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SEMIPARAMETRIC ANALYSIS OF LONG-MEMORY TIME SERIES!

1. Introduction.

By P. M. ROBINSON

London School of Economics

We study problems of semiparametric statistical inference connected
with long-memory covariance stationary time series, having spectrum
which varies regularly at the origin: There is an unknown self-similarity
parameter, but elsewhere the spectrum satisfies no parametric or smooth-
ness conditions, it need not be in Ly, for any p > 1, and in some cir-
cumstances the slowly varying factor can be of unknown form. The basic
statistic of interest is the discretely averaged periodogram, based on a
degenerating band of frequencies around the origin. We establish some
consistency properties under mild conditions. These are applied to show
consistency of new estimates of the self-similarity parameter and scale
factor. We also indicate applications of our results to standard errors of
least squares estimates of polynomial regression with long-memory errors,
to generalized least squares estimates of this model and to estimates of a
“cointegrating” relationship between long-memory time series.

There is now considerable theoretical and practical ev-

idence on the performance of methods of analyzing long covariance stationary
time series which possess a smooth, but nonparametric, spectrum [see, e.g.,
Brillinger (1975)]. Much less is known about how to deal with a series whose
nonparametric spectrum is unbounded at some frequencies, especially when
interest centres on behaviour around the singularity. In particular, consider
the process x;,¢ = 0, £ 1,..., which has mean , lag-j-autocovariance v; and
spectrum f(A) = (2m)~152__ v;cos jA which satisfies the following condition.

CONDITION A. For some H € (},1),

(1.D

f(x) ~ LG) M2 a5 )\ — 0+.

The symbol “~” indicates that the ratio of left- and right-hand sides tends
to 1 and L()\) is a slowly varying function at infinity [see, e.g., Seneta (1976)],
that is, a positive, measurable function satisfying

(1.2)

Ii(_t’\_)_ql as A — oo, for all ¢ > 0.

L())
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Thus Condition A asserts that f()\) is regularly varying at A = 0 and is un-
bounded at A\ = 0. (Our work can likely be extended to the case where the
singularity is known to occur at some given nonzero frequency.) For some
purposes L can be of unknown form; for others we require

(1.3) L(\)=GM()), G>0, M())isa known function,

where G is unknown. In either case, because (1.1) makes no parametric as-
sumptions about f outside a neighbourhood of the origin, we can call (1.1) a
semiparametric model. Indeed, apart from being integrable (due to covariance
stationarity), f is not even required to satisfy any smoothness assumptions and
need not be in Ly, for any p > 1 [it would be in L,,p < 1/(2H - 1), if f were
smooth away from ) = 0].

A time series exhibiting property (1.1) is often called long-memory, or long-
range dependent. Two examples of such series are described by the “fractional
noise” spectrum

2 .
| f()) = MI‘@H+ 1)(1 - cos )
(1.4) 0o
X Z A + 2mj| ~2H-1, —T<ALT
Jj=—o00

[see, e.g., Sinai (1976)] and the “fractional ARIMA” spectrum

2 . b(eir)|2
(1.5) f()) = %u —e’*|1-2f’ Lé;i:w —T<A<T

[see, e.g., Adenstedt, (1974)], where o2 > 0 in (1.4) and (1.5), and a and b are
polynomials of finite degree having no roots in or on the unit circle.

The main theoretical contribution of this paper is its study of the behaviour
of a statistic which is familiar from the smooth spectrum estimation literature,
in the unfamiliar circumstances of (1.1). The statistic is the discretely aver-
aged periodogram, where the averaging is done over a neighbourhood of the
origin which slowly degenerates to zero as sample size n increases. A suitably
normalized version of the averaged periodogram is well known to converge in
probability to the spectrum at the origin under weak dependence conditions
[see, e.g., Brillinger (1975), Chapter 6]. Under Condition A we show that the
ratio of the averaged periodogram, discretely averaged over (0, \), to

(1.6) F()\) = /0 ’ f(6) do

converges in probability to 1, for a sequence A tending to 0 slower than 1/n
as n — oo. This result is described in detail in Section 2 and proved in Sec-
tion 3. We have to impose additional regularity conditions but these seem
rather mild and, in particular, entail no further restriction on f()\) beyond
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(1.1). Under somewhat stronger conditions we establish also a rate of conver-
gence. The proofs in Section 3 contain some results which may be useful in
other problems concerning long-memory time series. Section 4 manipulates
averaged periodograms to obtain an estimate of H which the results of Sec-
tion 2 imply is consistent in the presence of nonparametric L, and also gives
a consistent estimate of G under (1.3). The limiting distribution of the esti-
mates remains to be derived; it is likely to be normal for -;— < H < % and
nonnormal for % < H < 1 [cf. Fox and Taqqu (1985)]. Section 5 demonstrates
the usefulness of our consistency results in the analysis of models involving

long memory and a semiparametric aspect.

2. The averaged periodogram. There is a substantial literature con-
cerning the estimation of F(\) (1.6). Much of this [e.g., Ibragimov (1963)] has
employed the continuously averaged periodogram

~ A~
F()\) =/ I(6)ds, O0<r<m,
0
where

@.1) T0) =R BO) = (2mm) 23 (s - e,

It is possible to write F()\) as a linear combination of sample autocovariances
of x; about u. Unless u is known, F()) is infeasible, and an alternative esti-
mate which is invariant to x4 and also lends itself to somewhat more direct
computation is

[n)\ /2x]

1?'()‘) =" Z I(AJ)
where [-] here denotes integer part and )\; = 27j/n,
IO =lwWPR  w(d) = (2mm) 2y xe
t=1

Like f‘,ﬁ‘ is centered at p because w();) = w()\), for all integers j # 0, mod(n).

