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STATISTICAL ESTIMATION AND OPTIMAL RECOVERY!

BY DavID L. DONOHO
University of California, Berkeley

New formulas are given for the minimax linear risk in estimating a lin-
ear functional of an unknown object from indirect data contaminated with
random Gaussian noise. The formulas cover a variety of loss functions and
do not require the symmetry of the convex a priori class. It is shown that
affine minimax rules are within a few percent of minimax even among non-
linear rules, for a variety of loss functions. It is also shown that difficulty
of estimation is measured by the modulus of continuity of the functional
to be estimated.

The method of proof exposes a correspondence between minimax affine
estimates in the statistical estimation problem and optimal algorithms in
the theory of optimal recovery.

1. Introduction. Suppose we observe data y of the form
1 y=Kx+z,

where x is an element of a convex subset X of /5, K is a linear operator and
z is a noise vector. We are interested in estimating the value of the linear
functional L(x), and we wish to do this in such a way as to minimize the error
occurring at the worst x € X.

When z is assumed to be a zero-mean Gaussian noise with covariance
02X, this is a problem of minimax statistical estimation. There is a consid-
erable literature on minimax mean-squared error estimation of linear func-
tionals in such situations—a partial listing would include Kuks and Olman
(1972), Lauter (1975), Sacks and Ylvisaker (1978), Speckman (1979), Li (1982),
Ibragimov and Has’minskii (1984, 1987), Pilz (1986), Heckman (1988), Donoho
and Liu (1991) and Pinelis (1991). There is also considerable literature on
minimax mean-square estimation in models related to, but not identical to,
(D).

When z is assumed to be a vector chosen, not at random, but by an antag-
onistic opponent, subject to the constraint (z,£~'z) < 2, this is a problem
of optimal recovery of a linear functional. The author is not able to give a
complete listing of work on this topic, but is aware of, for example, Micchelli
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(1975), Micchelli and Rivlin (1977), Melkman and Micchelli (1979), Packel
and Wozniakowski (1987), Traub, Wasilkowski and WozZniakowski (1988) and
Packel (1988).

While the two problems are superficially different, there are a number of un-
derlying similarities. Suppose that L,K and X are fixed, but we approach the
problem two different ways: one time assuming the noise is random Gaussian,
and the other time assuming the noise is chosen by an antagonist, subject to
a quadratic constraint. In some cases both ways of stating the problem have
been solved, and what happens is that while the two solutions are different in
detail, they belong to the same family—that is the same family of splines, of
kernel estimators or of regularized least squares estimates—only the “tuning
constants” are chosen differently.

Also, a number of theoretical results in the two different fields bear resem-
blance. For example, Micchelli (1975) showed in the optimal recovery model
that minimax linear estimates are generally minimax even among all non-
linear estimates. Ibragimov and Has’'miniskii (1984, 1987) showed in the sta-
tistical estimation model that with K = I and squared error loss, minimax
linear estimates are within some constant factor of being minimax among
all estimates.

However, there are also disparities; one gets the impression that the litera-
ture on optimal recovery is more developed and intensely cultivated than the
statistical estimation literature. Consequently there are a number of problems
that have been treated as optimal recovery problems, and not yet as statistical
estimation problems.

In previous work on statistical estimation, it has been assumed either that
X is ellipsoidal [cf. Kuks and Olman (1972), Léiuter (1975), Speckman (1979)
and Li (1982)] or hyperrectangular [cf. Sacks and Ylvisaker (1978, 1981)] or
at least centrosymmetric [Ibragimov and Has’'minskii (1984, 1987), Pilz (1986)
and Pinelis (1991)]; an exception is Donoho and Liu (1991), where only convex-
ity is assumed. Also, in certain instances [Ibragimov and Has’'minskii (1984,
1987), Donoho and Liu (1991)], the operator K was of a very special form.
Also, performance was measured via squared error loss only; an exception
is Pinelis (1991). Theorems 1 and 2 of this paper give new general formulas
for the minimax risk of affine estimates in the statistical estimation problem,
with respect to various performance criteria. The formulas hold for general
linear operators K, and without assuming more than convexity of X. Our the-
orems may thus be viewed as the completion of a lengthy development in the
statistical literature, aiming at a general characterization of minimax linear
estimates of linear functionals from noisy data.

