuities 0 <a=ag <ay < -+ <
ar <aps1=b.If, fori=0,...,k + 1, both H'(a}) and H'(a] ) are finite, then
01 E(X - 0YXH (| X[*)(a < 12 < 0}
2.1
= B[ pH (IXI) + 21 XIPH'(1X1%) | Lo < 12 <.y + @) — £(B),

where
/2 /2 .
g1(0)=/ / (cosa)?‘(sina)P“2(exp(||9||csinacos¢1)
0 0
+exp(—[|fllcsinacos 1) ) (sin ¢1)? 2 -sin @, _gdadgy -+ dg, s,

w/2 /2
gac) = / / (cos )?(sin a)P_z(exp(“OHc cosa) + exp(—||6]|c cos a))
0 0

x (sin¢1)? =% -sing, _sdadgy - -de, _s;

1\ ) 00 +a

Kl = <—\—/_——27r_> 2P H(a)(\/a)pexp<_ 2 >’
) 1\, 00+b\

e (] 259),

fla) = Klgl(\/a) +(p— 1K, g2(Va),
Fb) = Ko 81(Vb) + (p — 1)K, g5(Vb).

Note that if H(a) = H(b) = 0, then f(a) = f(b) = 0 and the lemma essentially
reduces to Stein’s lemma for a spherically symmetric function H(-).

IfX is as in Lemma 2.1, then T = || X||? has a noncentral chi-square distribu-
tion with p degrees of freedom and noncentrality parameter 6'6/2. The density
of T' is well known [see, e.g., Stein (1956)] to be

09 & exp(—t/2) 212+ 1(9/2)
2.2) exp(—*g) > J12072+I T (p2 +)

j=0

that is, a mixture of central chi-square distributions with p + 2L degrees of
freedom, where L has a Poisson(8’'6/2) distribution.

The next series of lemmas have to do with properties of functions F,,(¢) defined
in Lemma 2.2. These properties play a crucial role in the development of Section
3 and may be of some independent interest. The functions F,(¢) are essentially
(modulo constants) f,(t) — /,(2(p — 1) — t) restricted to ¢ € [p — 1, p], where f,(¢)
is the density of a central chi-square with p + 2n degrees of freedom.

Let s(¢) = 2(p — 1) — ¢. In this paper, if there is no possible confusion, we
denote s(¢) by s.
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LEMMA 2.2. Letp > 3; let
(2.3) F,(t) =exp (_%> $p/2+n—1 _ exp(—%),g(t)p/%n - 1;

and let the domain of F,,(t) be [p —1, p]. For n = 0,1, ..., the following properties
hold (they hold with strict inequalities if t € (p — 1, p]):
(i) Fo(t) <0, Fyt) <0, Fjt) > 0;
(ii) F,(¢) > 0, F(¢) > 0, F,(8)/Fo(t) < 0, for all n > 1;
(iii) F{(t) > 0, Fy(¢) < 0;
(iv) [F1(@)/Fo@®)) < 0.

See the Appendix for the proof.

LEMMA 2.3. For any integer p > 2, there exists an integer j( p) (given in the
proof) such that, for all n > j(p),t € [p — 1, pl,

F/() > 0.

See the Appendix for the proof.

LEMMA 24. If0<b < % andn >p—1,thene((p—2+b)/(p — b)) is
monotone decreasing in n, and

2.4) e(p;—fz—li> <1

PrROOF. Since 0 < (p—-2+b)/(p—-b)< 1,
p—-2+b\" p-15\""1
e( p-b ) <e(p—0-5> '

exp(}%%l)— 15)=p-05+) A/p D) - (1/6+ D - 0/2) <p-025,

il
i=2

Since

hence (2.4) is true. O

Next we give some recursive formulas for F,, for n > 2.

LEMMA 2.5.
(2.5) F,.1() = 2(p — DF,(¢t) — tsF, _1(t);
(2.6)  F,.1(t) —tF,(t) = s(Fp(t) — tF,_ 1)) = - - = s"(F1(t) — tFo(2));

Foa@® "1 —s"" 1R St" —s"
Fo@®) = t—s Fo@) t—s

2.7
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See the Appendix for the proof.

LEMMA 2.6. Lett € [p — 1,pl. Then (¢™ — s™)/(t — s) are positive and
monotone nondecreasing for all m > 1.