There are various available asymptotic statistical results relevant to F(\)
and f‘(A), including pointwise ones for fixed )\, and functional limit results
on [0,7]. The bulk of these assume x; is weakly dependent (e.g., having a
spectrum which is at least bounded), although there are some results [e.g.,
Ibragimov (1963)] which cover long-memory processes, although with A not
depending on n. A very important thread to the time series literature has
been the use of F and F in weakly dependent series, in particular, F(Am)/)\,,,
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and f‘()\m)/ Am can be consistent estimates of a finite f(0) when the following
assumption holds:

CONDITION B. 1/m+m/n — 0 asn — co.

[See, e.g., Brillinger (1975), Chapter 7.] F(Am)/)\,,, and f‘()\m)/km are special
cases of the general classes of weighted autocovariance and weighted peri-
odogram spectrum estimates, respectively.
We wish to show that
F(Am)

(2.2) m —p 1 asn— o0,

under Conditions A and B and mild additional restrictions. Lemma 3(ii) in
Section 3 and (1.1) imply

(2.3) FO) ~of L) 222 A—0
: ()N (X)m as A — O+.

Thus we can substitute L (\;1) \Z1~® /2(1 - H) for the denominator in (2.2). In
the sequel we refer to F only with a vanishing argument, so that we can treat
(2.3) as an equality and substitute the right-hand side for F(\) whenever this
occurs. Condition B is a minimal restriction on m, because on the one hand
consistency requires the accumulation of information entailed in m — oo,
whereas on the other the semiparametric model (1.1) describes f over only
a negligible interval, so that )\, must tend to 0 as n — oco. An optimality
theory for m is described by Robinson (1991). Because A2~ (unlike \!~2#)
is continuous at A = 0 for % < H < 1, F(\,) seems a promising statistic for
use in statistical inference on long-memory time series.

It is possible, indeed slightly easier, to study similarly F()\,) or a feasible
version of it in which x in (2.1) is replaced by the sample mean ¥ of x4,...,x,.
Due to the influence of % [which is only (n)!~# /L(n)'/2-consistent under (1.1)]
the latter often provides a poor estimate in modest-sized samples, markedly
inferior to F(\,) (as Monte Carlo simulation evidence confirms). We thus focus
onF.

To establish (2.2), Condition A can be strengthened in either of two lead-
ing directions. One is to impose fourth moment conditions and prove mean
square convergence. However, the main practical interest of the paper is not
in F itself but in certain nonlinear functions of F and of analogous statis-
tics; since only convergence in probability of these can be inferred from mean
square convergence of F' we prefer to invest in conditions capable of leading
only to convergence in probability of F, or little more than that. Instead of
strengthening the necessary second moment assumption on x;, we instead re-
strict the dependence and heterogeneity of the white noise innovations e; in
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the Wold representation

) )
(2.4) Xt =p+ Z ajé;_j, Z 0112 < 00.
=0 =0

CONDITION C. «x; satisfies (2.4), where the following hold:
(i) E(eey) =0, t>u.

4 3 - =

N o lfr_s>t u

ii) E(eqeseze —{ T ’ -

() (rstu) 0, lfr——s>t>u,0rr>3—t>u,0r">3>t2u-

(iii) There exists a nonnegative random variable e such that, for all > 0
and some K < 1,

E(e?) <oo,  P(le]| >n) <KP(e>n).

. 1o
(iv) ;ZE(efleg,s<t) —p 0% asn— .
t=1

Condition C is satisfied if the e; are an independent identically distributed
(iid) sequence with finite variance, or, more generally, if the e; and e? — o2
form integrable martingale difference sequences. To check the latter claim,
denote by F; the o-field of events generated by e;,e;_j,... . Then we have
the following:

E(ese,) =E(euE(e: | Fi—1)) =0,  fort > u;
E(efe?) =E(e!E(e? | Fr_1)) = o?E(e}) =o*, forr>t;
E(e%eiey) = E (eeuE (e, | Fr1)) =0, forr>t>uy;
E(eresere,) =E(ewe E(esE(er | Fro1) | Fs—1)) =0, forr>s>t>u;

and
n‘li {E(e,2 le2,s<t) - 02} =n‘lzn:E{E(e,2 —o? | Fro1) | €, s <t) = 0}-
1 1

Thus finiteness of only second moments is assumed, condition (iii) being
a homogeneity restriction. The level of technical achievement in our proof
of (2.2) under Condition C with only finiteness of second moments assumed
seems substantially greater than a proof of mean square convergence under
fourth moment conditions.

We do not need to strengthen the assumptions on the Wold representation
weights o; which are implicit in Condition A, but we note the implications of
Condition A for their Fourier transform

a()\) = iajew‘.

J=0
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We have f(A) = (02/2m){c2()) + 02(\)}, where a;(\) = Re{a(\)}, a2()) =
Im {a()\)}. Thus, Condition (A) implies that either

(2.5) a;(X) ~ o;LY2 (%),\1/2-” as A — 0+, i=1,2,

where o2 + a2 = 27 /02, or

2.6)  a(A)~ :I:(27r> LW(%))\W‘H asA\— 0+, i=1lor2,
and
(2.7 a;(N) = o(L1/2 G) ,\1/2—”> as A\ — 0+, j#i.

Yong [(1974), pages 53, 64, 71 and 75] gave some conditions on the a; under
which (2.5) obtains.

THEOREM 1. Let Conditions A, B and C hold. Then
F(\m)

F(3n)

—p1l asn— oo

PROOF. Introduce

o(y) = 2m) Y e, J(3) = p(W).

