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Statistical tests consistent under any alternative are provided for
both goodness-of-fit and two-sample comparisons. They are based on (1)
the derivation of estimates for the tails of the probability distribution of
some particular functionals of a Wiener sheet and (2) the use of a map-
ping that carries normalized empirical processes (asymptotically distributed
as Brownian bridge) onto new processes that converge in distribution to a
Wiener sheet.

The proposed test statistics are easily obtained from the data. Hints for
its computation and empirical estimations of the power of the tests are given.

1. Introduction. In this article, we consider the design of goodness-of-
fit tests and two-sample comparison tests for bivariate distributions.

Let us suppose that the pair of real random variables X, Y has continuous
joint distribution function F and consider an i.i.d. sample (X, Y;), (X;, Ys),
ooy (X, Yy). We let F, = (1/n)L}_,6(x,,v, denote the associated empirical
measure and let B = \/n(F, — F) denote the normalized empirical measure.
Then BE converges in distribution to the biparameter F-Brownian bridge B,
a centred Gaussian measure characterized by EBF(A)BF(Ay) = F(A; N Ay) —
F(A1)F(A,), for every measurable set A; and A, in R?. The F-Brownian bridge
is also characterized as the conditional distribution of F-Wiener sheet W¥, given
WF(R2) = 0. Let us remember that an F-Wiener sheet is a centred Gaussian
measure with covariances EWF(A)WF(Ay) = F(A; NAy).

The probability distributions of functionals of a Brownian bridge, suitable for
generalizing the univariate Kolmogorov—Smirnov statistics to bivariate sam-
ples, are unknown. Adler and Brown [1] have provided an estimate for the prob-
ability P{sup, , B¥((—00,x] x (—00,y]) > u} and claim that it can be used to con-
struct a generalization of Kolmogorov—Smirnov tests. The present paper pro-
poses a different approach: we are able to provide estimates for the tails of the
probability distributions of functionals of W¥, which, in addition, do not depend
on F. We then transform Bf into a new process that converges to the Wiener
sheet and propose statistics based on this transformed process, suggested by
analytical reasons mentioned in Section 3, to perform either goodness-of-fit
tests or two-sample comparisons. These statistics are easily computed from the
empirical data.
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1448 A. CABANA AND E. M. CABANA

The transformation that maps a Brownian bridge onto a Wiener sheet and
the estimation of the tails of functionals of a Wiener sheet are described in
Sections 2 and 3, respectively. In Sections 4 and 5 we introduce the goodness-
of-fit test and the two-sample comparison test. Some hints for the computations
of the test statistics appear in Section 6, and Section 7 provides an empirical
description of the performance of the tests.

2. Ameasure transformation from Brownian bridge to Wiener sheet.
To each probability measure F on R2 we associate the marginal measure FonR
defined by F((s,t]) = F((x,y): s < x+y < t), and, for each measurable A ¢ R2, the
restriction Fy(B) = F(A N B). With this notation, the following statement holds.

THEOREM 1. Let F be a probability measure on R?. Then the application
1 WFB(A) = \/§< / (1 - F(r) dBatr) + / E(T)dﬁ};(r))

transforms the F-Brownian bridge B into a Wiener sheet associated to the prob-
ability measure

@) Var WFBF(4) = 3 / (1 - F(r)® dFa(r) = V(A).

A plain computation of covariances proves the assertion. One of the Editors
has pointed out to the authors that the preceding statement is a special case of
Example 4 of [6]. We omit the details for that reason.

REMARK 1. When A = R?, F’A(T) equals f"(T), and the total variance reduces
to 1.

REMARK 2. Statements (i) and (ii) follow from (2):

(i) The marginals F and V of F and V, respectively, are linked by the equa-
tion 1 — V(¢) = (1 — F(2))3.

(ii) If (X;,Y7) has distribution F and (X5,Y,) has distribution V, then the
conditional distributions of X; — Y, given X; +Y; and of X; — Y, given X5 + Y,
are the same.