See the Appendix for the proof.
The next two results show that F,,(t)/Fy(¢) is monotone decreasing in ¢ for all
n > 2. We already know this for n = 1 by Lemma 2.2(iv).

LEMMA 2.7. Lett € [p — 1, pl. Then Fy(t)/Fo(t) is a monotone decreasing
function of t.

See the Appendix for the proof.
A key result of this section is the following theorem.

THEOREM 2.1. Lett € [p — 1, pl. For all j > 1, Fj(t)/Fy(t) are monotone
decreasing functions of t.

See the Appendix for the proof.
The next lemmas use these properties of the F(¢)’s to establish inequalities
used in the remainder of the paper.

LEMMA 2.8. There exists a pointcoin (p —1,p — 1+ V2/2) such that

Co P
Fo()dt = / Fy(®) dt.
co

p-1

ProoOF. Since, by Lemma 2.2, Fy(¢) is convex, negative and decreasing with
Fo(p — 1) = 0, the result follows easily by comparison with a straight line
through (p — 1,Fo(p — 1)) and (p — 1+ v2/2,Fo(p — 1 +v2/2)). O

LEMMA 2.9. Letc; € (p — 1, p) be such that f;’_le(t)dt = fc‘: Fit)dt. Then
min;>1¢; > coand min;» jyci >p — 1+ V2/2.

PrROOF. By Theorem 2.1, for all j > 1, ;(t) = F;()/Fo(t) is negative and
strictly decreasing on (p — 1, p]. Hence

Co

C P
Fit)di+ /ij(t)dt > —ay(co) / " Fo®)dt + aylco) / Fyt)dt
Co p-1 Co
0.

28 )1

Since Fj(¢) > 0,s0¢; > ¢o for all j > 1.

Since, by Lemma 2.3, F}(?) is convex, positive and increasing with F;(p — 1)
= 0, the result for j > j(p) follows readily by comparison with a straight line
through (p — 1,F;(p — 1)) and (p — 1+ V2/2,F{p -1+ V2/2)). D
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3. A class of improved estimators. In this section we use the results of
Section 2, particularly Theorem 2.1, to find classes of estimators dominating
6J5(X) for the loss (1.1). We consider estimators of the form

ag (|1 X :
3.1 8(a,g,X) = 65(X) - “"“(‘jf_ll‘z_)'XI{p—2S IX12 <p}>

where g(¢) is an even symmetric function around the point ¢ = p — 1 such that
g(p—2)=g(p)=0.
In our first result, g( - ) is taken to be piecewise linear.

THEOREM 3.1. Let p > 3, let j(p) be as in Lemma 2.3, let ¢y be as in Lemma
2.8 and let p* be any value in (co, min(cy, cg, ..., Cjpy—1, P — 1+ V2/2)) such that
b=1-+v2(p* — (p - 1)) <min[},p — p*]. Define

t—p, ifp* <t<p,
g(t)={ *p .fp p *
2p —-p—t, lfP—1§t<Pa

and extend the definition of g(t) to [p — 2, p — 1) so that g(t) is symmetric about
t=p-1

Then 6(a,g,X) [ given by (3.1)] dominates §5(X) provided 0 < a < min{B, 2(p
— 2)bA}, where

_ p/2+i(p) -1
32  A=1-exp(l-b) (pp—f-z—li>

and |
4 f;_ 2g’(t)exp(—;:/2) tP/2+i -1y

3.3) B=mi ‘
oY mm{ ;—2g2(t)eXP(—t/2)tP/2+J—2dt

forj=0,1,...,j(p)—1}.

Note that A and B are both positive, as will be shown in the proof.

ProoF OF THEOREM 3.1. The difference in risk between é(a, g, X) and
638 (X) is given by

AR(9) = R(6(a,g,X),0) — R(615(X),0).