Our approach has several corollaries of immediate usefulness. Corollary
1 shows that minimax affine estimators are nearly minimax among all esti-
mates, that is, that the minimax risk among affine estimates is within a few
percent of the minimax risk among all estimates, in a variety of loss functions.
We list in Section 9 a wide variety of statistical models, such as nearly linear
models, semiparametric models, nonparametric regression models and signal
recovery models covered by model (1). It follows that, in all these cases, min-
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imax affine estimates (which are computationally tractable) are also nearly
minimax among all estimates.

Corollary 2 gives relations between the modulus of continuity of the func-
tional to be estimated and the minimax risk. It follows (see Corollary 3) that
results on asymptotic behavior of minimax risk, a statistical problem, follow
from asymptotic behavior of the modulus of continuity, an analytic object. The
results given here form the crucial step in studying asymptotic minimax risk in
a wide variety of statistical estimation problems, ranging from nonparametric
and semiparametric regression to density estimation, to signal recovery. (See
Theorems 3 and 4 in subsection 9.3.)

Theorems 1 and 2, and their corollaries, bring the theory of minimax linear
statistical estimation to a state comparable to the theory of linear optimal
recovery. This is no accident. A secondary aim of this paper is to show that, at
some deeper level, the problems of statistical estimation and optimal recovery
are really the same—that an estimator optimal for one problem is optimal
also for the other—provided ¢ and o are calibrated appropriately. This means
that results obtained in one literature may be exploited in the other.

To show this, we have studied a generalization of the optimal recovery prob-
lem of Micchelli (1975). Assuming that X is just convex (i.e., without assuming
symmetry of X), we show in Theorem 5 the existence of affine optimal algo-
rithms. The proof is entirely parallel to the proofs of Theorems 1 and 2; this
shows that the basic results in both fields follow from the same pattern of
reasoning and, in the main, from a single inequality, (50).

2. The bounded normal mean. The statement of our main result in
Section 4 requires the introduction of some ideas and results from statistical
decision theory.

Suppose we are interested in estimating the real-valued quantity 6, from
observation of the random variable Y = 0 + Z, where Z is a random variable
with Gaussian distribution N(0,02). Y itself may be used as an estimate, of
course, but suppose we know a priori that § € [—7, 7], and we wish to use this
a priori knowledge to do better than Y. The extent to which we can improve
on Y itself depends on what measure of performance we use and on whether
we use only affine (inhomogeneous linear) estimates or whether we allow the
possibility of general nonlinear estimates.

Evaluate performance by worst-case mean squared error. Then the best
performance among affine estimates cY +d is

=mi _ 92
(2) pa(t,0) =min .EI[‘LaTJ,‘T]E(CY"'d 6)2,

and, among nonlinear estimates 6(Y),
_3 _p\2
@) en(r,0) = inf e[m_aTl’:T]E((S(Y) 0)2,

where the infimum is over measurable functions. These two quantities are
called the minimax affine risk and minimax risk, respectively; they have
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been studied by Levit (1980), Casella and Strawderman (1981), Bickel (1981)
and Ibragimov and Has’'minskii (1984). See also Donoho, Liu and MacGibbon
(1990). They satisfy p < min(r2,02), the invariance p(t,0) = 02p(1/0, 1) and
the limiting relation p(t, o) — 02, /0 — co. Three facts are of particular inter-
est. First, the two risks are never very different. Donoho, Liu and MacGibbon
(1990) and Feldman and Brown (1989) have shown that

4) pa(r,0) < %PN(T:U)'
Second, while there is no closed-form expression for py (various inequalities

are available), for the affine risk we have

o1

5) pa(t,0) = g g 2

Third, the minimax affine estimator is ¢yY, where

72

(6) Co(T,O';lz) = m.

(The Iy refers to “squared error loss” criterion.)

Suppose instead we evaluate performance by worst-case mean absolute er-
ror. Let M\ (7,0) denote the minimax value of E|cY +d — 6| among affine es-
timates, and \y denote the minimax value among nonlinear estimates. We
have not seen these discussed before in the literature, although techniques
similar to those used for quadratic error may be used to study them. These
measures satisfy A < min(r, /2/n0), the invariance X(r,0) = o\(r/0,1) and
the limiting relation \(r,0) — \/2/70, as 7/0 — oo. The two risks are again
never very different. In unpublished work, Liu (1989) has shown (by extensive
computations) that

(7 M(7,0) < 1.28)\y(T,0).