REMARK 3. The test for goodness-of-fit to a distribution F described in
Section 4 is simpler when the variance measure V associated to W¥BF by
equation (2) is the probability distribution of a pair of independent random
variables. A simple example of such a pair (F,, V,) of probabilities on R? x R?
is obtained by arbitrarily choosing V. as the measure with density v.(x,y) =
exp(—x —y). The marginal V(¢) = 1 — (1 + t) exp(—¢) is readily computed, and
F(t) = 1 — ((1 + t) exp(—t))V/? is obtained from the first part of Remark 2. Fi-
nally, the second part of the same remark leads us to conclude that the density
of the distribution F. is f.(x,y) = (1/3)/(x +y) exp[—(x +¥)/31(1 + x + y)~ %/3,
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REMARK 4. The transformation dw” = db¥ + [b¥ /(1 — F)] dF maps a one-
dimensional Brownian bridge on a Wiener process, both associated to the same
measure F, and has been used by Khmaladze [4] in the construction of statistical
tests. We introduce the composition of that transformation with dv = v/3(1 —
F)dwF, in order to avoid the singularity at 1, and this leads to another Wiener
process, associated to a different measure. The transformation in Theorem 1
generalizes this to the two-dimensional case, as in Khmaladze [5, 6].

3. Estimation of the probability tails for some functionals of the
Wiener sheet. The wave components of a V-Wiener process W (a Wiener
sheet associated to the probability measure of variance V) have been intro-
duced in [2] and [3], motivated by interpreting the Wiener sheet as the solution
of a wave equation with a random noise excitation. The second paper describes
how these wave components allow us to state a strong Markov property for the
sheet and provides estimates for the probability tails of functionals associated
to the Wiener sheet.

We develop in the present paper similar estimates for other functionals,
namely, differences of wave components, to be used in the tests here proposed.
We do not need to be concerned here with the analytical motivation of the
functionals we choose, and refer the interested reader to [2] and [3] for details.

DEFINITION 1. Let us consider the sets

Cilx,y) = {(',9: &' +y' <z +y, 5 <y},
Colx,y) = {@,5): &' +y' <x+y, &' <x},
Sy ={@,y"): &' +y' < t}.

The wave components of a V-Wiener process are the new processes (W;, Wy)
defined by the following:

Wile,y) = W(C1(x,y)) — 4W(S,.,) and

®) .
Wax,y) = W(Calx,)) — 1W(S,+,);
and
Wiloo,9)=W ({@,y): ¥ <y}) - $W(R?) and
(39

Wolx, oo)=W({(x’,y): x < x}) - 1W(R?).

REMARK 5. It may be noticed that the usual parametrization of a Wiener
sheet by ordered pairs of real numbers is made by means of the sum of its wave
components: Wi(x,y) + Wa(x,y) = W({(x/,y'): ' <=x, ¥’ <y}).

NoTaTION 1. We call A; the o-field generated by

{Wi(x,y) + Walx,y): x +y < t}.
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The same field is generated either for {W1(x,y): x+y < t} or {Wa(x,y): x +y < t}.

THEOREM 2. Let T be a stopping time with respect to the filtration {A;: t >
0}, and let Ay, be defined by Ar, = {A: AN{T < t} is A;-measurable for all t}.

Then, conditional on {T' < o}, the processes in s € R*Wy(x +s,T — x) —
Wi, T — x) and Wo(T — y,y +s) — Wo(T — y,y) are centred and independent
of Ap-+ for any x and any y, and the same happens with the random variables
Wiloo, T —x) — Wilx, T — x) and Wo(T —y,00) — Wo(T —y,y).

Proor. This statement generalizes the Dynkin-Hunt theorem and can be
verified by adapting a proof of this well-known result (see, e.g., [7]). O

NoTATION 2. Given the V-Wiener process W, we introduce the following
associated processes and variables:

m*(t) = max{Wi(x,y) — Wolx',y"): x +y =a' +y' =t};
m*(c0) = max{Wi(oo,y) — Wa(x,00): x,y € R};

m~(t) = max{-Wi(x,y) + Wolx',y"): x+y =’ +y' = t};
m=(co) = max{—Wi(oo,y) + Wa(x, 00): x,y € R};

M* =max m*(¢)
teR

= max{Wi(x,y) - Walx',5'): 2,,%',5" € R};

M~ =max m™(t)
teER

= max{-W;(x,y) + Wo(x',y'): x,y,%",5" € R};
M = max{M*, M~ }.

THEOREM 3.

(i) For any Wiener sheet with total variance equal to 1, and for each positive
constant a, the estimate

4) P{M* > a} < 8®(-a) + 8ap(a)

holds, with ¢(x) = (2m)~*/% exp(—§x?) and ®x) = [*__ ¢(t)dt.
(ii) When the variance measure V is the joint distribution of two independent
random variables, then

P{M* > a} < 16®(—a) — 8®(—2a)

a 2 2a -z 2
(5) +8/o (27r)_1/2exp(%) dz/z vexp(—%)

x exp(—-;-(4a2 +v? — 4av)) dv.

