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A UNIFIED APPROACH TO IMPROVING EQUIVARIANT
ESTIMATORS

BY TATSUYA KUBOKAWA
University of Tokyo

In the point and interval estimation of the variance of a normal distri-
bution with an unknown mean, the best affine equivariant estimators are
dominated by Stein’s truncated and Brewster and Zidek’s smooth proce-
dures, which are separately derived. This paper gives a unified approach
to this problem by using a simple definite integral and provides a class
of improved procedures in both point and interval estimation of powers of
the scale parameter of normal, lognormal, exponential and Pareto distri-
butions. Finally, the same method is applied to the improvement on the
James—Stein rule in the simultaneous estimation of a multinormal mean.

1. Introduction. Let S and X be independent random variables, where
S/o? has a chi-square distribution x2 with n degrees of freedom and X has a
normal distribution N(u, 02) with an unknown mean . Assume that we want
to estimate the unknown variance o2 by an estimator § under the quadratic
loss (6/02% — 1)2. Stein (1964) showed that the best equivariant estimator rel-
ative to the full affine transformation group is §p = (n + 2)71S and that it can
be dominated by considering a class of scale equivariant estimators

(1.1) 6=¢(W)S, W=X?%/S,

for a positive function ¢. In the equivariant class, Stein (1964) found an im-
proved estimator §s = ¢s(W)S for

(1.2) ¢s(W) =min {(n +2)71,(n+3)"1(1+W)}.

Brewster and Zidek (1974) used an idea of Brown (1968) to develop the gen-
eralized Bayes and better estimator 6pz = ¢o(W)S for

52 vf (v)F1 (W) dv
fooo v’ (U)F1(Wv) dv,

where f3,(v) and Fj(v) designate the density and the distribution functions of X2
These procedures have been separately applied to the interval estimation of
the normal variance and the estimation of the scale parameter of exponential
and Pareto distributions. For the references, see Shorrock (1990), Goutis and
Casella (1991) and Maatta and Casella (1990).

(1.3) do(W) =
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In this paper, we employ a definite integral to derive a broader class of
improved estimators 6(¢) = d(W)S, ¢(-) satisfying the following conditions:

CONDITION A. ¢(w) is nondecreasing and lim,, ... ¢w) =1/(n + 2);
CONDITION B. ¢(w) > ¢o(w).

Taking ¢(w) = ¢o(w), the bound in Condition B, gives 6pz. Also since ¢o(w) <
(1+w)/(n +3), the function ¢s(w) satisfies Conditions A and B, so that Stein’s
result follows. In this way, these two procedures of Stein and of Brewster
and Zidek can be unified. Brewster and Zidek (1974) pointed out this fact
in the normal case. More directly we derive it based on a simple definite
integral. Furthermore, this approach allows us to generalize the underlying
distributions and loss functions as well as to treat the problem of interval
estimation.

In Section 2, we describe the distributional assumptions—for instance, a
monotone likelihood ratio property, which is essential in this problem. The
assumptions are satisfied by normal, lognormal, exponential and Pareto dis-
tributions. For loss functions with bowl shape, a definite integral is utilized to
get unified conditions on ¢(w) for the domination, and Brewster—Zidek-type
estimators and Stein-type truncated ones are automatically presented. Sim-
ilar results are given for interval estimation, which is discussed in Section
3. In Section 4, we deal with the problem of improving the James—Stein rule
in the simultaneous estimation of a mean vector of a multivariate normal
distribution and present analogous conclusions.

2. Point estimation of the scale parameter. Let S and T be indepen-
dent random variables, where S/o and T'/o have densities

2.1 g(W)ysoy and  h(w; NIusko,

for an unknown real parameter ), a real function k2()\) and the indicator func-
tion Ipy. It is noted that T = X2, X = p2/(20%) and k(\) = 0 in the normal
case stated in Section 1. For o # 0, we want to estimate o“ by an estima-
tor 6 = 6(S, T) relative to the loss function L(§/0), where L(¢) is absolutely
continuous and strictly bowl-shaped, that is, strictly decreasing for ¢ < 1 and
strictly increasing for ¢ > 1. As a consequence L is differentiable almost ev-
erywhere. To guarantee interchange of limit and integration in the proofs, we
assume that

/ L(cv*)g(v) dv < oo and / IL' (cv*)|jveg(v) dv < 00 for ¢ > 0.
0 0

It is also assumed that [° |L/(cv®)|v**'g)h(v) dv < oo for d > 0 and h(u) =
h(u; 0).