Let ¢ = ||X]||?. Since g(¢) is symmetri¢ and continuous on [p — 2,p], g'(¢) is
piecewise continuous on [p — 2, p] and g(p — 2) = g(p) = 0, according to Lemma
2.1, we have

a’g?(t) — 4atg’(t)
¢ Ip —-2<t<p-

A necessary condition that AR(f) < 0 is, for all 9,

(3.4) ARW®)=E

(3.5) Eg'®OI(p_2<t<py > 0.
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By (2.2),
Eg'OI(p _2<t<p)

o0 _0/9 (9[0/2).1 D , t )
= . t —— |tP/2Hi- gy,
Zex"( 2 )j!2P/2+JF(p/2+j)/p_gg()exp< 2) dt

Jj=0
One sufficient condition for (3.5) is that, for all j > 0,
p )
(3.6) / g'(t)exp (-5>t1’/2+1- ldt > 0.
p—2 2
Since g(¢) is symmetric aboutt=p — 1,
P ) P

3.7 / g’(t)exp(—£>t"/ 2i-lgy = / g (®F;(t)dt,

p—2 2 p-1
where

Fi(t) = exp (—%)t”/z”’ 1_ exp(_?_(!:z_lllf) 2p - 1) —)?* L,

Also, since

oo [ L P>t
EW=N 11, ifp-1<t<p*,

(3.6) is equivalent to
p” P
—/ Fj(t)dt+/ Fit)dt >0
p-1 p*

for all j > 0, which is guaranteed by Lemma 2.9.
We complete the proof by showing that

D 252 _ / .
(8.8) / @g’(t) — datg't) exp(—%) tP/2+i=1qt <0,
p—2

t

for allj > 0.
This holds for 0 < j < j(p) by the definition of B and the fact that B > a > 0.
It remains to show (3.8) for j > j(p). Note first that exp(—¢/2)¢P/2+/ -1 ig
monotone increasing and |g(¢)| < 1 on [p — 2, p]. Therefore, using the fact that

p_b>p*’

/P 8O -4 ppizrit1gy
p-2 1

<1 /” e ¢p/2ri=1gy
p_2 p—2
2 P : ;
< — e"1¢P/2+i-1qy
(p—2)b/p_b
P

2 ’ L j —
== ¢ tP/2+i-1qt,
(p—Z)b/p_bg()e ’

(3.9
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Now,
P P t . bt -
/ Fj(t)dt:/ {eter2ei=1 =25 2(p - 1) - 7"
p-b p—b
/2+j—-1
L e e B ¥
p—b 7

Since, for all j > 0, exp(t —p + 1)[(2(p — 1) —¢)/t]P/2*/~ 1 is monotone decreasing
int, for b < 0.5,¢ € [p — 1, p] and by Lemma 2.4 and (3.2), we have

P
/ Fi()dt
p-b
P . _ p/2+j-1
>/ e~ 1¢p/2+-1 l—exp(l—b)(p—z—”)-) dt
p—b p_b
D ) _ p/2+j(p)—1
>/ e 5 ¢p/2+i-1 1—exp(1—b)(p—2—+lz) dt
P p-b

-b

D . )

= / e~ 3 ¢P/2+i- 14y,
p—b

(3.10)

Note also that A > 0, by Lemma 2.4, and exp(1—5)(p —2+b)/(p —b))P/2+ip) 1
is monotone increasing in b. Hence, by (3.9) and (3.10),

P 52 , ) D
(3.11) / 8O 4 ypr2i-1gy < ——2——/ g'(t) Fj(t)dt.
p—2 t p-b

~(p - 2)bA
We will finally show
p—b " p—b
(3.12) / gOF O dt = - / Fio)dt + / Fi)dt >0,
p—2 p-1 p*
forj > j(p).

Hence, (3.11), (3.12) and (3.7) imply that, for j > j(p),

/p gf_(i)exp _.E tP/2+j—1dt
| o 2)"

s
(3.13) < o=z /p | FOR®a

_ 4 v _t\,p/24j-1
=3 2)bA/p_2g (t)exp( 2)t dt.

The fact that 0 < a < 2(p — 2)bA implies that (3.8) holds for all j > 0 and
hence the theorem holds.
It remains to show (3.12).
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TABLE 1
P p* A B a
3 2.695 0.9976 0.1627 0.0341
4 3.700 0.9779 0.3314 0.0393
5 4.700 0.9393 0.1968 0.0566
10 9.705 0.7071 0.0072 0.0337
By the definition of b,

p" p—b
/ (t—(p—l))dt:/ (t—(p—1))dt.
p-1 p*

For j > j(p), Fi(p — 1) = 0, F;t) > 0, ij(t) > 0 and F;’(t) > 0, that is, Fj(t) are
convex increasing by Lemmas 2.2 and 2.3. Hence

F. *
—-—J-(&(t—p+l), if p—1<t<p*
pr—p+1
5OV R
Jp _ 3 * <
p*_p+1(t p+1), if p*<t<p.
Therefore
p” p—b
- Fit)dt + / Fi(t)dt
p-1 p*
St |
>4 - 0 t—( —1)dt+/ t—(p—-1)dt; =0.
p—(p-1 p—l[ p ] e [ b ]

This completes the proof. O

Table 1 gives some values of p*, A, B and a for which the estimator given in
the theorem improves on ¢ ;IS(X ).