(iii) Both statements hold for M~ instead of M*.
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PRrOOF. As a first step, we prove the inequality P{M* > a} < 2P{m*(c0)
> a}. Define the stopping time T' = sup{¢: m*(s) < a for all s < t}. When the
event {M* > a} = {T' < oo} occurs, then m*(T) = a and there exist two random
variables X and Y such that Wi(X,T - X) - Wo(T -Y,Y) =qa.

Since D = (W1(00, T — X) — Wi(X,T — X)) — (Wo(T - Y,00) — Wo(T - Y,Y))
is centred and independent of A7+, then

P{m*(c0) > a}
=P{m*(0) > a, Wi(X,T - X) - Wo(T - Y,Y) = a}
> P{(W1(00,Y) — Wa(X,00)) > a, Wy(X,T ~X) - Wo(T ~ ¥, ¥) = a}
=P{Wi(X,T-X)-Wy(T-Y,Y)=qa,D >0} = IP{M* >a}.

This ends the first step. The validity of (4) shall be proved by establishing
the estimate

P{m*(c0) > a} < 4®(—a) + 4ayp(a).
Observe now that

P{m*(c0) >a} = P{ max {Wi(c0,y) — Wy(x,00)} > a}
< P{ m;:lel(oo,y) > %a} + P{ max (—Walx, 00)) > %a}
= 2P{ max¢@ - 3¢(1) > La},

because, if ¢ is a standard Wiener process on [0, 1], W1(co,y) and —Wjy(x, 00)
have both the distribution of £(¢)— %5(1), fort = V(Rx(—o00,y]) and ¢ = V((—o00, x]
x R), respectively.

Now write

P{max¢@ - 3¢ > La}
= E(E(l{maxt €0 - (1/26) > 1/2)a} | 6(1)))

- [ P{maxet)- Jew > Jal e =2} pterd;

—00

apply the reflection principle for a one-parameter Wiener process, to obtain

1, if |z| > a,
1 = =
P{ O?taglg(t) > 7@+ ¢ z} {w(a)/w(z), ifflz[ <aq;
and replace in the integrand, to obtain
P{ max£®) - §6(1) > fa} = 20(—a) + 209(@).

This ends the proof of (i).
As for (ii), we refer to the computations made in [2]. O
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4. Conservative tests for goodness of fit. Given a random sample X;,
Xo, ..., X, of the continuous distribution F, it is well known that the normal-
ized emplrlcal measure BE = \/n(F, — F) converges weakly to the F-Brownian
bridge BF.

Let us apply a representation theorem that states that there exist copies of
BF and BF, for which we maintain the same notation, such that B converges
to BF umformly on X = {Cy(x,y),Cs(x,y),8;:: x,y,t € R}. Such a theorem is
an adaptation of 4.3.13 in [8] which we apply to the convergence of the wave
components of normalized empirical processes to the wave components of the
Brownian bridge, on the metric space of continuous pairs of functions R?2 — R
with norm

|| (g1, %), g2, 1) || = max{ s;uyp |g1x, )], Suyp lgz(x,y)l}-
) x?

After integration by parts, (1) can be written as

©) WFB(A) = v3 ( / Bar)dF(r) + / B dﬁAm),

and this exhibits the continuity of the mapping WF that maps the processes
with parameter set X onto processes with the same parameter set. This implies
in particular that W¥ = w¥ BF has the asymptotic distribution of the V-Wiener
process W = WFBF.

Equations (3) and (3’) can be used to define the wave components of any
signed measure. In particular, when W, W; and W, are replaced by WZ° WF 0

and Wn°2, respectively, the resulting equations define the wave components

wE w1 and wE n o Of the transformed empirical process Wk = WwFBF,

When the null hypothesis Hy: F = Fo is true, the contmuous functionals of
the wave components of the process who WF"BF ® also converge in distribution
to the corresponding functionals of W. This is the case of the maxima:

M; = max max{ WP, (s,y) - W5y w vy =l +y/ =1},
M, = maxmax{ F°1(x,y)+WF°2(x,y)x+y x-!-y—t}

teER
M, = max{M;,M;}.

We propose the use of the statistics M}, M; or M, for testing F = F,, and
verify below that a test with critical region M, greater than some constant is
consistent against any alternative F # F).