Let H(x; \) = [5 h(u; N>k du and H(x) = [ h(u)du. Assume the follow-
ing:

(A.1) H(x; \)/H(x) is nondecreasing in x > 0.
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If h(x; \)/h(x) is nondecreasing, (A.1) is guaranteed. Among estimators ¢S,
for ¢ > 0, the best ¢y is given as a solution to the equation

(2.2) / ” L' (cov*)v*g(v) dv = 0.
0

From Brewster and Zidek (1974), it is seen that such a ¢y uniquely exists
under the following assumption:

(A.2) glc1x)/g(cox) is strictly increasing in x for 0 < c; < ca.
For improving on the estimator 6§ = ¢oS®, consider a class of estimators

o(W)Se, if W>0,
coS®, otherwise,

(2.3) 6(¢) = {

for W = T/S and a positive function ¢. It is assumed that ¢(-) and L(¢(-)) are
absolutely continuous and that the risk of §(¢) is finite. Based on the following
lemma, we can get the theorem.

LEMMA 2.1. For positive functions p(x) and q(x), assume that p(x)/q(x) is
increasing. If K(x) < 0 for x < xo and K(x) > 0 for x > x, then

* k() P& gp > 20 [ g
/o K(x)q(x)d % g(x0) Jo Kle) d,

where the equality holds if and only if p(x)/q(x) is a constant almost everywhere.

THEOREM 2.2. For a > O(resp., < 0), assume (A.1) and the following
conditions:

(a) #(w) is nondecreasing (resp., nonincreasing) and limy,_.o, ¢(w) = co;
®) [3° L'(¢w)w*v*gw)H(wv) dv > (resp. <) 0.

Then 6(¢) dominates .
PROOF. The case a > 0 only is treated. Observe that
R(), 6(¢)) — E[L(coS*/o*) Iw<a)

2.4) - o
= /0 /0 L(¢(w)v*)vg(v)h(wv; A)Iweskon dw dv.
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Since ¢(w) is differentiable almost everywhere, by a definite integral, we get

E[L("‘;S )I[W>o]]
_ [ / ™ L(6(w)v*)g(v)H(wv; \) dv};
(2.5) _ /0 wdiw{ /0 ” L($(w)v™)g () H (wv; A) dv}dw
- [ [ v 0w)e)s w)oe (o) wn; 3) do dw
. /0 ” /0 ” L) )og (0)h (w0; \)ligossory duw do,
which gives that
R(),6(4)) —R(),6)
== [ [ L 6w)0)e w)org ) 3) o dw
== [ ) [ o) B0 0) ao
- [ #w Br) [ 2 ouw))oe(o) o) do d

(2.6)

IA

where vy = {¢(w)}_1/ “. The inequality in (2.6) follows from Lemma 2.1, (A.1)
and condition (a). Hence Theorem 2.2 is established. O

Define ¢o(w) and ¢;(w), respectively, by solutions of the equations
2.7 /ooo L' (¢o(w)v*)vog(v)H(wv)dv =0,
(2.8) /0 7 (¢1(w)v*)v>+g(v)h(wv)dv =0,
and let ¢g(w) = min{co, ¢1(w)} for a > 0, and @s(w) = max{cy, #;(w)} for a < 0.
Egzzuniqueness of ¢o can be shown based on (A.2) and the following assump-
(A.3) H(cyx)/H(cox) is strictly increasing in x for 0 < ¢y < ca.

Also, the uniqueness of ¢; is guaranteed by (A.2) and the assumption that:

(A.4) h(cix)/h(cox) is strictly increasing in x for 0 < ¢y < ca.
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Note that (A.4) implies (A.3). The resulting estimators 8(¢y) and 8(¢s) cor-
respond to the Brewster—Zidek—type and the Stein-type truncated rules, re-
spectively. From (2.6), it is seen that R(0, 6(¢)) = R(0, 6) at A = 0.

PROPOSITION 2.3. Under (A.1), (A.2) and (A.3), the estimator §(¢g) domi-
nates 6.

PROPOSITION 2.4. Under (A.1), (A.2) and (A.4), the estimator 6(¢s) domi-
nates 6.