These examples are not intended to represent optical choices of p* but to
show the order of magnitude of the expected range of values of a.

4. Some further results. In the preceding section, we took the function
g(¢) to be a piecewise linear function such that g(p — 2) = g(p) = 0. We extend
the previous result in two directions. In this section, we assume that g(¢) is a
curve but is still symmetric about ¢ = p — 1 and g(p) = 0. In the next section,
we do not assume that g(¢) is symmetric and let g(¢) be defined on [0, c0).

Let both g1(¢) and g,(¢) be continuously differentiable functions defined on
(p — 1 —¢,p+e¢), for some € > 0. Moreover, let g;(¢) be a monotone decreas-
ing function and let gy(¢) be a monotone increasing function on the interval
[p — 1, pl. Assume g1(p) = g2(p — 1) and go(p) = 0; Fj(t) is defined as in (2.3).
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Let w € [0.1], and define

t—(p-1)
g(t,w) =Wg1(P— 1+—Z'_)I{p—1$t§p—l+w}

(4.1)
t—(p-D-w

1- -1
R

)I{p—1+w<tsp}'

If w = 0 or 1, we define g(¢,w) = go(t) or g4(¢), respectively. If there is no risk
of confusion, we write g'(t,w) as 9g(¢,w)/0t. Now since g'(¢,0) = g5(¢) > 0 and
g'(t,1) = g1(¢) < 0, there exists wy such that

4.2) / " gt woFo)dt = 0.
p—-1

If g(¢,w,) satisfies

P

(4.3) | gtwoit-p-Dyar>o
p-1

then we have the following result.

THEOREM 4.1. Letgq(-), g2(-)and g(-, -) be defined as in the previous para-
graph. Extend the definition of g( -, - ) so that g(¢,w) is an even symmetric func-
tion (int) around t =p — 1,defined on t € [p — 2, p] for each w. Then there exists
w* > wq such that (i) and (ii) hold:

@ [P g/t wHE®)dt >0, forall 1< j < j(p);
Q) [P, g't,wh{t—(p - D}dt > 0.

Furthermore,

ag (|| X||?, w*
(4.4) 8(a,w*, X) = 675(X) - _(II—XIIE——)XI{p—% X112 < p}

dominates 6;’5(X ) provided (iii) holds:
(iii) 0 < a < min{B, 2(p — 2)blA/L?}, where b satisfies the equation

p—b
(4.5) / g, wH{t—(p—1}dt=0,
p-1

and where

L = max{|gt,w")||p -1 <t <p},
I =min{g'(t,w*)|p-b <t <p}
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and

B . {4j;)p_zg/(t,w"‘)exp(_t/z)tp/2+j_1dt
= min

;_ 2g2(t, w+)exp(—t/2)tp/2+j—2dt

j=0,1,...,j(p)—1}.

ProoF. Note that the class of functions g( -, -) satisfying (4.2) and (4.3) is
nonempty, by Theorem 3.1. It suffices to show for all j > 0 that

252 +) _ / +
rp-1
Let
Fi(@)
aj(t) = F;(t)

When ¢ € [p — 1, p], by Lemmas 2.2 and 2.7 and Theorem 2.1, «;(¢) is monotone

decreasing and nonpositive for all j > 0.
For 1 < j < j(p),

P P
/ gt weF;@)dt > oj(p — 1+ wo)/ g, wo)Fo)dt = 0.
p—-1 p—1

Also, by (4.3) we have

P
/ g'(t,wo){t — (p—1}dt > 0.
p—-1

Therefore there exists w* > wy, such that for 1 < j < j(p) the following
inequalities still hold:

/ ’ &', whFt)dt > 0,
4.7 , p-1 |
/ &' @w"){t—(p - D}dt > 0.
p—-1

From (4.7), we also know that there exists b > 0 such that
p—0b
/ gt w){t—(p-D}dt=0,
p-1

with b <1 -w™.
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An argument similar to that in Theorem 3.1 shows

