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TWO-SIDED TESTS AND ONE-SIDED CONFIDENCE BOUNDS

By H. FINNER

Universitit Trier

Based on the duality between tests and confidence sets we introduce a
new method to derive one-sided confidence bounds following the rejection of
a null hypothesis with two-sided alternatives. This method imputes that the
experimenter is only interested in confidence bounds if the null hypothesis is
rejected. Furthermore, we suppose that he is only interested in the direction
and a lower confidence bound concerning the distance of the true parameter
value to the parameter values in the null hypothesis. If the null hypothesis is
rejected, the new one-sided confidence bounds are always not worse than the
corresponding bounds of the two-sided confidence interval approach. If the
true parameter is far away from the null hypothesis, the new bounds tend
to be nearly equal to the corresponding one-sided confidence bounds with
full confidence level 1 — a. The new method will be studied and illustrated
in more detail in one-parameter exponential families and location families
with unimodal Lebesgue densities, and, as an example where conditional
tests are available, we consider the comparison of two Poisson distributions.
In case of the normal distribution with unknown variance we propose among
others a modification of a procedure of Hodges and Lehmann. Here it may
be surprising that there exist situations where the new method yields con-
fidence bounds exactly matching the classical one-sided confidence bounds.

1. Introduction. We are concerned with the problem of an appropriate
statistical inference following the rejection of a two-sided hypothesis of the type
H: ¢ =9y or more generally H: ¢ € [a, b] with —0o < @ < b < +00. Consider, for
example, the case where ¥ represents the difference of two treatment means
¥1 and Jq. If the null hypothesis ¥; = ¥ is rejected, the second question will
be whether ¥, < 95 or ¥; > 0. If this question is answered, the third question
will be how much the treatment means differ. Bahadur (1952) and Lehmann
(1950, 1957) considered the comparison of two treatment means as a three-
decision problem. This approach gives answers to the first two questions, that
is, is there a difference, and if so, which treatment is the better one. A similar
approach is due to Holm (1979) in connection with multiple test procedures.
The three-decision approach can be based, for example, on the corresponding
unbiased two-sided tests (if available) or, alternatively, on bidirectional unbi-
ased two-sided tests (if available) introduced by Shaffer (1974). A disadvantage
of these procedures is that a decision like ¥; > ¥, reveals nothing about the
difference between the treatment means. The possibility of directional errors
or errors of the III. kind [cf. Mosteller (1948a)], that is, decisions for the wrong
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direction, has led to a considerable number of papers dealing with this
“problem” [cf. Kimball (1957), Kaiser (1960), Marasculio and Levin (1970),
Games (1973), Keselman and Murray (1974), Levin and Marasculio (1972);
see also the collection of these papers in Liebermann (1971)]. Other papers
contain controversial discussions concerning the use of one-sided or two-sided
tests [cf. Marks (1951, 1953), Hick (1952), Jones (1952, 1954), Burke (1953,
1954), Kimmel (1957), Goldfried (1959), Eysenck (1960), Fleiss (1987), Koch
and Gillings (1988), Peace (1988), Ellenberg (1990), page 13 together with the
comment of M. Zelen on page 29, and Peritz (1991)]. A discussion concern-
ing the use of tests or confidence intervals may be found in Natarella (1960).
Other approaches considered in the literature are, for example, conditional con-
fidence sets, or a mixture of testing and estimating which leads to unconditional
or conditional estimates if the null hypothesis is rejected [cf. Bancroft (1944),
Mosteller (1948b), Bennett (1952, 1956), Asano (1960), Buehler and Fedder-
son (1963), Brown (1967, 1977), Olshen (1973), Meeks and D’Agostino (1983),
Scheffé (1977), Arabatzis, Gregoire and Reynolds (1989) and, finally, Goutis
and Casella (1992)]. The problem of estimation following sequential tests has
been studied, for example, by Siegmund (1978). By the way, in a recent pa-
per Bartoszynski and Chan (1990) discussed the attempt of Dr. Jones, a recent
graduate from the “Department of Dubious Statistics”, to improve the classi-
cal two-sided confidence interval for the mean of a normal distribution with
unknown variance.