Then

@8 oW 0w = 3 0) - )T
2.9) Ly Zf {%J ) 1}
2.10) + —nz Zf (V) -

(2.9) and (2.10) are each o, (F(\)) from the first part of, respectively, Propo-
sitions 3 and 1. (All propositions are stated and proved in the next section).
-The term on the RHS of (2.8) is the real part of

23 {twlh) - e (49 o) +at)en)
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whose modulus is bounded by
1/2 1/2
1< 2 2 m 2 m 2
2o 155w -a0e ) {25000+ 25 a0}
J=1 Jj=1 J=1

The first term in the second pair of braces is O,(F(\n)) by Proposition 2,
the second term is nonnegative with expectation O(n~'Z72,f ()j)) = O(F (M)
by Proposition 1, because E{J()\;)} = (2m)~1o2. The term in the first pair of
braces is 0, (F(Am)) by the first part of Proposition 4. O

If Conditions A and C are strengthened it is possible to calculate a stochastic
order of magnitude of F(An)/F(An) — 1, and this will actually be of practical
use in Sections 4 and 5.

CONDITION A’. For some 7 > 0, either of the following hold: (i)
(2.11) o;()) - a,-Ll/zG) AV2-H - O(L1/2 (—})/\1/2"’”’) as A — 0+,i=12,

or (ii)

1/2
ai()\) - (?127_) LY/? (%’\.))\1/2-11 - O(LI/Z (%\.))‘1/2—H+7->’
(2.12) o

as A= 0+,i=1or2,

and
(2.13) oi(N) = O(Ll/2 (%) AI/Z—H"), as A — 04+, j #1i.
Also, L(\) = Li(\)(1 + O(\~7)) as A — oo, where L1()) is differentiable.

Condition A’ is satisfied with 7 = 2 in case of models (1.4) and (1.5). Gen-
erally it corresponds approximately to the representation f(A) = L(1/|A])-
|A|*~2Hg()), where g is an even function which satisfies a Lipschitz condi-
tion of degree T, for 0 < 7 < 1, or is differentiable with derivative satisfying a
Lipschitz condition of degree 7 — 1, for 1 < 7 < 2.

CONDITION C’. (i) and (ii) of Condition C hold, plus, for some v > 0, the
following hold:

2
(i) max Ele] " < 005
: t>1
n t—1
(v > {&(e Set) - *}=0,(1%/%) asn—co
t=2 s=1
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Condition C’ strengthens the moment assumptions on x;, and (iv)’ is again
trivially satisfied if e? — o2 is a martingale difference or iid sequence.

THEOREM 2. Under Conditions A’, B and C', for § < (1 - H)/(2 - H),

F(Om) -1=0, (n‘”/(2+”) +m~ %+ (%)T>, as n — oo.

F(Mm)
PROOF. Same as that of Theorem 1, but using the second part of Proposi-
tions 1,3 and 4. O

8. Lemmas and propositions. This section states and proves the propo-
sitions referred to in Section 2. The proofs make use of some lemmas, which
are presented first.

LEMMA 1. Foralln>0,as A — 0+,

1 1
i L{=)07"~L| =27,
® Sup (0) (A)

(ii) sup L(l)e” ~L<—1-) A7,
9<A 0 A

PROOF. A trivial rewriting of, for example, property 4 of Seneta [(1976),
pages 20-21]. O

LEMMA 2. Foranye € (0,11, 9> 0, 6 € (0,7n), as A — O+,
1 1
il L. n=6r,( Z \\7
L(EA)(:-:/\) O(e L(A)/\ )
PROOF. From Lemma 1(ii),

L(El)‘) ()" = (eA)"‘sL(é) ()’ = 0((5A)"‘5L(%)A6). .

LEMMA 3. Forall n >0, as A — 0+,

. AN, 1./1\._

if A is so small that L()\) is locally bounded in [1/A, c0), and

.. A1\, 1 1.(1
(ii) /0 L(a)on /d0~EL<X>X'.
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PROOF. Trivially rewrite (1-32’) and (1-32") of Yong [(1974), page 20]. O

LEMMA 4. Under Condition B, if 0 <n <1,
d 1
Z ( )/\ "=0(L ——)/\,1,,‘") asn — oo.
Jj=1 Am

PROOF. Because m/n — 0, Lemma 1(i) gives

1)\, ., 1\, _,
. - . — <
3.1) hin suplr<njaxm fgg {L(Aj)’\l /L(/\)/\ } 1,

and thus

(3.2 hfln_)gplrgixm{ ( ) /27r/ ( ))\ ”dA} 1,

80, as n — oo,
lom L LAY A 1\,-n
n2j=1 (/\j)'\f —0(/0 L(/\)/\ d\}.

Now apply Lemma 3(3i). O

LEMMA 5. Under Condition B, if 1 <7 < 2, then, for some § > 0,
_ 1 _
n2ZL< ))\ "—O( 6L(Am))"2" ”) as n — oo.

PROOF. The LHS is of order

*on , X)o7
Jj=s+1

for 1 < s < m, which by Lemma 4 is

oe(pirreiaon)n) -o({(3) el )

where 0 < ¢ < 2 — 7, using Lemma 2. Now choose s ~ m®, where § = 2—":77‘_:—5 a

LEMMA 6. Under Condition B, for n > 1, for any positive integer u < m,

—ZL( )A;":O(L(Alu))\,’;"’) as n — .

J=u+l
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PROOF. By (3.1) and (3.2) (which hold for any 7 > 0),

—ZL( ) o(/ijG)A—"dA) as n — oo.