Unfortunately, there is no closed-form expression for Ay or A4, although in-
equalities can be developed. However, the minimax affine estimator is again
of the form ¢Y, where ¢y can be computed numerically, and it can be proved
that

(8) co(,0: I;) is a monotone increasing function of /o,

with 0 <c¢o < 1.

As a third possibility, consider evaluating performance by the size of fixed-
length confidence statements. That is, let a € [0, 1], and let x4,(7,0) denote
the smallest number x such that, for some ¢ and d, we have P{|cY +d — 0| < x}
> 1—q, for all § € [—7,7]. Similarly, let xx, o(7, o) denote the smallest number x
such that, for some 6(-), we have P{|6(Y) — 0] < x} > 1—a whatever 8 € [T, 7]
may be. These quantitative measures do not appear to have been discussed
in the literature before the first draft of this manuscript. They may be an-
alyzed by adapting techniques of Zeytinoglu and Mintz (1984, 1988). Stark
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(1992) has recently given tables and other information about x4, .. Denote by
Z1_o the 100(1 — o) percentile of the normal distribution. Both measures sat-
isfy x < min(7, Z,_4/20), the invariance x(7,0) = ox(7/0,1) and the limiting
relation x(7,0) — 2y_q/20, T/0 — co. We also have

(9) XN,Q(T: 1) = XA,a(T, 1) =T, T S Zl—a'
It follows that

Zy_q
(10) xa,a(,0) < Z=xn,a(7,0).

Hence, for o = 0.05, the two risks never differ by more than 1.96/1.645 =
1.19.... The minimax affine estimator is again of the form ¢yY, where ¢y can
be computed numerically, and it can be proved that

(11) co(7,0: @) is a monotone increasing function of 7/0.

with0<c¢o <1
Two final, technical remarks follow: first, for each of the three criteria,

(12) co(r,0;-) =0(1), T—0.

This fact is apparent for the l; measure from (6); for the other measures it
may be established by analysis.

Second, the minimax and minimax affine estimates for all these problems
are nonrandomized. The reasoning is akin to “Rao—Blackwell”-ization and
“Karlin—-Rubin”-ization. Using terminology of Brown, Cohen and Strawderman
(1976), we note that the normal location family has strict monotone likelihood
ratio, and the loss functions of interest have “points of increase,” so Theo-
rem 2.1 and Remark 2.1 of Brown, Cohen and Strawderman (1976) reveal
that each randomized estimator is dominated by a nonrandomized estima-
tor. Hence if we had an opportunity to observe (Y,Z;,Z3, ...), where the Z;
are random variables whose distribution does not depend on # and which
are stochastically independent of Y, we could always do at least as well by
using a function of Y alone. Moreover, when the Z; are, in addition, i.i.d. zero-
mean normal random variables, the “Brown-Cohen-Strawderman”-ization of
an affine function of (Y, Z,,Z3, ...) is an affine function of Y. Therefore, given
the opportunity to form an affine function of (Y,Z;,Z3, ...) we could always
do at least as well with an affine function of Y alone.

3. Hardest one-dimensional subproblems. We return now to the sta-
tistical estimation setting of the introduction. We make one specialization and
one generalization. We suppose that the noise is Gaussian with covariance
¥ = o1, where [ is the identity operator. We will show in Section 11 that the
case of more general ¥ is also covered by these results. We also now allow the
functional L to be affine (inhomogeneous linear) and consider as well affine
estimates of L.
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We are interested in determining the minimax affine risk with squared
error loss,

Ri(0) =_inf sup E(L(y) - L(x))%
L affine x€X
the minimax risk with squared error loss.
R} (o) = iIL’!f sup E(L(y) - L(x))?

and the analogous quantities for absolute error loss Aj(0), Ax(0). We are
also interested in the minimax length of fixed-length confidence statements.

C:, a(0) is the smallest number x such that, for some affine estimator L, the

confidence interval [i(y) - x,i(y)+ x] covers L(x) with probability at least
1 — q, for every x € X. Formally,

Ctalo) = inf{x: 3L affine 5P(|L(y) - L(x)| <x) >1-a,Yx € x}.
The definition of C;, y(o) is analogous.

Suppose we knew a priori not just that x € X, but actually that x belongs
to the one-dimensional subfamily

(13) [x_1,%1) = {tx_1+ (1 —£)xy: t € [0,1]}.