However, besides pure testing procedures, the confidence interval approach
is one of the most convenient methods. Based on the duality between tests and
confidence sets [cf. Lehmann (1986), pages 89-96, and Witting (1985), pages
289-299], this concept is mostly used to derive unbiased two-sided confidence
intervals with confidence level 1 — a, where o € (0,1) is the level of signif-
icance for certain tests. Clearly, two-sided unbiased confidence intervals are
not the unique option; for example, Pratt (1961) obtained a different type of
a confidence interval by minimizing the expected length of the intervals in a
certain sense. Also the concept of bidirectional unbiasedness [Shaffer (1974)]
can be used to derive unbiased bidirectional confidence intervals. In any case,
the advantage of the confidence interval approach is the possibility of a rein-
terpretation of certain hypotheses and a well-defined control of the probability
of wrong decisions. If € = (C(x): x € X) denotes a family of confidence sets with
confidence level 1 — o, a hypothesis H C © is rejected if C(x) N H = @, and
accepted otherwise. This method controls both the error of falsely rejecting a
true null hypothesis as well as the error that the true parameter value is not
covered by C(x) [cf. Aitchison (1964)].

In the present paper we consider an alternative confidence interval approach
which is based on the assumption that the experimenter is only interested
in confidence bounds if the two-sided hypothesis is rejected. Furthermore, we
suppose that the main interest is focussed on the distance between the true
parameter value 9 and the parameter values in the null hypothesis. If the null
hypothesis H: 9 € [a,b] is rejected, the confidence interval should be of the
type (—o00,c(x)] with ¢(x) < a or [e(x), 00) with ¢(x) > b. The motivation for this
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approach is similar to that described by Meeks and D’Agostino (1983) and will
become more clear by considering the following three questions sequentially:
(1) Is ¥ ¢ [a,b]? (2) If yes, is ¥ < a or ¥ > b? (3) If we decide for ¥ < a(¥ > b),
how large is the difference at least?

This can be considered as an extension of the approach in Hodges and
Lehmann (1954), that is, the approach which they called testing for material
significance. Roughly speaking, they proposed testing an interval hypothesis
of the form H: ¥, — ¥ € [a,b] with @ < 0 < b instead of testing the often
unrealistic point hypothesis ¥; = ¥5. In this paper we try to find additional
confidence bounds for ¥; — ¥, as far away from 0 as possible including a confi-
dence statement about the sign of 99; — 5. This is in contrast to the work of Kim
(1986), who developed, in connection with confidence bounds on the probability
of a correct selection of the largest parameter, among others a lower confidence
bound on the absolute value of ¥ = ¥; — 9. However, this confidence statement
does not include any information about the sign of ¥ = ¥; — 5.

In some sense, our approach can be considered as the opposite of the
bioequivalence problem (which is treated in a large body of literature), where
one aims for a confidence interval for ¢ = ¥, —J, as tightly around 0 as possible.

In Section 2 we first describe the general principle to construct the proposed
lower and upper confidence bounds. This principle is based on the well-known
duality between tests and confidence sets. The characteristic of the construction
is the use of a set of unconventional (e.g., nonequivariant) tests with acceptance
regions satisfying some additional inclusion relations. This is in line with the
approach of Stefansson, Kim and Hsu (1988), where unconventional sets of tests
are used to construct confidence sets associated with stepwise multiple test
procedures. Then we consider the one-parameter exponential family and the
class of unimodal Lebesgue densities with location parameter ¢ in more detail.
Based on the results concerning uniformly most powerful unbiased tests [cf.
Lehmann (1986), Chapter 4] in one-parameter exponential families, we obtain
some monotonicity properties for the boundary functions. These results are
also applicable in certain two-parameter exponential models, for example, for
the comparison of two binomial or Poisson distributions, respectively, where
conditional tests are available. Similar results hold for every class of unimodal
Lebesgue-densities with location parameter. Furthermore, the new bounds are
compared with the bounds obtained from one-sided level-« tests. Two examples
dealing with the normal distribution (0 known) and the comparison of two
Poisson distributions conclude this section.

Section 3 is devoted to the normal distribution with unknown variance.
Here we first consider the approach where the hypothesis is formulated in
o-units, i.e., in ¥/o, before we are concerned with the sometimes more inter-
esting hypothesis H: ¢ € [a,b]. In the latter case we propose a modification
of an approach of Hodges and Lehmann (1954) which then yields one-sided
confidence bounds.

2. Construction of lower and upper confidence bounds. Letd € © C
R be a real parameter, and let X be a random variable with values in X and
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corresponding probability measure Py. Let T'(x) be a suitable test statistic which
tends to larger values if ¥ increases, and let

1, when T'(x) < ¢y or T(x) > ca,
(2.1) p(x) =4 v, whenT(x)=¢; i€ {1,2},
0, whenc; < T(x) < co,

be a level-a test for H: ¢ € [a,b] versus K: 9 € ©\la,b], infyco?d <a < b
< supyc e ¥, with supy c y Eyp = o and

su;z (Py(T < c1) + 1Po(T =¢1)) <
9>

sup (Po(T > ¢3) + 12Py(T = ¢2)) < cu.