J=u+l

The result follows from Lemma 3(i) because L()) is locally bounded in [A, c0)
for large enough A, and m/n — 0. O

LEMMA 7. Under Condition B, and assuming also that L is differentiable
with derivative L'(\) = O(L(\)/A) as A — oo, for 0 <n < 1,

(3.3) —ZL( )/\ " cost); = O(L(t)t""!) asn — oo,

uniformly in t such that n/m < tn/2.

PROOF. Choose s such that s ~ n/t, so that s < m for n large enough. Now

(o< (o2,

as n — oo, by Lemma 4. On the other hand, by summation by parts,

= Z L( ),\j‘" cos t);

J-s+1

AR o)) S
’—I;L(/\n)/\ n Zcos tA;.

Jj=s+1

(3.4)

Because Y7, cos jA = O(A~!) uniformly in @ and b for 0 < A <, this is
1= 1
of} (1) -1 A”L( ))\” -"}
(t{jgl{’ ()‘j) (’\J+l) Ajr1 l "
+L( ) "’])
m

f(1\g-2pn 4 g1 (L (l) —n
L(Gj) 67"\ +6; L ¥ +L ™ A

as n — oo, by the mean value theorem, where \; < 6; < Aj,;. This is

o(J3E (v es(E)]) -olia())

J=s+1

o5

J=s+1
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as n — oo, using Lemma 1(i) and Lemma 6. Then (3.3) follows by substitution
and (1.2). O

PROPOSITION 1. Asn — oo,

gnff > f(N) —=F(\n) =o(F(\m)) (under Conditions A and B)

@5 _ 0({m—6 . <:’-}>T}F()\m))

(under Conditions A’ and B),
for 6 < 2(1 — H).

REMARK. Here we could relax Condition A’ to
f())-L (%) AM-2H =0 (L (;) AI-Z’“*) as A — O+.

PROOF OF PROPOSITION 1. For n sufficiently large, the LHS of (3.5) is

dominated by
- [ 1Y, 128 1\ 121
> G -r(R)rt o
i

J=1

+a,

where

(3.6) ( ZL( )A”” / ()Al”’dA)

under Condition A, and

EX) ( ZL( )/\1 T, /0 A'"L(%)Al-%“f d,\)

under Condition A”. By Lemmas 3(ii) and 4 and by (2.3), (3.6) is o(F(\m))
whereas (3.7) is O((m/n)"F(Ar)). On the other hand,

A
/ '{L(f - (3)x}
0 1
)\2(1—H)+/'\'L 1) 1w gy
)M , “a

L
O(F(M)) =0(m™°F(\n)),

IA
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as n — oo, by Lemmas 3(ii) and 2, while

ZL( )/A“{,\”” AL )
= (gL( ),\-2”/ (N - /\)d)\>

(2ZL( )xf’ﬂ) O(m=F(’m)),

by Lemma 5, while, from Seneta [(1976), page 7], we can choose L in Condi-
tions A and A’ to be differentiable and such that AL'(\)/L(\) — 0 as A — oo, so

S e (3) ()} oG S )
=0(m~°F(An)),

by proceeding as before and in the proof of Lemma 6. O

PROPOSITION 2. Under Conditions A and B,

(3.8) E{gn—75 Z’_n:I(/\j)} =0(F(\n)) asn— oco.

PROOF. Because x; can be replaced by x;—u in the LHS of (3.8), by Herglotz’s
representation [Brillinger (1975), page 25] and periodicity of f and of Fejér’s
kernel

itu

the LHS of (3.8) is S[—m, w], where
1 m
Sial=1> /A K(u)f(u+ ) du.
J=1 'l

(Of course S[ ,] does not depend on j, with A; referring to the range of inte-
gration in its jth summand). From, for example, Zygmund [(1977), page 90],

(3.9) K(u)=0(—L-), 0<ul <, /ﬂK(u)du=27r.

1+ n2y? o

For any ¢ > 0, (3.9) gives

3100 S[(-, - Ule,m)] =0(% /’_:f()\) d)\) =o(%),
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because x; has finite variance. For small enough € and n sufficiently large, (1.2),
Condition A and Lemma 1(i) imply that, as A — 0+,f(a)) = O(f(\)) = O(f(9)),
for all @ # 0 and 6 € (0, \). Applying also (3.9) and Condition B, as n — oo

S[(~&, —2\m] U [2A,,,,s)]=0(%f(A,,,) /2 " K() du)

(3.11)

3.12) =
=0 (Amf(,\,,,) =Z J—2> ,
s[(- )]0 (3 55 () [ 0 )
(3.13) =

By Conditions A and B and Proposition 1, (3.10)~(3.13) are each O(F()\5)). D

PROPOSITION 3. As n — oo,

Zf {2«J( X) 1}

(3.14) =0,(F(Mm)) (under Conditions A,B and C)
=0, {n—v/@ L H-D/G-a1) [T ! F(\n)
p n m ’
under Conditions A',B and C'.