In order to test Hy with level not greater than «, two applicable one-sided
approximate critical regions are {M; > c(a)} and {M,, > c¢(a)}, where P{M* >
c(a)} < a, and c(w) is obtained by solving the equation

(7 8% (—c(a)) + 8cla)p(c(a)) = a
after Theorem 3(i).
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When F| is the particular probability distribution F, introduced in Remark 3
after Theorem 1 (or any other sharing the property discussed in that remark),
c(a) can be derived from the improved bound (5).

The two-sided critical region {M, > c(a)} has level not greater than 2a.

THEOREM 4. For any constant c, the rejection regions {M, > c} provide
consistent tests for Hy: F = F\ against any alternative F # F, F continuous.

Proor. When F is different from F, since both are continuous, the signed
measure D = F — F is strictly positive on some region R{(x,y): s <x+y < t,a
<y <b}.

The normalized empirical process B = /n(F, — F,) is the sum of the
stochastically bounded term BE = \/n(F, — F) plus another one, namely, \/nD,
that tends to infinity on R under the alternative hypothesis. Now WX°(R) =
wF 'BF(R)+ VAWFD(R) - co(n — 00), because the first term is stochastically
bounded due to the continuity of W, and

wFoD(R)=¢§< / Dr(r)dFy(7) + / 13(7)011”503(7))

is strictly positive.

Let W; and W, denote the wave components of WP Notice that Wf"(R) is
the double increment over R of Wy, namely, WE(R) = Wit —-b6,b) - Wit —a,a)
— Wi(s — b,b) + Wi(s — a,a). This can be written as

WE(R) = (Wit — b,b) - Wit — a,)) — (Wit — a,a) — Wit — a,a))
—(Wi(s — b,b) — Wyls — b,b)) + (Wils — a,a) — Wy(s — b, b)).

Since W°( R) tends to infinity, the same happens at least with one of the four
terms in the previous sum, and this implies that M,, also tends to infinity. O

In designing an algorithm to carry out the computations required for per-
forming the tests, one should include a transformation of the data to fit the
canonical distribution F., in order to use the sharper bound (see Section 6).
Empirical estimates of the power of the test in some particular cases are given
in Section 7. )

Table 1 provides some values of ¢(a) for the construction of the conservative
critical regions described above.

5. Two-sample comparison tests. Let (X;,Y;);-12, . . be a sample of
F, and let (X;,Y;);=m+1,.. m+n be an independent sample of G, both unknown
continuous bivariate distributions; let F,, and G, denote the respective empir-
ical measures. The conclusions of the next theorem can be applied for testing
the null hypothesis Hy: F = G, by means of a functional of the difference of
measures F,, — G,.
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TABLE 1

Upper bound Critical points for Sharper critical points
for the level general distributions for product measures
20% 2.795 2.514
10% 3.057 2.807

5% 3.296 3.014

2.5% 3.515 3.160

1% 3.721 3.344

1.25% 3.784 3.435

0.5% 3.974 3.568

In the following we shall replace the continuous marginal distribution F
by a pure jump function, either F,, or the marginal of H,, , defined below. In
these cases the integrand may have jumps at the same points as the integrator;
hence, the integrals in (1) are not well defined. This ambiguity is avoided by
choosing left-continuous versions for the integrands, and right-continuous ones
for the integrators.

THEOREM 5. Consider a family of samples (X;,Y;)i-12, . m and (Xj,
Y)icm+1, . ,m+n With sizes m and n tending to infinity in such a way that
m/(m + n) and n/(m + n) have finite limits. Let F,, and G, be the empirical
measures, and let Hy, , = (mF,, + nG,)/(m + n).

Then, under the null hypothesis F = G,

Wm,,n, = WHm,n ( mnn (Fm - Gn))

has the asymptotic distribution of a V-Wiener sheet (see Section 3).

ProoF. LetBf = ./m(F,, — F) and BS = \/n(G, — G) be the normalized em-
pirical processes. Since BY, converges in distribution to the F-Brownian bridge,
wF BF converges in distribution to a V-Wiener sheet. Let us verify first that the
distributions of WfBE and W »BF also converge to the same limit, under
the null hypothesis F = G. For that purpose, we apply again, as in the previous
section, the representation theorem that states that there exist copies of F,,, G,
and the two F-Brownian bridges BF and B¢, for which we maintain the same
notation, such that F,,, converges to F, G, converges to G and Bf and B¢ con-
verge to BF and BP, respectively. All convergences are uniform on the famﬂy of
sets X.