<a

The last two conditions ensure that (2.1) can be reinterpreted as a three-decision
procedure with the property that the probability of the occurrence of directional
errors, that is, decisions for ¥ < a (¥ > b) although ¥ > (¥ < a) is true, is
also bounded by a. If T(x) < ¢1 [T(x) > cgl, we decide for ¥ < a (¥ > b); if
T(x) = c1 [T(x) = c3], we decide with probability v, (y9) for ¥ < a (¢ > b). Now we
proceed as follows. First we construct a family of level-a tests (py: 9 € ©\le, b])
with the property

(2.2) w9 <o < forally <¥ <aandb <Y <.

Then we use the well-known duality between tests and confidence sets to con-
struct the corresponding confidence bounds with the desired properties. The
decisive idea is the construction of tests satisfying condition (2.2) in a suitable
way. For ¥ < a we define

1, when T'(x) < ¢1(9) or T(x) > co,
79, when T(x) = ¢1(¢9),

2. =

23) 22 Yo, when T'(x) = ¢,
0, when ¢1(9) < T(x) < ca,

and, for ¥ > b,
1, when T'(x) < ¢1 or T'(x) > co(99),
M, when T'(x) = c;,

2.4 =

(2.4) 0ol =0 ). when T(x) = cy(9),
0, when ¢; < T(x) < co(V).

The critical values are determined such that c¢;(J) are the maximal and co(+9)
are the minimal values such that conditions (2.2) and

(2.5) Eypy <a foralld <aandd >b

are satisfied.
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Obviously, for each ¥ € ©\[a, b, ¢y is a level-a test for the hypotheses Hy: 9’
=1 versus Ky: ¢ # 9, but it is also for the hypotheses

Hy: ' € [9,b] versus Kg:9'¢[9,b), ¥<a,

(2.6) ~ ~
Hy: ¥ € [a,9] versus Ky: 9 ¢ [a,d], 9> b.
Alternatively, if we require tests of the type (2.3)~(2.4) with c¢;(9) the maximal
and c,(19) the minimal values such that

sup Eypy < a for all 9 € ©\[a,b],
9 €Hy

then (2.2) is automatically satisfied. Furthermore, these tests are level-a tests
for Hy and Hy, respectively. In terms of multiple test procedures these tests
form a coherent multiple level-a test for the set of hypotheses {H} U {Hy: ¥ €
O©\la, bl}. In any case, condition (2.2) ensures that the functions c;(¥) and co(9)
are increasing on their domain, which is important for a simple conversion into
confidence bounds. A disadvantage of (2.2) is that Eypy may be strictly less
than o for some ¥-values. However, it will be seen below that equality holds in
(2.5) under various distributional assumptions.

First, however, we use the duality between tests and confidence sets for the
construction of the desired confidence bounds. Therefore, let Z be uniformly
distributed on (0, 1) and let X and Z be independent. Then we define a new
family of level-a tests ¢ = (p9: 9 € ©) as follows. For ¥ € [a,b] let 1y = 1 if
@ >Z,and 9y = 0if ¢ < Z. For ¥ € ©\[a,d] let 1y = Lif py > Z, and 9y = 0 if
w9 < Z. Then € = (C(x): x € X), with C(x) = {9: ¥9(x) = 0}, constitutes a family
of confidence sets with confidence level 1 — a. If the null hypothesis H: 9 € [a, b]
is accepted, that s, ¢y(x) = 0 for all ¥ € [a, b], then C(x) = ©. If H is rejected and
if T(x) > co [T(x) < 1], then C(x) = [¥(x), +00)NO [C(x) = (—00, ¥ (x)]N O], where
9(x) = inf{ € ©: Yy(x) = 0} and I(x) = sup{v € O: y9(x) = 0}. In the case of
nonrandomized tests ¢ and ¢y we obtain ¥(x) = inf{d > b: T(x) < cp(¥9)} and
9(x) = sup{¥ < a: T(x) > c1(9)}.