P
/ gt wHF©)dt >0 forj > j(p).
p-1

We complete the proof by showing that (4.6) holds for allj > 0. For 0 < j < j(p),
this follows from assumption (iii). _
For the casej > j(p), using an argument similar to that leading to (3.13),

P g2(t,w+) . 212 P , e
[ R s 2 [ geumod

This completes the proof. O

5. More general classes. The results of the previous two sections pre-
sented estimators which change the values of §75(X) only on the compact set
{p -2 < ||X]||? < p}. While these estimators improve upon §/5(X), they cannot
themselves be generalized Bayes and hence are not admissible. In this section,
we present a class of improved estimators which allow changes for || X||? in
(0, 00) and which we believe (but have not proved) contains admissible improve-
ments. A brief discussion of this is given in the comment after the statement of
the theorem.

THEOREM 5.1. Let g(t) be a continuous and piecewise differentiable W-
shaped function defined on [q, 0o) with g(q) = g(co) = 0, wherep —2 < q <p —1,
that is, there existp — 2 < q < t] <ty < t3 <ty <t5 < tg < 00, such that

gta) =gty =0
and
>0, ift1<t<tzorts <t<oo,

/t=
g() {SO, ifq§t<tlort3§t<t5.

Let h(t) be a continuous nonpositive function defined on [0,q] such that |h(t)| <
M < oo and h(q) = 0. Let b; = 2°/2+JjIT(p/2 + j). Assume there exists a positive
integer J such that (i) and (ii) hold:

(1) We have
t ;
/ g'(t)exp<—§>t~”/2+‘]+1dt > 0.
q

(i) We have [,° g'(t)exp(—t/2)tP/2*7 ~1dt > 0.
(iii) Assume, for all t > tg, g2(t) < 4tg'(2).
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(iv) Let By < By be two constants such that if w > 2Bs or 0 < w < 2By, for
some integer N > J,

/°° g'(t)exp(—t/2)tP/2~ 14t
q bo

2

N f;sg’(t)exp(—t/2)t1’/2+j”ldt (w)l ~o

+2

(v) Assume that

Lo 0| J g exp(—t/2) /20 1dt((By) /b
N By | P2 h@®)exp(—t/2)tP/2 dt

(vi) Assume that

2 /oog’(t)exp(—t/2)tp/2‘ ldt
q

q
vhq-p+2) [ B0 exp(-4/2)dt >0,
p—2

(vii) Assume 0 < a < min{0.5, A;, Ay, 1/(gkM), B,/(kM)}, where

A 2 fq°°g'(t) exp(—t/2)tP/2~1dt + k(g —p +2) f;—z h(t)exp(—t/2)tP/2~1d¢
1o J7° g2t exp(~t/2)tr/2 = 2dt + k2 [{ h2(t) exp(—t/2)tP/2 dt

)

A 4ft:°g’(t)exp(—t/2)tp/2‘ Ldt
274 i g'(®) exp(—t/2)tr/2~1dt + fq‘“ g2:(t)exp(—t/2)tP/2-1dt

Then

g(I1X11?)

X Xtaxesa — akh(I1XI*)X o < xi2 < o)

(5.1) 6X)=65X)-a

dominates §5(X).

CoMMENT. Itis critical that ¢ > p — 2 in order that §(X) have a chance to
be admissible. To see this, note that generalized Bayes estimators are coordi-
natewise monotone. It follows that if ¢ < p — 2 and §(X) is generalized Bayes,
then 6(X) = 0 for | X||? < q and hence by uniqueness must be identically 0.
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The choice of ¢ > p — 2 allows choices of g(- ) and A(-) such that the resulting
6(X) may be strictly monotone and sufficiently smooth to be possibly general-
ized Bayes. In particular it is important to note that A(-) is not assumed to be
differentiable. This allows A(-) to be free to “correct” the discontinuity in the
differential of the positive-part estimator in a neighborhood of | X||2 = p — 2.
This is accomplished by having a similar discontinuity in the differential of
h(]| X||*)X but of opposite sign so that 6(X) is differentiable everywhere. If g(-)
goes to O sufficiently quickly and &6(-) is generalized Bayes, it follows from
Strawderman and Cohen (1971) that é(-) is admissible.