Now, with the strongly convergent copies instead of the original processes,
the difference

W=BF (A) — WFBE (A)
( / BE () d(Fo(r) — Fr) + / BE(nd(F, mA(r>—FA(T>))
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differs from
V3 ( B dFnir) ~F) + [ B ) d(Far) - ﬁA(ﬂ))

by less than an arbitrary positive number ¢, for m sufficiently large. These
last integrals can be written as Wiener integrals with respect to the Brownian
bridges by integrating by parts, namely,

V3 < / (Fon(r) — Fr) dBE(r) + / (Froa(r) = Fa(r) dEFm) ,

and the uniform convergence of F,, and F,, 4 to F and F, completes the argu-
ment. The previous considerations show that W*»BE (A) and WFBF (A) have
the same limit distribution. The verification that W *BF (A) and W¥BE (A)
have the same limit is made in the same way, provided the null hypothesis
F = G holds, which is required to ensure the convergence of H,, , to F.

The same procedure leads us to conclude that W¥BS, WS BS and ‘W »BG
also have the same limit distribution.

To end the proof, assume F' = G and write

Wm»n=meyn< — (Fm_Gn))
m+n
- mZnWHm,nBﬁ_ m'Tll-nWHm,nt'

Both terms are independent and each one tends to a multiple of a V-Wiener
sheet, where V is the variance measure given by (2). Since the squares of the
coefficients add to 1, the sum converges to a V-Wiener sheet.

Because the common value of F' and G is assumed to be unknown, sois V. O

Extend the definition of wave components to the process W, ,, as done in
Section 4 with WZ°, and define

M, , = rtneql%(max{Wm,n,l(x, P) = Wen o, ¥ ) x+y =x'+y =t},
M, , = %%max{—Wm,n,l(x,yH Win,n, 2, y): x+y =x' +y' = ¢},

Mm,n = max{MrtL,n?Mr;,n}'

THEOREM 6. The rejection regions {|Mm, »| > c} based on the statistic My, ,,
provide consistent tests for Hy: F = G against any alternative F#G, F,G
continuous.

The proof follows closely the one of Theorem 4, and will be omitted.

We propose the construction of approximate conservative tests, following a
procedure similar to that in the case of goodness-of-fit tests, namely, to adopt the
rejectionregions {M,, , > constant}, {M,, , > constant} or {M,, , > constant},
where the constant is obtained as in the above case.
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6. Computing the test statistics.

6.1. The comparison test. Since W,, , is a discrete measure concentrated
in the sample points (X}, Y;), its wave components (Wi, n, 1, Wiy, n, 2) are section-
ally constant. In fact, when the point (x,y) moves without crossing any of the
lines x +y = X; + Y; or y = Y}, the first wave component Wi, n,1(x,y) remains
unchanged, and the same happens with W, , o(x,y) when (x, y) moves off the
linesx+y=X;+Y;andx=X;,i,j=1,2,...,m +n. '

Consequently,

51;13% Woon,1(T; —Y;+6,Y;) and 61£n3+ W n,o(X;, T; — X +6),
i,j=1,2,...,m+n, describe completely the range of W,, , 1 and W,, , 5.
6.2. The goodness-of-fit test. The random measure WZ° can be written as
WE(A) = m( | Foa~Fu)dFo+ [ (F, - Fo) d;«m)

(8) =\/§[ Y. (1-Fo(X)

(Xp, Yi)EA

_ ZFO(AO {G,y)x+y §Xk+Yk})].
%

For each ¢,m;(¢) is the maximum of differences
Wio (x,9) — Wity ') = WEo (Co(x, ) — WEo (Cota’,y"))
on points (x,y) and (x’,y’) such that x +y =x’' +y’ = ¢, that is,
mi(t) = sup Wi (Cult ~y,)) —inf Wyt (Cylax, t —x)).

A similar argument leads to m, (¢) = sup, WE (Cy(a, t—x))—inf, WE(Cq(t -y,)).

Since the first sum in (8) is a discrete measure concentrated on the sam-
ple points, while the second is absolutely continuous, WZ°(C;(¢ — v, y)) de-
creases as a function of y except possibly for positive jumps at y = Y3,k =
1,2,...,n. Therefore, the supremum of WE°(C1(¢—y, y))is the right-hand limit of
whe, ¢ - ¥,¥)) at one of the jump points, and the infimum is one of the
left-hand limits at the same points. For the same reason, the supremum and
the infimum of WE%(Cy(x,¢ — x)) are, respectively, a right and a left limit of
WE(Cy(x,t — x)) at one of the points x = X,,. This can be applied to compute
m*(t) and m~(¢) for each fixed ¢.