In most practical cases © will be an interval with boundaries ¢ and d, with
-0 <c<a<b<d< +oo. Assume now that Py(T < c;) is decreasing in
¥ > b with limiting value 0 if ¥ tends to d, and that Py(T > c,) is increasing in
¥ < a with limiting value 0 if ¥ tends to c. Then the critical values c1(¥') and
co(1¥') approach the critical values of the corresponding one-sided level-o tests
for the hypotheses H=: ¢ > ¥/, 9’ < a, and H<: 9 < ¢, > b, respectively, if
¥ tends to ¢ and d, respectively. As a consequence, the confidence bounds ¥(x)
and 9(x) will be nearly equal to the (1 — o)-confidence bounds obtained from the
corresponding one-sided level-a tests if T'(x) is small or large.

Clearly, by the definition of the proposed procedure, the confidence bounds
9(x) and 9(x) are always not worse than the confidence bounds obtained in
the classical two-sided confidence interval approach if the null hypothesis
H: 9 € [a, b] is rejected.
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In the following we consider two classes of distributions and tests where the
monotonicity property of the boundary functions ¢;(¥), i = 1,2, is automatically
satisfied, that is, in one-parameter exponential families and location families
with unimodal Lebesgue densities. If £y belongs to a one-parameter exponen-
tial family and if ¢ is a uniformly most powerful unbiased (UMPU) level-«
test for H: ¥ € [a,b], a reformulation of the results regarding unbiased tests
in Lehmann [(1986), Chapter 4] shows that Eypy = o for all ¥ € ©\[a,b]. A
complete characterization of the shape and boundary behavior of the power
function of two-sided tests in one-parameter exponential families can be found
in Finner and Roters (1993).

THEOREM 2.1. Let © C R denote the natural parameter space of an ex-
ponential family with probability densities f3(x) = C(39)exp{9T(x)}h(x) (with
respect to some measure T) having at least three elements in the support. Let
a € (0,1),c;e R,y €[0,1],i =1,2, a,b € O, withcy; < cyand a < b, and
let p(x) be defined as in (2.1) with E,¢ = Eyp = aif a < b, and with Ey,p = a
and Ey(T) = aEy,T if a = b = 9 (say). Then ¢ is a uniformly most powerful
unbiased level-a test for H: ¥ € [a,b] versus K: ¥ € ©\[a, b], and there exists a
Y1 € la,bl(= Yy for a = b = ¥y) such that Eyy is strictly decreasing for ¥ < ¥,
and strictly increasing for ¥ > ;.

With this result in view we obtain the following corollary in a straightforward
manner.

COROLLARY 2.1. Under the assumptions of Theorem 2.1 and supposing that
¢ is a uniformly most powerful unbiased level-a test for H: ¥ € [a,b] versus
K: 9 € ©\la,bl, there exists a set of level-a tests py,9 € ©\la,bl, as defined in
(2.3) and (2.4), respectively, with Eypy = o and increasing functions c;(¥), i =
1,2.

As a second class of distributions we consider a family of unimodal Lebesgue
densities fy(x) = f(x—9),x € R, ¥ € © = R, where the mode of f is assumed to be
attained at xo = 0, and where fy may be the density of a test statistic T' resulting
from a one- or two-sample model. Note that the convolution of symmetric uni-
modal densities is again unimodal and that the density of X; — X, is unimodal if
the X; are identically distributed with unimodal density [cf. Dharmadhikari and
Joag-dev (1988), Theorem 1.6 (page 13) and Theorem 1.8 (page 15)]. However,
unimodality of f implies that the function g(¥) = Py(X € [c,d]), ¢ < d, is also
unimodal. As a consequence, there always exists an unbiased level-« test  with
acceptance region [c1, cg] for the two-sided hypothesis H: ¥ € [a, b] versus K: ¢
¢ la,b]l,a < b. Here c; and ¢ are chosen such thatinfyc g Py(X € [¢,d]) < 1—a
for all [c,d] C [cy,col. Ifa = b = 0 and if f is continuous, then c¢; and c, are easily
determined by solving the equations f(c;) = f(ce) and F(cg) — F(cy) = 1 — . If
a < b, unbiasedness implies that f,(c1) > fu(ce) and f3(c1) < fy(co). The tests
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9,9 € R\la, b], are given by

0, whenc; < x < co(¥9),
wy(x) = { W c} x < eald) for 9 > b,
1, otherwise,

0, when ¢;(¥) < x < cg,
<P19(x)={ ) <x<ep for ¥ < a,

1, otherwise,
where c1(4) is the maximal and cy(9) is the minimal value satisfying Eypy = a.
The following lemma summarizes the behavior of the boundary functions ¢;(9).