Set R}(o;[x_1,x;]) for the minimax risk in this subproblem; obviously,

(14) Rj(0;X) 2 Rj(0;[x-1,:1])

since the additional prior information can only help. In fact,
(15) R;(0;X) > sup {RX (03 [x-1,%1]): [®_1,%1] C X},
(16) R}(0;X) > sup {R}'{, (o3 [x_l,xl]): [x-1,x1] C X},

and similar inequalities hold for A}(c), Ay(c) and so on. In words, the full
problem is at least as hard as any one-dimensional subproblem.
We now evaluate the difficulty of a subproblem.

LEMMA 1.

* L(x;) —L(x_1)\? Kx; — Kx_
an Ri(o; [x—l,xl]) = (‘"g{%_—f(;_—ll"—)) PA(——-—-———" ! 2 1",0)
and. similarly for Ry(o;[x_1,X;1]),

* L —L(x_ Kx; — Kx_
18 Aj(osfopm]) = ||§2—Kf_ l1")I Bz Exal )
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and similarly for Ay(o;[x_1,x1]), C}(0;[x_1,x1]) and Cy(o;[x_1,%x:1]).

Let us see why. Let xo = (x_; +X;)/2 denote the center of the subfamily,
and set wo = K(x; — x_;)/||[K(x; — X_)||. Define the parameter

0 = (wy, Kx — KX).

Consider the problem of estimating 6 from observations y. We know that 8
[—7,7], where T = | K(x; — Xx_;)||/2. Defining Y = (wp,y — KX,), we have that
Y is N(8, 02). Estimation of  from Y was treated in Section 2, and information
about minimax affine and minimax estimators was given.

Suppose () is a minimax estimator from the bounded normal mean prob-
lem for the given criterion of interest. Then §(Y) is obviously minimax among
all functions of Y; we claim it is minimax among all’ functions of y. Indeed,
there is an isometry mapping y to (Y, Z,,Z3, ...), where Z; are i.i.d. zero-mean
Gaussian random variables, independent of Y — § and of each other, with
probability distribution not depending on 6. By Brown—-Cohen—Strawderman-
ization we see that these extra, “pure noise” variables do not help us reduce
the risk. Hence the minimax risk for estimating 6 from y is that for estimating
0 from Y.

We now make the obvious comment that the problem of estimating sf + ¢
from Y has s? times the minimax risk of estimating 6 from Y, under quadratic
loss, and s times the minimax risk of estimating 6 from Y under the absolute
error or confidence-statement criterion. The restriction of L to the subfamily
[x_1,x%;11is an affine function L(x) = L(xy)+s6. The results quoted in the lemma
follow by computing s.

We now employ the lemma. Introduce the seminorm |jv||x = ||Kv|. The
modulus of continuity of L with respect to this seminorm is defined as

w(e; L, K,X) = sup {]L(xl) —L(x_y)|: Ix1—x_4lx <cand x; € X}.

We generally omit the secondary arguments, these being clear from context.
The modulus may be used to calculate the right-hand side of (15). Indeed,

sup R;(o;[x_1,%1])=sup  sup (Iﬁ—)—ﬂ)zm(‘S a)

o
[x_;,x]€X e>0 ||x;—x_;|lg=¢e € 2

() )

We say that the modulus “measures the difficulty of the hardest one-dimensional
subproblem.” This might be an abuse of language if no such hardest subfamily
existed (i.e., if the corresponding supremum were not attained). However, a
hardest subfamily will exit in considerable generality.

We need one technical restriction on the class of problems treated.

DEFINITION. We say that L is well-defined if the modulus of continuity of
L over X in the usual ls norm is continuous at 0: w(e;L,I,X) — 0, as ¢ — 0.
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We say that the linear operator K is well-defined if the modulus of continuity
of K over X for the /3 norm is continuous at 0.

The condition that L and K be well-defined is much weaker than the condi-
tion that L be a bounded linear functional and K a bounded linear operator. In
all the most interesting examples of Section 9, the functionals and operations
involve in some way point evaluations and so are not bounded. Restricting
attention to well-defined cases serves primarily to rule out consideration of
nonmeasurable linear functionals and of problems where noisy data can pro-
vide essentially no information about the functional’s value. This condition is
satisfied by all the many examples we have looked at.

LEMMA 2. IfX s closed, convex and bounded, if L and K are well-defined
and if w(e) is finite for each € > 0, then the modulus of continuity is attained.
That is, for each ¢ > 0, there exists a pair (X;,X_1) such that ||x; —x_1||g <
€ and

IL(x1) — L(x_1)| = w(e).