PROOF. The LHS of (3.14) is

1 1 ¢ 2
(315) {; lef(/\J) } m t=21 (e,z - 0'2) + n—az—z Zetes'ﬁ—s,m,

s<t

where

Yem = — Zf cos th.
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Now

rlz {et (e?le?, s < t)} =o0p(1), under Condition C(iii),
t=1

n t—1
1 {ef -E (e,2 Zef) } =0,(n"*/®")), under Condition C'(iii)’.
n t=2 s=1
applying, respectively, Heyde and Seneta [(1972), Theorem 1] and von Bahr
and Esseen [(1965), Theorem 2], so the same results hold for n=13}, (e? — 02)
on applying Condition C(iv) or C'(iv). Proposition 1 then implies that the

first term of (3.15) is, respectively, o, (F(\n)) and O, (n=*/@")F(\,)). Under
Condition C(ii), the second term of (3.15) has variance that is

o35 ) -0 (5 m) + man, 1),

for n/m < r < n/2, where the first term on the right follows from ~;, =
O(F(Am)), due to Proposition 1. On the other hand, under Condition A,

ZL( )/\1 ~H cos t)

where, as in the proof of Proposition 1, @ = o(F(\»)) under Condition A and
O((m/n)"F(A\n)) under Condition A’. Lemma 7 bounds the first term on the
RHS of (3.16) by O(L(#)t*#-D) as n — o0, and, by Lemma 1(ii),

l’)’tml (L(r)I‘Z(H_D) asr — oo.

(3.16) |yem| < +a,

r<t< /2

Now pick r ~ nm*H-1/6-41 /27 50 that n — oo and Condition B imply
r > 1/\, — oco. Then the preceding calculations give

-1
1 nz: 2= 0<m4(H 1/(5—4H) { Lz( ) L2 (r)} /\4(1—H))
m

t=1
and Lemma 1(ii) and Condition A imply this is O(m2H-D/G-4F2())) =

o(F?(Am)). O

PROPOSITION 4. As n — o0,

"le (V) = a(V)v ()

(3. 17) =0p(F(Mm)) (under Conditions A, B and C)

2T
=0, ({m‘5 + (%) }F(Am)) (under Conditions A’, B’ and C'),
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for §<(1-H)/(2-H).

PROOF. The LHS of (3.17) is nonnegative so it will suffice to show that its
expectation has orders corresponding to those on the RHS. The expectation is

ote F1n2 i::}:nz exp [i(s —t)\]{Cov(xs, ;) — a(X)E (xse;)

s,t=1
—a(N)E(esx) + |a(N)"Eeser) }
By periodicity, for any ),

Cov (xs,x¢) = g /" loe(u)|? expli(t — s)u] du

-

_ gf_r /_ (e + )2 expli(t — ) (u + )] du,
E(xse;) = 0%as_ = ; /1; a()) expli(t —s)u] du

2 ud
= (27—”/ a(u+ ) expli(t —s)(u+ )] du,
80 (3.18) is S,,[(—m, 7)], where, for any set A and integer r,
0'2 d
JAl= 2% [k ) —a(y +u)? du.
S 14) = Gy 3o [ KWla(3) —aly + ) aa
For any A,
1¢ 1
s,[A]=0 (z SF) /A K(w) dus 23" /A K(@u)f () +u) du).
J=1 Jj=1

Thus, for any ¢ > 0,

Sul(=m, — & Ufey)] =o( LSy

nZe <
J=1
1 <[
3.19) +sz=l:/_wf()\j+u) du)
- O(n‘lF()\m) +n-2m) = 0(n=1F (M),

as n — oo, using (3.9), the integrability of f and Proposition 1. For small
enough ¢,

Snl( =& — 22m] U [2Am, )] =0 (ﬁ il () + ,—llf()\,,,))

~0(m'F(\m)),

(3.20)
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as n — oo, using (3.11). For a sequence ¢, such that 0 < ¢, < 1,2¢,m is an
integer, and &, — 0, exm — 00 as n — 00, Sy [(—2Am, — EnAm] U[e,,)\m,2)\m)] is

0(;51—)\;;{“ P /2/\’" u+ ) })

-0< T (/\m)) asn — oo.

Proceeding as in (3.12) and (3.13), Szc,m [(—€nAm,€nm)] is

(3.21)

1 2e,m
0(; ngj {f(Aj) . f ey, K (s ) du
Xi/4
522 + /,\/4K(u)f(u +) du})
= e 1.3
= ( Sn)\m gl {j2 ./_5”,\," u+ )\j) du + ;f(ZA_,) })
= O(F(enhm)),

as n — oo. It remains to consider

(3.23) Z /en)\m (@) | a(y) —a(N+u) ? du.

_1-25,.m+1

Now |a(A) —aA +u)? = {a1(V) — a1(A + u)}2 +{aa(\) — ag(\ + u)}z. For i satis-
fying (2.5), (2.6), (2.11) or (2.12), as A, |A +u| — 0,

2
{ai()\) —o(A+ u)} = O(|LY2 (A" V) AV2-H _LV2(| A 40|~ A +u|V27H|? +.a2),

where, under (2.5) or (2.6), @ = o(LY2(A~Y)AVZ-H ¢ LV2(| X +u|~1) A +u|V/2-H),
and under (2.11) or (2.12), @ = O(LY2(A\~1)AVZ-Hsr 4 LV2(|\ + u|7Y)|X +
u|l/2-H+7), The contribution of the a? term to (3.23) is thus o(F(\»)) under
Condition A, and O((m/n)*"F(\n)) under Condition A’, in view of (2.3). The

contribution of L( 1)( A/2-H — N+ [1/ 2_H)z to (3.23) is

EnAm
0(1/ Yau 3 L( )x”’ 1)
n -—e,.A,,. 2e,m+1

- "(zL(efAm) () =0(252L).

as n — oo, by Lemma 6 and (3.9). Likewise the contribution of

{L1/2()‘j—1) —Ll/z(')\j +u|—1)}()\j+u)1_2H




SEMIPARAMETRIC LONG-MEMORY TIME SERIES 531

to (8.23) is

1 EnAm m 1
O(E/ Z L(a_.)‘sjzzl’\j"'up_m du) as n — oo,
Dju

—€ndm 2e,m+1

for é;, between ); and );+u, arguing as in the proof of Lemma 7. Now §;, > 3
for relevant j and u, so by Lemma 6 the last displayed expression is

(3.24) O(M (En)\m)l_zH %) = O(M) as n — oo.