LEMMA 2.1.  Let f be a unimodal Lebesgue density with mode 0, fy(x) = f(x—
¥), ¢;(¥) and so on defined as above, and let a = —b < 0. Define d1(¥9) = ¥ — c1(0),
for ¥ < a, and da(9) = co(¥) — I for 9 > b. Then the following hold:

(a) ¢1(¥) is increasing on (—o0o, al] and cy(V) is increasing on [b, +c0).

(b) d1(9) is increasing on (—oo,al with limy _, _o,d1(¥) = dy, and dy(¥) is
decreasing on [b, +00) with limy _, 1o do(¥) = da, where dy is the minimal value
satisfying Po(X € [-d1,00)) = 1 — a and ds is the minimal value satisfying
Py(X € (—00,d2])=1—q.

(c) If f is, in addition, continuous and symmetric, then d{(—9) = do(¥) =
F~Y1 — a+F(c; — ), for 9 > 0, where ¢; is the maximal value satisfying
Fy(—c1) —Fplc1)=1—-a. Fora=b=0itisds(¥) = F~ Y1 —a+FFa/2) - 1)),
for ¥ > 0.

ExamPLE 2.1 (Normal distribution, 0 known). As a first example we con-
sider a random variable X having a normal distribution with unit variance and
mean ¢. Let @ = b = 0 for the moment, and denote the cumulative distribu-
tion function of a standard normal distribution by ® and its inverse by ®~1.
Then we obtain, for the functions d; as defined in Lemma 2.1, do(9) = d1(—9) =
P11 - a+ ®(@ Ha/2) — 9)),9 > 0. For example, for x > cs, the lower bound
1Y(x) can be determined by solving the equation ®(x — ) — ®(c; —9) =1 — ain
Y. Let u; _ , denote the upper y-quantile of the standard normal distribution,
that is, P(X < uj_.) =1—-1,v € (0,1). Then it can be seen from Table 1 that
dy(¥) is nearly equal to u; _,, (@ = 0.05) for moderately large values of ¥, for
example, d9(1.0) = 1.65996 while u, = 1.64485. Table 1 also contains lower
confidence bounds of ¥ in terms of the data for some values of x > 2 correspond-
ing to one-sided tests [, (x)], two-sided tests [J,(x)] and the new method [9(x)].
The important case of unknown variance is much more difficult and will be
considered separately in Section 3.

The following example may illustrate the applicability of the new method
when two parameters of exponential families are under consideration and when
conditional tests are available.

ExAMPLE 2.2 (Comparison of two Poisson distributions). Let X; be indepen-
dently Poisson distributed with parameter 9; > 0, i = 1,2. Then it is convenient
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TABLE 1
Critical values for one-sided confidence intervals for the normal distribution with 0% = 1,a = b =
0, o = 0.05 and different lower confidence bounds for ¥ given values of x > 2; here ¥,(x) and
Jy(x) denote the lower bounds of the one- and two-sided confidence interval approach, while 9(x)
corresponds to the new method

U} c2(9) dy(9) x 9, () 9(x) 9y (x)
0.00 1.95996 1.95996 2.00 0.35515 0.16352 0.0404
0.25 2.04350 1.79350 2.25 0.60515 0.54209 0.2904
0.50 2.21631 1.71631 2.50 0.85515 0.82895 0.5404
0.75 2.42839 1.67839 2.75 1.10515 1.09410 0.7904
1.00 2.65996 1.65996 3.00 1.35515 1.35062 1.0404
2.00 3.64522 1.64522 4.00 2.35515 2.35507 2.0404
3.00 4.64486 1.64486 5.00 3.35515 3.35514 3.0404
+00 +00 1.64485

to describe a hypothesis for the comparison of #; and ¥s in terms of A = ¥, /9s.
Consider, for example, the hypothesis H: A € [0.8,1.25] versus K: A ¢ [0.8,
1.25]. With p = A\/(1 + A) = 91 /(91 + ¥2), the hypothesis H is equivalent to p €
[4/9, 5/9], and the conditional distribution of X, given X; + X, = ¢ is a binomial
distribution with parameters p and ¢, that is,

2.7 Pp(X2=y|X1+X2=t)=(;>py(1 -p)7, y=0,1,...,¢

The uniformly most powerful unbiased test for H versus K is given by
1, wheny<cory>t-—c,
oy)=<~v, wheny=cory=t-—c,

0, otherwise,

where ¢ and v are determined by

EOEE -[O66
(L6 @]

For the sake of simplicity we reduce attention to the non randomized version of
¢, that is, we consider the test ) with ¥/(y) = 1if p(y) = 1 and ¥(y) = 0 otherwise.
If 4(y) = 0, no confidence bounds are given. Now assume ¥(y) =1 andy >t —c.
Then we determined the maximum value of p such that

y—1

> (j-)p’(l -p)f 7+ - 7)(2)p°(1 -p)ft=1l-a

J=c+1

If we denote this value by p, we obtain from the equation p = A/(1+)) that every
value A < p(1 — p) is rejected; hence A = p(1 — p) is a lower (1 — a)-confidence
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bound for A = ¥;/192. The final decision then is that ¥ /95 is covered by [\, +oc0)
with probability greater than or equal to 1 — «.