Moreover, for each of the three performance criteria, there exists a hardest
subfamily for affine estimates, that is, a family satisfying

Rl s =emp () ),

€
a (generally different) family satisfying
o 2O
A} (o3 [x-1,%1]) = 2121%) (—E—)/\A (—2-, a),
and a (still different) family satisfying

Ci(0; [x_1,x%1]) = ilzlg (“J—Sl)ma (—;—,0).

4. Main result. The following justifies our attention to one-dimensional
subproblems.

THEOREM 1. Let X be closed, bounded and convex, let L and K be well-
defined and suppose that w(¢) is finite for each € > 0. Then, for any of the three
performance criteria, the difficulty, for affine estimates, of the full problem
is equal to the difficulty, for affine estimates, of a hardest one-dimensional
. subproblem. Thus,

Rj(0) = max R} (o; [x_1,%1]),
A3 (0) = max A3 (o3 [x-1,341]),

L,A(U) = glngfl C;,A(U; [x—l’xl])-
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Furthermore, the affine estimator which is minimax for a hardest subproblem
is also minimax for the full problem.

The proof is given in Section 11. This theorem, together with Lemma 2,
provides formulas for the minimax risk in the closed, bounded case. By an
approximation argument, given in Section 14, those formulas extend to the
case of general convex X:

THEOREM 2. Let L be affine and let X be convex. If L and K are well-defined,
then

R} (o) =sup ( (E))ZPA(%,O),

e>0

(o) =aup (2 u(5).
Coa(o)=sup (4L )sa(5.0).

For squared error loss, with L linear and K = I, and with X centrosymmetric
about 0, Ibragimov and Has’'minskii (1984) gave the formula
0%L?(x)

sup ———%
xex 02 +||x||?

for the minimax risk of linear estimates. This may be shown to be a particular
case of our formula for R}(c). The formula for R}(c) has been proved before
in special cases by Donoho and Liu (1991) and by Brown and Liu (1989). The
formulas for A%(0) and C, (o) are new.

5. Near-minimaxity of affine estimates. These formulas imply that
affine estimators cannot be improved on much by nonlinear estimators. In-
deed, using Theorem 2 and (4), we have

‘(o) = sup W€ (€
RA(G)_S:ZIE 2 PA(z,G)
5 w(e)? €
<3 Zm(3)

5 s

Arguing similarly for the other measures of performance and using the facts
(7) and (10) gives the following corollary.
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COROLLARY 1. Under the assumptions of Theorem 2,

R}(0) < 1.25R}(0),
A4 (o) <1.23A%(0),

21 a)2
C24(0) < Z=2C% (o).

-

Hence, quite generally and with respect to several worst-case performance
measures, affine estimators cannot be dramatically improved upon by nonlin-
ear estimators.

Previous work has assumed the squared error loss criterion. Sacks and
Strawderman (1982) had shown that in some case the minimax linear risk was
strictly larger than the minimax risk; Ibragimov and Has’minskii (1984) had
shown, under the assumptions K = I and X centrosymmetric, that the ratio
of the minimax linear risk and minimax nonlinear risk was less than some
unknown, finite positive constant. This “Ibragimov-Has’minskii constant” has
been shown by Donoho, Liu and MacGibbon (1990) and by Feldman and Brown
(1989) to be less than $.

Here we see that, for general K, without any assumption of symmetry, and
in several different performance measures, the minimax affine estimator must
be quantitatively quite close to minimax.

6. The minimax affine estimator. For this section, fix one of the three
performance criteria. Suppose that a hardest subfamily for affine estimates
[x_1,%x;] exists under that criterion (e.g., if X is closed and norm-bounded).
Define the parameters xy and wy as in the proof of Lemma 1. For estimating
the parameter 0 = (wo,Kx — Kx;) iI}\ the subfamily [x_;,x;], the minimax
affine estimator is unique: it is just 8 = co(Wo,y — KXp) (here ¢y depends on
the performance criterion we have chosen). The restriction of L to the family
is affine, L(x) = L(xo) + s6, with slope s = (L(x;) — L(x_1))/||X1 — X_1||x. Hence
the unique minimax affine estimator in the subfamily is

Lo(y) = L(xo) +sb.