PrOOF OF THEOREM 5.1. If X ~ N,(6,I), for any fixed 6, there exists an
orthogonal matrix @, such that Q9 = (11,0,...,0) and Y = QX ~ N,(Q9,I) with
p? =10)%, |Y)|? = | X||?> and | X — || = ||Y — Q0]|%. Therefore, we assume without
loss of generality that 6 = (64,0, ...,0".) We use the notation ¢ = || X||? except in
those expressions where 6,X; and || X||? occur together;

AR(6) = R(6,6(X)) — R(6,6%(X))

2g2(¢) — datg'(t
=E[<ag ) r g())]l{t>q}

+Ea®k*th* (O] s < gy + 2akELX 1 (| X11%) 10 < yx12 < g
+2akE(p -2 - t)h(t)I{p_2<t<q}.

Note that since h(-) <0andg—(p —2) < 1,

EG’Xh(||X||2)I{p_2< 1x12<q) +2E(p =2 = 0h@®I (5 _2 <1<y
< E0'Xh(||X||2)I{p_2< (1X)12 < q} +2(p -2 —Q)Eh(t)l{p—2<t<q}

(62)  _2g—p+2) /
(V2r)”  Jip-2<ixip<q)

2 2
X exp(—@)exp(—%)dxl, oo dxp.

|.(1X11%)|

Similarly, since, by assumption (vii) and akM < 1/q,

akEth* ) (o <t < gy + EOXR (| X|1*) 0 < 1 x)12 < 0}

(5.3)
< bo/o h (t)exp( 2)t dt exp <5 )
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then by (5.2) and (5.3),
2g%(t) — 4atg'(t
AR() < EZED - CAQS B
a?k? (1 t 6’6
z* 2 _ 2 \4p/2 27
+ be /0 h (t)exp( 2)t dtexp< 2 )
(5.4 _2oMe_p+2) R(IXP)

2 Jpeacixir<g

2 g
X exp(—-“—%—”—) exp< b )dxl -dxp

+ 2akE9’Xh(||X||2)I{0 <|IX|2<p -2}

We separate the proof into two cases.
Case 1 (8'6/2 < B; or #'6/2 > B,). By assumptions (i) and (ii) we have, for
Jj=d,

4] . . ls
/ g'(t)exp (—%)t"/z”‘ ldt > (tl)J"J/ g'®)exp (—%)tp/z’“" Ldt > 0.
q q

By assumption (iv),

0 /°° g'(t)exp(—t/2)tP/2~1dt
g bo \

+4ii/t6g’(t)exp tP/2+ =1y ”0” >0
25, 2 2 )"

and by the fact that E01X1h(||X||2)I{0 <Ix|2<p-2} < 0 and by assumption (vi),
we have

exp(‘9 )AR(G) < {/ooazgz(t)exp<—%)tp/2‘2dt
q

- 2a/ g’(t)exp(—£>t"/2' Lde
q 2

(5.5) ra2k? / hz(t)exp( 2>tp/2dt}bl

0

ad 0’02 o0 ;
+Z / [ /qg%t)exp(—%)tp/z”_zdt

Jj=

— 4a g’(t)exp(——t-)tp/z"j‘ldt .
te 2
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By assumptions (iii) and (vii), for all j,

a/ gz(t)exp(—%>t"/2+j_2dt
q

—4 g’(t)exp(—-;—)tp/2+j_2dt

te

te

to ¢
+ / gz(t) exp(——)t”/z‘zdt
q 2

—4 g/(t)exp<__;_>tp/2—ldt}

tg

. o t
/ _L /2-1
(5.6) : té{a l4 £ eXp( 2) e

<0.

Therefore, AR(§) < 0 by (5.5), (5.6) and assumption (vii). This completes the
proof for Case 1.
Case 2 (B; < §'0/2 < By). By (5.4) and the fact that A(-) < 0,

(22} 570
< [/oo [azgz(t) exp(—%)tp/z‘zl dt
q
- 4a/oog'(t)exp<—%>tp/2‘ldt
q

q
— 2ak(qg—p + 2)/ h(t)exp (_.E)tP/Z— 1 4¢
p-2 2

(57) +a2k2 /q thz(t) exp<__t_>tp/2 - ldt] _}_
0 2 b
[ R
+ ( / [ag%(®) - datg'®)] exp(—.t_)tp/2+j—2dt> (0'6/2)
Jj=1 q ‘ 2 b;
o~ % PRy
+ Z < [azgz(t) — 4atg'(t)]exp (_.;_)tp/z +j—2 dt) (6 i’/ )
j=J \a g