It follows from (8) that the probability distribution F;, prescribed in the null
hypothesis Hj has to be evaluated on a great number of sets. This is cumber-
some, in general, and, for this reason, we propose to transform the sample in
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FIG. 1. Estimated power of the comparison test for samples of Gaussian distribution with variance
(é (1)), as a function of the relative shift; sizes m = n = 300.

such a way that, under Hj, the new sample has the canonical distribution F
(see Remark 3). After this transformation, no matter what was the original Fy,
the computation is aided by an algorithm to compute F, on the involved sets
belonging to X.

The choice of F, allows, in addition, the use of the estimate in Theorem 3(ii).

For fixed (x,y) and ¢ belonging to any of the intervals between points of
{X, + Yp:h = 1,2,...,n}, the partial derivative of W, Pocyt — 3,9) —
WEo(Cy (x,t — x)) with respect to ¢ reduces to 1/(8/n)(x — y)f.(t), which has con-
stant sign. This means that the maximum of WE(Cy(t—y, y)) — WE(Calx, t —x))
occursont = (X, +Y)r ort = (X, +Y,)~, forsome h in {1,...,n}, and the same
happens with the minimum.

Now, for those values of ¢, WE(Cy(t — v, »)) is monotone asa function of y,
except for possible jumps at Y7,...,Y,. The behavior of W, Fo(Cy(x,t — x)) as a
function of x is analogous. Hence, the evaluation of the test statistic is again
reduced to a scanning of the sample points.
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Test based on M-

Level Sample sizes
— < 10% 300-300

Hotelling's _Test
Level Sample sizes
a 5% 200-200

5% 150-150
+ 10% 150-150
¢ 10% 100-100

0 T T T T T 1

A .2 .3 4 5 .6
shift

FiG. 2. Comparison with Hotelling’s test for Gaussian samples.

7. Empirical estimation of the power. In the present section, we pre-
sent a few figures intended to summarize the results of simulations of the
application of the proposed tests. The number of replications has been set equal
to 1000 when testing the null hypothesis, and 500 when the alternatives hold.

Figure 1 shows the performance of the comparison tests with critical regions
{M > 3.296},{ M* > 3.057} and { M~ > 3.057} for Gaussian samples differing
in location. The behaviour is seen to depend on the direction of the relative shift
between samples.

The constants defining the critical regions have been chosen to ensure a
level of 10% (see Table 1). The actual level is empirically estimated to be much
smaller, but such an estimate depends on the shape of the parent distribution.

Figure 2 compares the performance of the test based on M, for shifts along
the X axis, with Hotelling’s T-test, both applied to isotropic Gaussian samples
of equal sizes.

Figure 3 describes the ability of our test to detect differences between samples
in two cases for which the performance of Hotelling’s T"is not expected to be good.

One case corresponds to the comparison between one sample of centred
Gaussian distribution X, with variance (; ), and other sample distributed
as :

1 1 0 l-a O
,/—1_a+%a2<€(0 L Jrea=a( 1)X>’

where ¢ is independent of X and assumes the values 0 or 1 with equal probabili-
ties. A plain computation shows that the expectation and variance of Y are also
(3) and (; 9). The comparison is made for different values of the anisotropy
coefficient .
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Isotropic mixture of anisotropic
Gaussian distributions

1 ~o—R-A-A . .
/ e Samples with very heavy tails
0.8 ./ /A/ o  Test basedon A/~
0.6 / A - - - Hotelling's T-test
0,4 /

021 L&
PPN i

o°
o 02 04 06 08 1
.shift or anisotropy coefficient

A  Test bssedon A/-—

FiG. 3. Comparison with Hotelling’s test for non-Gaussian samples; upper bound of the level; 10%.

The other case is the comparison between samples with different shifts, taken
from an isotropic distribution with very heavy tails, namely,

U cos(27V)
1-U (sin(27rV)>’

with U and V independent on [0, 1] x [0, 1].

The goodness-of-fit tests behave very much like the comparison tests. Their
actual level is closer to the upper bound used in the design, because the critical
regions are determined by means of the sharper bound (5).
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