EnAm n Enm

Now take &, = m~1/22-H), g0 that (3.19)-(3.22) and (3.24) are all O(m—°F (\,))
for 6 < (1 — H)2 — H), applying Lemma 2. It remains only to consider the
contribution of the term in a;(\) — (A + u) under (2.7) and (2.13), and (2.3)
implies this is o(F(\»)) and O((m/n)2"F()\,)), respectively. O

4. Estimation of H and G. The models (1.4) and (when the orders of a
and b are given) (1.5) are two of many possible parametric models for f()).
Gaussian estimates for long-memory parametric models have now been rig-
orously justified, by Fox and Taqqu (1986) and Dahlhaus (1989) under Gaus-
sianity, and by Solo (1989) and Giraitis and Surgailis (1990) under linearity.
When the parametric form of f()\) is misspecified, in general these estimates
will be inconsistent. There is therefore interest in estimating an unknown H
in the semiparametric model (1.1), which is agnostic about short- and medium-
run behavior. A closed-form semiparametric estimate also has some compu-
tational advantage over Gaussian estimates of H in models such as (1.4) and
(1.5), which have to be obtained by numerical methods. One application of a
semiparametric estimate of H is in the estimation of the fractional ARIMA
model (1.5) when the degrees of @ and b are unknown: The x; can be approx-
imately fractionally differenced using the semiparametric estimate of H and
the binomial theorem, and then standard order determination methods can
be employed.

Two closed-form semiparametric estimates of H were proposed by Janacek
(1982) and Geweke and Porter-Hudak (1983), assuming L in (1.1) is constant.
Janacek employed a certain parametric f in which the parameter space in-
creases slowly with n, but the justification he provided was heuristic and,
in particular, no consistency proof was given. Geweke and Porter-Hudak re-
gressed log I()\;) on —2 log|1 — exp(i);)|, where j = 1,...,m, where m satis-
fies at least Condition B, but discussed asymptotic properties only in case
0<H< % [when f(0) = 0] and even here their discussion was heuristic. Re-
cently, Robinson (1992) has established asymptotic properties for a modified
version of Geweke and Porter-Hudak’s estimate proposed by Kiinsch (1986),
which omits the contributions for the very lowest );, allowing 0 < H < 1 but
assuming L is constant and x; is Gaussian.

We present a new semiparametric estimate of H which we show to be con-
sistent under the mild assumptions of Theorem 1, and even when the slowly
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varying function L in (1.1) is of unknown form. To motivate the estimate,
observe that (1.2) and (2.3) imply, for any ¢ > 0,

(4.1) 14521):\)) ~ g2l H)IL((I].//‘I)\);) ~ q21-BD,

as A — 0+, suggesting the estimate

_ log {F(a>n) /F (/\m)}

(4.2) Hpg=1- Slone

~

Because fImq = Hpg,1/4 We can restrict g to the interval (0, 1). Hypng nearly
always lies in the stationarity region (—00, 1); it cannot exceed 1, and it equals
1 only if F(q)\ )= F(/\,,,) qu is scale- and location-invariant due to the ratio

in the numerator of (4.2) and the invariance of F to location.

THEOREM 3. Under Conditions A, B and C, for any q € (0, 1),

Hpg —pH asn— oo

PRrROOF. We have

g, - [1 log {F(g>n) /F()\m)}]

2log q

1 [, [FOw) F(ghn)
=——11 —1 ,
21og [ o8 {F(Am) } o8 {F(q)\m)
which is 0,(1) as n — oo, by Slutzky’s theorem and Theorem 1. Now apply
(4.1) and Condition B. O

(4.3)

For the purposes of the following theorem and the following section, we
find it useful to establish also a rate of convergence. We introduce the follow-
ing condition.

CONDITION B’. For some ¢ and ¢ such that 0 < p <9 < 1,

n® m
—+——0 asn— o.
m n¥

Condition B’ is true if, for example, m ~ I'n" for a finite posmve constant I'
and v € (0,1).

THEOREM 4. Under Conditions A’, B’ and C’, for some § > 0,

ﬁmq ~H=0,(n"%) asn— oo
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PROOF. Combining Condition B’ with Theorem 2 gives FOu ) FOpR)—1=
0,(n~?), so that (4.3) is Op(n~?%). Condition A’ implies that f())—L(\~1)A1-2 =
O(L(/\ HAL-2H+7) ag X\ — 0+, thus

F(A) —L(A"Y)20-B/2(1 —H) = O(L(A\"})AZI-H*7)  ag X — 04+,

and thus

l_log{F(qm/F(Am)}_H=o((m)’)=o(n_5) wsnoo O

21log q

Theorems 3 and 4 require no knowledge of the functional form of L()\).
However under (1.3) we can consistently estimate G. Because (2.4) implies

2(1- H)F())

4.4) AT

~G as \— 0+,

we estimate G by

2(1 = Bpg) ()
™8 = M(1/m) ‘

)

(4.5)

Note that @mq >0.
THEOREM 5. Under (1.3) and Conditions A’, B’ and C/, for any q € (0, 1),

Gmg —p G asn — .