The proofs are straightforward, where in the proof of Proposition 2.4, it
will be noted that (A.4) implies that H(x)/{xh(x)} is strictly increasing. For
the details, see Kubokawa (1991b). )

The estimators 6(¢g) and 6(dg), respectively, were given by Brewster and
Zidek (1974) and Stein (1964) in the normal case as stated in Section 1, by
Brewster (1974) and Arnold (1970) in the exponential case and by Kubokawa,
Honda, Morita and Saleh (1993) and Kubokawa, Robert and Saleh (1992) in a
multivariate extension. Assumptions (A.1)-(A.4) are also satisfied by lognor-
mal and Pareto distributions and the corresponding procedures are given.

It is remarked that if we impose convexity on loss functions, all the results
obtained here hold without assuming (A.2). Also the results can be extended
to the case where S and T are not independent by replacing (A.1)-(A.4) with
suitable assumptions.

3. Interval estimation of the scale parameter. In this section, we
shall deal with the interval estimation of 6%, # 0, in the model described
in Section 2. A confidence interval we look at is of the form

I = {gal (g)a <(2)o* < (2) (%)a for o > 0 (resp., a < 0)},

where the constants a and b (a > b) satisfy
3.1 ag(a) =bg(b) and Pl[o*eclp) =1-4,

for 0 < v < 1. This is a confidence interval such that the ratio of endpoints
is minimized and is also the shortest unbiased [Tate and Klett (1959)]. The
uniqueness of a and b is due to (A.2). Here, by using the statistic T', we want
to construct a confidence interval with the same ratio of endpoints as I, and
uniformly higher probability of coverage. For this purpose, consider the inter-

val
{a"l(g(TW)E)a <(2)0% < (2)(¢(_vg)_s_>a

32) 1(9) =
( (@) for o > 0 (resp., @ < 0)}, if W >0,

Iy, otherwise,



IMPROVING EQUIVARIANT ESTIMATORS 295

for an absolutely continuous and positive function ¢. Based on the following
lemma due to Cohen (1972), we can get the theorem.

LEMMA 3.1. For positive functions p(x) and q(x), assume that p(x)/q(x) is
increasing. Then, for c¢1,¢2 > 0 and 0 < x1 < xg,

czp(xz) —e1p(x1) > {P(xl)/fI(xl)}{Czq(xz) - Clq(xl)},
where the equality holds if and only if p(x1)/q(x1) = p(x2)/q(x2).

THEOREM 3.2. Assume (A.1) and that, for a > 0 (a < 0), the following hold:

(a) ¢(w) is nondecreasing (nonincreasing) and lim,,_, ., ¢(w) = 1.

(b) agla/#)H(a/P)w) — bg(b/HH((b/P)w) > (<)0.
Then I(¢) improves upon Iy in terms of coverage probability, that is,
Plo* € I(¢)] > P[o™ € Io]
uniformly with respect to A > 0.
PROOF. For a > 0,
Plo* € I(¢)] — P[{o* € I(¢)} N {W < 0}]

0 ra/d
= / / vg(v)h(wv; Mwwsroy dv dw.
0 Jb/o

Similar to (2.5),
a/¢ *
/ g(v)H (wv; \) dv
b/¢ w=0

LG (i) ()
(3.3) -~ ¢2{ag<¢)H(¢w,A) bg(¢ (i) Law
oo ra/¢
+/0 /b/¢ vg(v) A (Wv;\)wy>koy dv dw,

so that
P[a"‘ € I(¢)] —P[o“ € Io]
Y R AT T A R ) 9)}
a0 o[ Sl ()

which can be verified to be nonnegative by (A.1) and Lemma 3.1, and we get
Theorem 3.2. O
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Define ¢o(w) and ¢,(w), respectively, by solutions of the equations
a b b
3.5 b H - ’
©5) ag(¢0) (¢o ) (¢o) (¢ow)
b b
‘ () =0e( Jh ().
36 ag(¢1> <¢1 #1 h ¢1w

and let ¢s(w) = min{1, #;(w)} for o > 0, and ¢s(w) = max{1, #1(w)} for o < 0.
Note that (A.2), (A.3) and (A.4) guarantee the uniqueness of ¢o and ¢;. From
(3.4), it is seen that Plc* € I(¢g)] = Ploc® € Iy] at A= 0.

PROPOSITION 3.3. Under (A.1), (A.2) and (A.3), I(¢0(W)) improves on Iy in
terms of coverage probability.