J
L) xen i)
+ak / <——) X2h (X
(o< |X|2<p-2} \27 '

2 /
X exp(—-“—gfz—“——) dxydxy - 'dxp> 02—0
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By symmetry, the last term in (5.7) is equal to

ak| P2 t 0’0
— _ 2 \4p/2-1
(5.8) by l/o th(t) exp( 2)t dt] 7

Additionally, the next-to-last term in (5.7) (i.e., Z,‘°° -+) is negative. Also note
that the first term in brackets in (5.7) is negatlve by assumptlons (vi) and (vii).
Finally, by (5.6) and assumption (iii),

5 * / J
2 / [a’g*(t) — 4atg(t)] exp( f)tl’/"'ﬂ 2, ) 06/2)°
j=1 q 2 bj

p—2
+3/7E / th(t) exp _E\ppr2-144) 20
b1 \ Jo 2
J-1
55 )i zdt;w»
Jj=1

bj
_ak

1

t
2

P —2 t
/ th(t)exp(——z—)tp/z“ldt B
0

This last expression is negative by assumption (v). Hence AR(§) < 0. This
completes the proof. O

ts
4atg'(t) exp <—
q

APPENDIX

PROOF OF LEMMA 2.2. Since
[F.@®)] = -1) [exp<_%)tp/2+n—2
¢ p/2+n—-2
+eXp<§ —p+1)(2(p—1)—t) ]

+P- L\ . p/24n-2
5 exp( 2)t l

+t_(p _2) exp(% _(p _ 1)) (2(p _ 1)_t)p/2+n—2

(A1)

2
and, for any n,

by assumption p — 1 <
n

< p, from (A.1) and (A.2) we see [Fy(2)]’ < 0 and
Fy() < 0. Also, for all 1

t
> 1,Fo® > 0, [Fa®]' > 0 and F(t)/Fo(®) < 0. As we
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assumet=p — 1+u,

- 4L — )2
Fi) = %exp<_l’__21__‘£>(p 1 _u)p/z_s(p L, w )

1 p—1+u p/2-3 . (1+u)2
2exp(——2—)(p— 1+u) p—2- 5 .

—wn\
RO e e ]

=exp<g)(p— l—u)p/z_‘{(p— 1-w(A-uw+(5B—-u)

p—-2 (1-u)?
(-5

when p > 3 it is nonnegative for all u € [—1, 1]. Hence the first term in (A.3)
dominates the second.
When p = 3, it is easy to see F(/(¢) > 0. Therefore, for all ¢ € [p — 1, p],

(A.4) Fu@) > 0.

Since

(A.3)

Since

FU(t) = % {exp (—”—_-21—2-?)( p—1—upr/2-1

— exp<_3.ﬂ)(p_ 1+u)P/2_1:|

2
LA -wd+u) lexp<_l’_‘1_:_‘_‘)(p _ 1 _yyp/a-2
4 2
— exp<_l)_T1+u)(p — 1+u)P/2_2],

and since exp(—£/2)tP/2 =1 and exp(—t/2)tP/2~ 2 are monotone decreasing,
(A.5) Fi{@® > 0.

Similarly, exp(—¢/2)¢?/2=1(p — 2¢) and exp(—t/2)t?/2~(p — t)* are monotone
decreasing, so

Fé’(t) = exp<_%)tp/2_ 1}7—th — exp(__sz_)sp/z_ ll)_Tzs

(p —t)? t\,p2-1_ (p—8)? S\ p/2—1
+ exp 3 t ——4———exp 3 s

4
<0.