PROOF. From (4.4), E;,,,q /G has the same probability limit as

&, MU (1= Hig FOm) | o)
"2(1-H)F(w) | 1-H F(\n)

The factor in braces converges to 1 in probability, by Theorems 1 and 3, and
by Theorem 4, as n —

I)\Z(H"“'_H) ll lexp{ Hpg — H)log A,,,}—- l
< 4(log n)Iqu —H| -, 0. m]

We now report a small Monte Carlo investigation of finite-sample properties.
Using the algorithm of Davies and Harte (1987), 30, 000 Gaussian series of
length n = 64 were generated from model (1.4) with 2 = 1, for each of five
zalues of {:I H = 0.55(0.1)0.95. For each of the 5§ x 30,000 series, estimates
Hpg and Gpg of H and G = I'2H + 1)sin(rH)/2r [with the convention that
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TABLE 1
Bias and MSE of Hyg in (1.4) for n = 64

m

H 6 10 14 18 22 26 30

-0.079 -0.047 -0.032 -0.022 -0.015 -0.012 -0.009

055 9100 0057 0038 0028 0022 0018 0016
—0.107 —0.067 —0.045 —0.031 —0.022 -0.015 —0.012
065 0097 0048 0031 0022 0017 0014  0.012
—-0.144 —0.096 —0.070 -0052 —0.039 —0.030 —0.025
075 0092 0043 0027 0018 0013 0010  0.009
g 0185 0133 0105 0086 0070 0060  0.053

0.091 0.044 0.027 0.019 0.013 0.010 0.008

0232 —0175 —0.147 -0.128 -0.113 —0.102 —0.095
095 0100 0050 0033 0024 0018 0015 0012

the constant M()) in (1.3) is 1] were calculated with q = 3 L and 7 values of

m,m = 6(4)30. The results for Hm, 172 and Gm, 1/2 are presented in Tables 1
and 2, respectively. In each cell the top number is the Monte Carlo bias, the
bottom one the Monte Carlo mean square error (MSE). One might not expect
good results for so small a sample size, and the estimates are seriously biased.
H,, 1,2 always underestimates H, the bias increasing in H and decreasing in
m [(1.4) decays monotonically but with real data there is a danger in choosing
m too large i in case of a peak in the spectrum at a small nonzero frequency]
The MSE of H,,, 1/2 is U-shaped in H but unsurprisingly decreases in m. Gm 1/2
overestimates for the smallest two values of m but otherwise underestimates,
the smallest biases being recorded for m = 10 and 14. The MSE of G, /2
decreases in both m and H.

Graf (1983) proposed an interesting form of robustified M-estimate of H
based on a parametric model for f and applied various versions of it to a
time series of annual minimum water levels of the River Nile measured at
the Roda Gorge near Cairo during the years 622 through 1284 [see Toussoun
(1925)], obtaining estimates between 0.828 and 0.847. We computed H,, 1/2
for m = 20(20)180. The estimates were very stable in m, lying between 0.832
and 0.859.

5. Further applications.

5.1. Autocorrelation-consistent standard errors. Along-used model for time
series y;, observed at ¢t = 1,...,n, is the polynomial regression

p
(5.1) ye=Y Bt 4,
Jj=1



SEMIPARAMETRIC LONG-MEMORY TIME SERIES 535

TABLE 2
Bias and MSE of Gmg in (1.4) for n = 64

m
H 6 10 14 18 22 26 30
0.104 0011 -0.004 -0.009 —0011 —0011 —0.011
055 189 0011 0004 0002 0001 0001  0.001
0099 0008 -0010 -0.016 —-0019 —0021 —0.021
065 (163 0010 0.004 0002 0002 0001  0.001
0.092 0007 —0011 —0019 -0024 —0.026 —0.027
075 128 0008 0003 0002 0002 0001  0.001
0072 0.007 -0009 —0017 —0.022 -0025 —0.026
085 (066 0.004 0002 0001 0001 0001  0.001
0.033 0004 -0004 —0008 -0.010 -0012 —0.013

095 0010 0001 0000 0000 0.000 0000  0.000

where x; is an unobservable covariance stationary process, with E(x;) = 0 and
spectral density f()\), and 3 = (8, ...,5,) is unknown. For f()) continuous and
positive at A = 0, Grenander (1954) showed that the ordinary least square
(OLS) estimate of 3 is asymptotically as efficient as generalized least squares
(GLS). Under (1.1), and with p = 1 in (5.1), results of Adenstedt (1974), Beran
and Kiinsch (1985), Samarov and Tagqu (1988) and Yajima (1988) indicate that
the efficiency of OLS may still be very good. However, standard errors with
the appropriate consistency properties in the presence of unknown H must be
attached, to ensure consistency of interval estimates and asymptotic validity of
test statistics. Although Beran (1989) employed robustified M-type estimates
of H based on a parametric long-memory time series model in constructing
a modified ¢-ratio when p = 1 in (5.1), semiparametric estimates of H are
especially suited because it is only behavior of f near zero frequency that is
relevant and only a slow rate of convergence of the H estimate is required.
For general p in (5.1), define

n -1 ,
E: (ZZ:Z;) Zztyt where 2t = (l,t’ . ,t—l)',
t=1 t=1
and
n
Xe=x — (B* B)'z:, w(X)=(2mn)? thei"\.
t=1

Denote by ﬁm and é,,,q the estimates fImq and @mq with the x; replaced by
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the %;, where (1.3) is assumed. Introduce the p x p matrices

n 1/2 n 1/2
- anglon(350) " (350) ")
1

Q={(2i-1)"*(%-1)"2(i+j-1)7"},
R(H) = {2r(2(1 - H)) cos((1 - H)7)
x (2 — 1)V/2(2j — 1)1/ /01 /olxi—1yf-1]x — y2H-D gy dy},

where the (i, j)-th elements of @ and R(H) are indicated. Then we can show that

n1/2—Hng _ R
5.2 ~————RY2(H,,.)QD(B - B) —4 N(0,I ,
( ) G1/2M1/2(n) ( 'W)Q (ﬂ ﬁ) d ( p) asn—oo

under Conditions A’, B’ and C’ and conditions ensuring that (5.2) holds with
Gmg and H,,g replaced by G and H [see Yajima (1988), (1991)]. To establish
(5.2) it suffices to show that