PROPOSITION 3.4. Under (A.1), (A.2) and (A.4), I(¢s(W)) improves on I in
terms of coverage probability.

The proofs are straightforward. The improved intervals of the type I(¢s)
were given by Nagata (1989, 1991) for the normal and the exponential cases.
The intervals of the type I(¢) can be also derived. It may be noted that a sim-
ilar result can be obtained in improvement on the minimum-length confidence
interval in terms of coverage probability.

4. James-Stein estimator and its improvements. In this section, the
simultaneous estimation of a mean vector of a multivariate normal distribu-
tion is treated and it is shown that the approach used in Sections 2 and 3
is effectively employed in the improvements on the well-known James—Stein
estimator.

Let X be a p-variate random vector having N,(6,I) and suppose that we
want to estimate 6 by § = §(X) under the loss ||6—0||> = (6—6)(6—0). Stein (1956)
showed that equivariant estimators relative to the orthogonal transformation
group are of the forms 6(¢) = (1 — ¢(||X||?)/|IX||>)X and that there exists an
estimator dominating X among these when p > 3. James and Stein (1961)
constructed the improved procedure §;5 = (1 — (p — 2)/|X||>)X, and since then,
many shrinkage rules dominating X have been presented and their properties
have been studied. Baranchick (1964) proposed that the p081t1ve part Stein
estimator §j5 = (1 — (p — 2)/|X||?)* X is better than §;5, where a* = max(0, a).
Recently, based on the Brown-Brewster-Zidek method, Kubokawa (1991a)
derived a smooth estimator superior to §;5, which is identical to the admissible
procedure given by Strawderman (1971) and Berger (1976). Here we obtain a
class of improved estimators along the approach used in Sections 2 and 3. Let
fo(2) be a density of Xf, and assume the absolute continuity of ¢.

THEOREM 4.1. Assume that the following hold:

(a) () is nondecreasing and lim;_,, ¢(t) =p — 2.
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(b) &) > ¢o(t), where
2 (t)
bolt)=p—2 - ——~—.
A AR
Then 8(¢(||X||?)) dominates ;5.

PROOF. By the Stein identity,
(4.1) R(\,6(¢)) =p+/0°°{ 2(" 2)¢ 4¢’}ﬁ,(t;)\)dt,

where f,(t; ) designates a density of x2(\) with noncentrality A = ||0||2/2. By
a definite integral,

[ [ 2 ds]
=/ t)/ ~fo(s; )\)dsdt+/ fg—t)ﬁ,(t;,\)dt,

for a differentiable function ¢. Letting o(f) = ¢?(t) — 2(p — 2)¢(t), we can see
from (4.1) that

R(X\, 6355) —R(),6(0))
P /0 &(¢) [{¢(t) - (p-2)) /0 Lo (s:3) ds + 25, /\)] dt

which is nonnegative since

fr(t:2) 1)
Jo(/s)fo(s:0)ds ~ [5(1/s)fp(s)ds’ o

Theorem 4.1 presents the improved procedure 6(¢(|X||?)) [the admissible
estimator given by Strawderman (1971) and Berger (1976)] and the positive-
part rule 635 = 6(min(p — 2, | X]))).

These results will be extended to the case where the covariance matrix &
of X is of the form ¥ = 021, 02 being unknown. The same notation as before
is used for simplicity. Let X and S be independent random variables where X
has N,(6, 0?I) and 8 has o%x2. For the loss ||6(X, S) — 6]|2/02, X is dominated
by the James—Stein estlmator bis=1—(@-2)/{(n+2)W}HX, for W = ||X||?/S.
For improving on §;g, consider the estimator §(¢(W)) = (1 — ¢(W)/W)X. Let
h(w) = f0°° vfnW)fp(vw) dv.

(4.2)

(4.3)

THEOREM 4.2. Assume that the following hold.:
(a) @é(w) is nondecreasing and lim,,_,o, ¢(w) = (p — 2)/(n + 2);
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(b) ¢w) > ¢o(w), where

(p—2) [y s~ h(s)ds — 2n(w)
(n+2) [’ s~1h(s)ds +2h(w)

o(w) =
Then 6(¢(W)) dominates &;s.

The proof is omitted. The class given by Theorem 4.2 includes 6(¢o(W)),
which is the generalized Bayes estimator given by Lin and Tsai (1973), and a
positive-part version of §;s. Note that Theorem 4.2 can be applied to the case
where X is fully unknown.
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