Theorem 1 says that the minimax affine risk of this subproblem is the minimax
affine risk of the full problem, so there is an affine estimator for the full
problem which is also minimax affine for the subproblem. However, L, is
uniquely the minimax affine estimator for the subproblem. This forces Lo to
be minimax affine for the full problem.

The formula for Ly can be rewritten as

19, Lo(y) = L(xo + co(wo,y — Kxo) - o),

where up = (x; — x_1)/|[x; —X_4||. This says that the minimax affine estima-
tor has the form of projecting the data orthogonally onto the hardest subfamily,
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shrinking toward the center of the subfamily by a factor ¢y and evaluating L
on the projected, shrunken result.

The shrinkage coefficient ¢y has an interesting form. Assume that the hard-
est subproblem has length [|[K(x; — x_1)|| = 9. One can calculate formally that

€0w (Eo)
w(&‘o)

we will prove this later. Thus, if w(¢) = A¢™, for e > 0 and r € (0, 1], then ¢y = r.
So in this case the estimator reduces to shrinkage by the rate exponent in the
modulus of continuity.

(20)

7. Risk and modulus. The modulus of continuity of a linear functional
over a convex set is subadditive. Hence w(e)/e is a decreasing function of ¢, It
follows that

o0 () o (5:0) = (2)" e ma(5.0) -20)

On the other hand, w(e) is monotone increasing, so
@ 2 E 2 2
wup (5) m(517) s @)smp = on(5r0) <0),

Combining these displays, R} () < w?(0). Continuing in this fashion and using
Theorem 2 for lower bounds, one proves the following corollary.

COROLLARY 2. Under the assumptions of Theorem 2,
o (3:1)4%(0) <Ry(0) <R3(0) < (o),
w(3:1)u() < 43(0) < A3(6) < u(o),

w(22;_,0)<C N(a) <C A(a) < w(2Zl_a/2a).

So the modulus of continuity determines, to within reasonable constant
factors, the behavior of the minimax risks.

8. Asymptotics as ¢ — 0. If we use the notation w(e) < " to mean that
coe” < wle) < cqie” as € — 0, then the preceding inequalities show that w(e) <
implies R}(0) < 0%, as well as A}(0) < " and C* %, n(0) < o". Hence Corollary 2
shows that asymptotics of the modulus control asymptotlcs of the risk.

» We say that w(e) has exponent r if w(e) = Ae” + o(e”). When this condition
holds, it is possible to make precise asymptotic statements.

COROLLARY 3. Suppose that Theorem 2 applies and that the modulus of
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continuity has exponent r. Then

Rji(0) =&,a(r)w?(o) (1 +0(1)),
Ai(0) =&1,a(r)w(o) (1 +0(2)),
C:.a(0) =&aa(r)w(o) (1+0(1)),

as o — 0, where
62,A(r) =8up v2r_2PA(U/2, 1)’
v>0
€,4(r) =sup v\ (v/2,1),
v>0

aa(r) = s;lop Vx4, 0(v/2,1).°

Also

R (0) 2 &,n(r)w*(o) (1 +0(1)),
Aj(0) 2 &1,n(r)w(o) (1 +0(1)),
Cen(0) 2 €an(r)w(o) (1 +0(2)),

as o — 0, where
&2,n(r) =sup v¥2py(v/2,1),
v>0
é,n(r) =sup v Iy(v/2,1),
v>0

a,n(r) =sup v Ixw,a(v/2,1).
v>0

Calculus gives the closed-form expression
b4 =22 (1-r)!".

For all the other quantities, it is necessary to get bounds via computational

means.
It follows from these formulas that

o Ba(0) _ &0

21 ,
@D "Ry (0) = ean(r)

. Ai(o) _ &,a(r)
29 A s ,
- 2 83(@) = )
(23) C;,A(U) < ga,A(r)

70 C (@) ~ Ean(r)’
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These may be used to give somewhat tighter bounds than those proved in
Corollary 1. For example, under squared error loss, in problems with r = ,‘l,,
(21) shows that minimax affine estimates can be improved upon by at most
7% as o — 0. See, for example, Donoho and Liu [(1991), Table 1].

Another form of asymptotic relationship can be deduced.

COROLLARY 4. Suppose the modulus of continuity has exponent r and The-
orem 2 applies. Then, for each of the three performance criteria, if co and ¢
refer to the shrinkage coefficient in a minimax affine estimator for that criterion
and the length of a hardest subfamily for that criterion,

(24) co(€o/2,05) =1 aso—0.