(5.3) (logn)(Hmg —H) =50,  Gmg—p G asn — oo,
(5.4) R(H) is continuous in H on (—;—, 1) ,

where the convergence rate for ﬁmq in (5.3) is due to the requirement that

nHing—H —p 1. Theorems 4 and 5 imply that (log n){fImq -H} -, 0, @mq —p G,
as n — oo, and their proofs indicate that (5.3) will follow if, for some £ > 0,

n”t Z {T(AJ) - I(’\j)} =0,(n"*F(\n)) asn— oo,
Jj=1
where T(\) = |@(\)|2. Now
1 m

3= {ron-100)

1

(5.5)

<2eSot) oS {r i)

Jj=1 j=1

and the first sum in the square brackets is straightforwardly seen to equal

_21;“{ tz;:ztz;(g_ 8)(B - ﬁ)'} =0, (1;r{D‘1 gztzéD‘l}nz”‘IL(n)>

=0, (nzH'lL(n)),
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as n — oo. By the triangle inequality and Proposition 2, the left hand side of
(5.5) is

. . L(n 1/2 .
0, ({n 2L ()P (\n)}2) = 0, [ mi LT p(0) | = 0,(n=F (),
L(A;,‘)
using Condition B’ and L(\) + L(\)~! = O(\") as A — oo for any n > 0. To

check (5.4), note that I'(2(1 — H)) and cos((1 — H)x) are continuous in H, and,
for § > 0,

1 1 1 1
/ / £yl — y2H-D gy gy — / / Ly — y PH-D48 gy g
o Jo o Jo

1 1
< /0 /0 (Ix —yH-D |y _y|2(H—1)+6) dxdy

because x* decreases in a, for 0 < x < 1. However, [, [i |x — y|?#-D dx dy =
1/H(2H - 1) is continuous in H on (3,1).

5.2. Feasible generalized least squares estimates. Assuming (5.1) and (1.1)
with L constant, Dahlhaus (1992) has suggested weighted least squares esti-
mates of 8 which he showed to have the same asymptotic efficiency as GLS.
The weights depend only on H, and Dahlhaus also showed that inserting an
nP-consistent estimate, for any p > 0, maintains the efficiency; the preceding
discussion indicates that Hy,, satisfies this requirement under Conditions A’,
B’, and C'.

5.3. Estimation of cointegrating coefficients. Model (5.1) implies that a cer-
tain linear combination of a nonstationary dependent variable and certain
nonstochastic nonstationary regressors is stationary. When the nonstationary
regressors are stochastic, OLS is often consistent even when the errors have
nonzero mean or are not orthogonal to the regressors, so the regression is
incompletely specified. Consider the equation

(5.6) ¥ = B2 + x4,

linking the scalar stochastic variates x;, y; and z;, where only y; and 2, are
observed, at t = 1,...,n. As n — oo, one sufficient condition that OLS 3 =
Y yee /S0 22 —p Bis Tha? /T 22 -, 0 (by the Cauchy inequality), which
indicates, along with the “cointegrating” relation (5.6), that there is a linear
combination of y; and z; which is stationary or “less nonstationary” than y; and
2; individually and holds in the special case, stressed in much recent econo-
metric literature [e.g., Johansen (1988)], in which z; has a unit root and x; is
stationary with bounded spectrum, for example, y; and z; represent consump-
tion and income. The insistence on a unit root—weakly dependent distinction
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between z; and x; is somewhat arbitrary and one can also consider a notion
of cointegration when z; is long-memory stationary while x; is stationary with
shorter memory, so one can think of an “equilibrium” relation y; = 8z; on
low frequencies only. The problem of consistently estimating 3 is then more
challenging, because B can be consistent only for 3 + E(z:;) /E(z?), and OLS
with an intercept can be consistent only for 8 + Cov(z;,x;)/Var(z;), neither of
which equal 3 when x; and z; are not orthogonal. We suggest a more deli-
cate approach, carrying out the regression in the frequency domain over only

a degenerating band of low frequencies. Define wy()\) = (2n)~1/2%" y.eit?,

w,(\) = (27rn)_1/22?=lztei»" Iyz(A) = wy(A)wz(A), L) = |wz()\) l2, Fyz()\m) =
@r/mER L), FoOm) = @n/mIT2 L), B = Re{Fyz(Am)}/F.(Am). Denote by
f:(\) the spectrum of z; and assume that £,(\) ~ N(A"})A}=%/, as X\ — 0+, for
% < dJ < 1 and N()\) a slowly varying function at infinity. Also assume that
2 =E(z)+ TZopict—js Ej‘?jopf < 00, where the white noise innovations ¢; have
variance 72 and Condition C holds for the ¢ after replacing e by € and o by 7.
Defining f‘xz analogously to f‘yz, and with F as in Section 2,

~ Re{ﬁ'xz(/\m)} lf‘xz()\m)i ﬁ‘(,\m) 1/2
1B—B| < 7o () < F.(Om) S{iﬁz()\m)} ’

by the Cauchy inequality. Assuming Conditions A, B and C, but not assuming
orthogonality between x; and z; or that E(x;) = 0 or E(z;) = 0, it follows from
Theorem 1 that

ﬁ—apﬂ as n — oo,
ifl<H<J,orif 1 <H=4J and L(\)/N(}) — 1 as XA — oo.
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