The comparison of two binomial distributions may be treated similarly as the
comparison of two Poisson distributions by using exact tests if the hypothesis
is given in terms of the odds ratio [p; /(1 —p1)l/[p2/(1 —po)]. If the sample size
is sufficiently large, one can use a Poisson or normal approximation for testing
hypotheses in terms of the relative risk p;/py or in terms of the difference

P1—poe.

3. Two-sided Z-test procedures with one-sided confidence bounds.
Let X be normally distributed with mean ¥ and unknown variance ¢2 > 0, and
let S2/02 be x? distributed with v degrees of freedom. Furthermore, suppose
that X and S? are independently distributed. Here X may be viewed as the
result of a two-sample model; for example, let X;1,...,X;,, and Xy, ...,X5,, be
independently normally distributed with means 1; and pg, respectively, with
common variance o2 > 0, and set X = (1/nq + 1/n9)"Y2(X;. — X,.) with X;. =
Zjné lXij/ni, 1=1,2, S2 = 212=121n; I(Xij -—Xi.)z, v=ni+ng—2andd = (1/n1 +
1/n2)~Y2(u; — pg). A usual method for testing a hypothesis of the type H: ¥ €
la, b] is the composite ¢-test procedure. A disadvantage of this method is that
the resulting test is biased if a < b, and the probability of rejecting the true null
hypothesis tends to /2 for ¥ € {a,b} if the variance o2 tends to zero. There
are mainly two possibilities to avoid this disadvantage. The first is to formulate
the hypothesis in terms of o-units, that is, instead of H: ¥ € [a, b] we consider
the hypothesis H: ¥ € [oa,ob] or, equivalently, H: ¥/o € [a,b]. For the sake
of simplicity let b = —a = § > 0. Let F,, A denote the cdf of the ¢-distribution
with noncentrality parameter A and v degrees of freedom; let ¢;,co = —c; be
determined by F, s(cy) — F,, s(~c3) = 1 — o, and let ¢ = v¥/%x/s, where x and s
denote the realizations of X and S. Then

0, when ¢; <t <eco,
p(t) = .
1, otherwise,

is a uniformly most powerful level-a test among all unbiased and invariant
tests for H [cf. Lehmann (1986), Chapter 6.6].

Based on this test it is easy to derive one-sided confidence bounds for ¥/c
with the method of the previous section. The boundary functions ¢;(u), i = 1,2,
corresponding to the tests ¢, for H,: ¥/0 = nu are given by

ci(p) = F,;L(F,,M(cz) —1l+a) for p<—6
and

co(p) = —c1(—p) for u > 6.

Since the family of noncentral z-distributions is strictly totally positive of
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order co [i.e., STP.,; cf. Karlin (1968), pages 118-119, and Lehmann (1986),
Chapter 3, Problem 29], it can also be shown that the boundary functions ¢;(u)
are increasing on their domain. Hence, confidence bounds (intervals) for u = ¥ /o
are given by

R, when o(¢) =0,
C(t)={ (—oo,f®)], when t<ecy,
[u(t), +00), when £ > ¢y,

where p(¢) and 7i(¢) are determined by solving the equations F, ,(c2) — F,, ,.(¢)
=1l-afort <c;and F, ,(#) - F, ,(c1) = 1 — a for ¢ > cy, respectively, in
p. Since lim, _, o, F, ,(c1) = 0, the values dy(u) = co(p) — 1 tend to the critical
values dg(y) (say) of the UMP invariant size-« test for the one-sided hypothesis
H,:9/o < p,pu > 6. In contrast to the case of known variance, d;(u) tends to
infinity as y — oo.