IMPROVING POSITIVE PART ESTIMATORS 1535

Since

[Fj(t)]' _ Fj®)Fo(t) - FyOF,(®)
Fol® (Fo(0))*

let us define Gj(t) = F;(£)Fo(t) — F{(t)F;(t). Then, by (A.4) and (A.5),
G (t) = F{()Fo(t) — Fo()F1(t) < 0.
Because Gi(p — 1) = 0, therefore
Fi®)
[Fo(t)] =0 0

PrROOF OF LEMMA 2.3. We have

y 2
Frlz'(t)=eXP(—%>tp/2+"_3[(p—t)(n—g) +(n—1)(n—2)—%+(p;t) }
_ )2
_exp(_%)sp/2+n—3|:(p—s)<n—g)+(n—1)(n—2)_%+££_4i)‘|'

Note that F//(p — 1) =0, and

9 _ ’
{exp(—-;-)t”/z‘””‘E‘ [-é + B -2+ B en - 3)] }

(A.6) > exp (—%)t”/z"" - 4{25—1 [2(n — 2)(n - 3) - 3p]

+ p—;—t[an — 24n +22 - 3p] }
Take j( p)to be the smallest integer bigger than (5+/1 + 6p)/2. Thenifn > J(p),
(A.6) is nonnegative for all ¢ € [p — 2, p] and, since ¢ > s, for all¢ € [p — 1, p].
Hence, for n > j(p),F)/(¢) > 0. O

PROOF OF LEMMA 2.5. Sincet+s=2(p —1) and

@t +8)F,(t)=F, ;1) +tsF, _1(t),

we have
Fp o 1(t) — tF,(t) = s(Fu(t) — tF, _1(®)).
By induction, F,, ,1(¢) — tF,(¢) = s"(F1(2) — tFo(2)).
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Let
Ty 1) = Fy11(t) — tF, ().
Then
Ty 1) = s"T1(®);
also,

Fn+1(t) = Tn+1(t) + tFn(t)
=T 1@ +tTo@) + - - - + " T1(t) + £ 1Fy (2).

So we obtain
t""'l _ sn+1

Fpo1@) = Tl(t)< ) +t"*1F, ()

t—s
and

Fra@®) "1 —s"1R@) L8
Foit) = t—s Fo@) t—s '

O

PROOF OF LEMMA 2.6. Lett=p—-1+u,sos=p—1—u,whereu € [0, 1]. For
the case of m = 1 or m = 2, the ratios are 1 or 2(p — 1) and are nondecreasing.
For the case m > 3, the derivative is given by

[tm—s’”}' i[(p—1+u)m—(p—1—u)m:|

t—s | " du 2u
m—1
) % Z {[(p_l"'u)m—l_i—(P—l—u)m—l-i]
i=0
x [(p—1+u)i—(p_1_u)i]}
> 0. _

PRrROOF OF LEMMA 2.7. By Lemma 2.5,

Fy(?) l_ Fi®)] /

so it is sufficient by (A.1) to show for all u € [0, 1] that

p-1 p-1
—-u u _ LU _ u
¢ (1+p—1) e(l p—l)

3 _ 2 p/2-2
g U P 2[1_ u }
(p-12p-1 (p-1)72

<0.
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Let

—u u V"7, u \°7! 2u8
o= (ipts) - (5t) gty

It is straightforward to show that f/'(x) is nonpositive. Since £(0) = 0, f(z) < 0.
Also, for all p > 3,

>

-9 2 p/2-2
T

1
p-1" (p-12 e

W =

Hence, Fy(¢)/F(¢) is monotone decreasing on [p — 1, p]. O
PrROOF OF THEOREM 2.1. By Lemmas 2.2 and 2.7, we know for the cases

J =1orj =2 that the result is true.
For the case j > 3, by Lemma 2.5,

F,-(t)]'_ t/— s/ ’Fl(t)+ tf—sf) Fl(t)]’_<t tj‘l—ss‘l)'
Fot)| ~ \t—s ) Fo@® t—s )| Fo® R p— '

By Lemma 2.2, we know that

Fi@®)
<0
Fy@) —
and
Fi®]’
<0.
[Fo(t)] -
Hence
Fi@) _ . Fy®  lim_, 1F@
—_—< = = — — .
Fo®) = tonr1Fo® ~ Tim—, 1o - P~V
By Lemma 2.6,

F®7 ti—si\" [ g1 _si-1\
[Fo(t)] S_(p_l)(t—s) _(ts t—s )

<2u[-(p-D(p—-1+uy 3+(p—1+u)y-2

—(p—1-u)p-1+u)~?
Jj-1
+2u2 [Filp-Dp-1-uw)~"Yp-1+u)y~-2-¢
i=2

+(p—1+u)j_1‘i(p—1—u)i—1].
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Since
—(p-D+(p-1+u)—(p—-1-u)< —p+3<0,

the first term is nonpositive. The second term is also nonpositive, and the proof
is complete. O
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