More difficult is the treatment of the second possibility, where the hypothesis
is formulated as H: ¥ € [a,b]. For the purpose of avoiding the disadvantages
of the composite ¢-test procedure, Hodges and Lehmann (1954) proposed a test
procedure which improves the composite ¢-test procedure uniformly. Further-
more, they conjectured that the proposed test is unbiased. Recently, this con-
jecture has been proved by Frick (1990a, b, 1994) for all values of @ < 1/2.
However, for a < 1/2, the approach of Hodges and Lehmann (1954) can also
be used to derive lower and upper confidence bounds for ¥ if the two-sided
null hypothesis H: ¥ € [a,b] is rejected. The main idea is to describe the
sample point (x,s) by polar coordinates (r,w) defined by r? = (x — ¥)? + s2,
sinw = s/r. The corresponding random variables R and (2 are independent, and
P(Q<w)= %B,,/zy 1/2(sin2 w) for 0 < w < 7/2, where B, 3 1/2 is the cdf of a Beta
distribution with parameters v/2 and 1/2. Furthermore, the distribution of Q
is symmetric about /2. Then the only tests which are similar, for example, for
¥ = § [cf. Hodges and Lehmann (1954)] are such that their critical regions inter-
sect each semicircle with R = r in a set of points whose conditional probability
is . Assuming —a = b = § > 0 and requiring symmetry of the rejection region,
this leads to the following test procedure in terms of (x,s). The critical region
of the level-«a test for H: ¥ € [-4, §] is given by

CR = {(x,5): s < c(x)},

where ,
c(x) =c(—x) for all x € R,

c(x)=0 for 0 < x < 6,
c(x)=k(x—6) for6<x< 6(1+2/(1+k2)1/2),

with & = [B~1(20)/(1-B~1(2a)1V/2 = \/U/t,.1 _ o, and, for x > 8(1+2/(1+k2)1/2),
¢ is implicitly defined by

1/2
(3.1) c(x) = [B-l (2a - B(c(y)z/r(y>2))] r(y),
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with x = [r()? — ¢(x)?1/2 + 6 and r(y) = [(y + 6)? + c(y)?]'/2 for some 0 < y < x,
where B=B,,5 1/2 and B~ denotes the inverse of B.

Practically, ¢(x) can be determined successively on the intervalsI; = (x;, x; 4 1],
i=1,2,..., forx > 6, where x; = 6, xg = 6(1 +2/(1 + kY2, x; = [r?_; —
c(x;)?)Y/246, i = 3,4, ..., withc(x;) = [B~1(2a—B(c(x; _ 1)2/rl.2_ 1))]1/2rl~_ LTi_1=
[(x;_ 1+ 6)% +c(x;— 1)21V/2, for i = 3,4,..., and c(xg) = 26[B~1(2a)]'/2. Then for
each x € I; there exists a y € I, _ 1 such that c(x) is determined by (3.1). This is
a consequence of the results in Frick (1990a, b, 1994), where it is proved that
c(x) is monotonically increasing in x > 0. Since c(x) is well defined on I; by
c(x) = k(x — 6), the values x € I, are used to start the iteration process.

Now, without loss of generality, let ¥ > 6, and § > 0 (6 = 0 is treated below;
see also Figure 1 for illustration in this case). Then it is possible to construct a
function ¢y similar to that above such that the critical region of ¢y is given by

CRy = {(x,s): s <c(x), x <0} U {(x,s): s < cy(x), x > 0},

with Py((X,S) € CRy) = o, that is, ¢y is an exact level-a test.

The function cy is determined as follows. For 0 < x < ¥ it is ¢y(x) = 0, and
ford <x <I9+@W+6)/(1+ k2) = x5(19) (say) we obtain cy(x) = k(x — ). Finally,
for every x > xo(19) there exists a point y > é such that

1/2
co(x) = [B_l (2a - B(c(y)z/r(y)2)>] r(y),

with r(y) = [(y + 9)2 + ¢(»)2]¥/2 and x = [r(y)? — cy(x)?]Y/2 + 9.

We expect that the function ¢y has the same property as c, that is, that cy(x)
is monotonically increasing in x > 0. Furthermore, for » > 3, we conjecture
that ¢y(x) is monotonically decreasing in ¢ > 6§ when x > 0 is fixed. Unfortu-
nately, for v = 1,2, this is definitely not the case. However, if cy(x) obeys these
monotonicity properties, the determination of one-sided confidence intervals is
relatively simple. Assume, for example, that the observed values (x,s) satisfy
0 < s < ¢(x), x > 0. Then we obtain the lower confidence bound ¥(x,s) as the
solution of the equations

r(y? = (x - ﬁ(x,s))2 +52,

(3.2) cy? s 2
B (r(y)z +B )P 2a,
r(y)? = (y +9(x,5))” +c(y)?,

which are satisfied for a unique y > 0.

Intensive numerical investigations have shown that cy(x) is increasing in
x > & and, if v > 3, decreasing in ¥ > §, so that in this case lower and upper
confidence bounds can be calculated by solving equations (3.2). A proof of the
monotonicity property of cy(x) in x should be possible with arguments similar to
those used by Frick (1990a, b, 1994), but this proof is rather lengthy and cum-
bersome so that we are still looking for simplifications which allows a shorter
derivation of the desired monotonicity property.
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cs(z)

w1 w2 -
—y 0 J z2(9) z’ l’

FiG. 1. Construction of cy(x') and x' > x5(19), given the function c(x) and y: choose wy such that
B(sin? wy) + B(sin® wy) = 20, which then determines x' and cg(x').

If we start with the null hypothesis H: ¥ = 0 (i.e., § = 0), the determination of
the boundary functions ¢y, ¥ #0, is much easier (see also Figure 1). This is due
to the fact that c(x) isnow given by c(x) = \/v | x| /£,;1 - a/2, Wheret, 1 _ /o is the
upper a/2-quantile of the ¢-distribution with v degrees of freedom. The functions
¢y can be determined with the same equations as above. It can easily be seen
that cy(., () lies between (y — 9(x, )/ /t,;1 - o and (y — 9(x,8)\/V/t,. 1 - a/2
fory > 0, ¥(x,s) > 0. This implies that the new confidence bound lies always be-
tween the classical one- and two-sided confidence bounds. Several simulations
have shown that the new confidence bounds very often nearly coincide with
the one-sided bound if the null hypothesis H: 9 = 0 is rejected. Furthermore, if
x> sty 1-o/vVr+Q1 +t12/; 1_ o/V)Y/?], then we obtain ¥(x,s) = x —st,.1 - o/+/V and
Co(x,)(%) = (x — Hx,8))/V/t,;1_ o, that is, in this case ¥(x,s) exactly matches
the classical one-sided (1 — «)-lower confidence bound.

4. Concluding remarks. The method proposed in this paper to obtain
one-sided confidence bounds following the rejection of a two-sided null hypoth-
esis may be viewed as a compromise between the classical two-sided confidence
interval approach and the “cheating” procedure often used by experimenters,
that is, first look at the data and then formulate the appropriate one-sided
null hypothesis and construct the appropriate one-sided confidence bound. That
there exist situations for the normal distribution with unknown variance where
our method ends up with the same confidence bound as the cheating procedure
may be considered as a funny by-product. Furthermore, if the true parameter
is far away from the null hypothesis, our bounds will often be nearly equal to
the bounds of the cheating procedure.
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Although our method seems to be in some way a conditional approach (non-
trivial confidence bounds only if the null hypothesis is rejected), it is far away to
satisfy the aim of a conditionalist, that is, the conditional control of errors of the
first kind. With the notation of Section 2 the conditionalist would like to control
the probability that ¢y = 1 given ¥ and ¢ = 1. However, since {¢y = 1} C {p = 1}
for all ¥ ¢ [a, b], we obtain Py(py = 1| =1) = Py(py = 1)/Py(p =1) = a/Py(p =
1) > «; hence the conditional confidence level is always lower than 1 — « for
9 ¢ [a, b] and in most cases with limit 1 — « if ¥ approaches the boundaries of
O. For ¥ € [a, b] we formally set ¢y = ¢; hence Py(py = 1| ¢ = 1) = 1. Thus the
conditional coverage probability is always less than 1 — « for ¥ € K and 0 for
YeH.

An argument against the proposed procedure may be that our method ends
up with the decision ¥ € © whenever the original null hypothesis cannot be
rejected. However, in this case one may use a descriptive method to describe
whether there is a tendency for the null hypothesis to be true or not. For ex-
ample, p-values or the classical one- and two-sided confidence intervals may
be reported without any interpretations in a strong inferential sense. Finally,
if one is only interested in confidence bounds if the null hypothesis is rejected
(and that is the assumption we started with), there is no reason to worry about
the decision for the whole parameter space in case of acceptance of H. -

An open question is whether the proposed procedure has any optimality
properties. In some way the procedure seems to possess a kind of stepwise
optimality. The first step consists in choosing the “best” level-a test available
for testing the basic hypothesis. Then we choose in a stepwise manner the best
(minimum biased) tests ¢y for the hypothesis Hy with respect to the restrictions
(2.2) induced by the tests defined in the steps before.

Finally, we notice that Hayter and Hsu (1994) used the approach described
here to derive confidence sets for stepwise multiple test procedures for £ > 2
two-sided hypotheses.
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