Moreover, if v, denotes the solution of co(v, 1;) = r for the criterion of interest,
then

(25) g0 =2v,0(1+0(1)) aso—0.

In other words, the shrinkage coefficient in the minimax affine estimator
tends to r, and the length of the hardest subproblem behaves like a fixed
constant times the noise level. For the /5 criterion we have, by calculus,

r

(26) Vg r= 1—r

The other quantities v; , and v,,, must be found numerically.

9. Applications. We now briefly point out some of the different areas in
which results given above can be applied.

9.1. Some familiar statistical models. The model with observations (1)
subsumes many situations familiar to statisticians. In view of this, minimax
affine estimators for such models are nearly minimax among all estimates.

Approximately linear models [Sacks and Ylvisaker (1978)]. Let ¢; be n fixed
numbers, and suppose we observe

27 Y,~=a+ﬁt,~+6i+z,-, i=1,...,n,

where a and 3 are unknown real numbers and the §; are unknown, but they
are known to satisfy

(28) 16| < ¢, i=1,...,n,

with the ¢; known constants. The z; are, as usual, a N(0,02) Gaussian white
noise. We are interested in the value of 3. Except for the perturbations §;, this
model posits a linear relation between Y; and ¢;—hence the term “approxi-
mately linear model.” Sacks and Ylvisaker (1978) have developed a complete
treatment of minimax mean square estimation in this model.
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This model is a particular instance of ours. Define x = (a, 3, 61, ...,6,) and
(Kx);=a+0t;+6,i=1,...,n. Then with A the hyperectangular set defined
by (28), and with X = R2 x A we get precisely a problem of the form mentioned
in the Introduction, with L(x) = 8. Of course, our framework handles general-
izations of the original Sacks—Ylvisaker model, by defining A differently—as
an ellipsoid, for example, or some other convex set. For example, one might
impose monotonicity constraints or moment conditions on the (6;).

Semiparametric models [Heckman (1988)]. Suppose we observe

(29) yi=pti+f(w)+z, i=1,...,n,

where ¢; and u; are fixed constants, u; € [0, 1], say, and f is unknown but is
known to lie in a convex function class F. Again (z;) is Gaussian white noise.
We are again interested in estimating (3, but f represents a nuisance which
affects our measurements in an unknown but smooth fashion. Set §; = f(u;) and

A= {(5,) 5,' =f(u,'),f€.7:}.

Because convexity of F implies that of A, we have an instance of the (gener-
alized) approximately linear model previously mentioned.
Nonparametric regression [Speckman (1979), Li(1982)]. Here we have

(30) yi=f(ti)+z,~, i=1,...,n,

where now f € F, a convex function class on domain D C R? and the samples
t; are taken at points of D. We pedantically spell out the representation as
a problem of the form (1). We are interested in estimating functionals T'(f)
such as To(f) = f(to) or T1(f) = f'(to), and so on. Let (¢;(-)) be an orthonormal
basis for Ly(D), let x; = [ f¢;, x = (x;) and set X = {(x;()): f € F}. Finally, set
Kx); = Zj x;¢;(t;) = f(¢;) and L(x) = T(f). This is a problem of our type.

REMARK. The functionals T one might be interested in estimating here,
such as T and T}, are not bounded linear functionals, nor is the operator K a
bounded linear operator. However, if the class F consists of sufficiently smooth
functions, both T' and K will be well-defined in the sense of our definition.

Inverse problems [O’Sullivan (1986)]. Here we have
(31) Yi= (Pf)(t,-)+z,~, i= 1, R (N

where P is a linear operator, such as Radon transform, Abel transform, con-
volution transform and so on. This is again a problem of our type; the setup
is as in nonparametric regression, only K has changed: (Kx); = ¥x;j(P¢)t;) =
- (P)X).

Signal recovery [Hall (1990)]. Here we have noisy, filtered observations
of a signal x = (x;), where now i ranges over the lattice Z2:

(32) yi = Zki_jxj +2;, l,] € Z2.
J
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The noise is i.i.d. Gaussian with variance o2, and we wish to recover L(x) = x,.
We know a priori that the signal x; is slowly changing in i; this is expressed
by the constraint x € X, with X a certain convex class.

White noise model [Ibragimov and Has’minskii (1984), Donoho and Liu
(1991)]. We observe

33) Y(t) = _’f(u) du+oW(t), te[-aal,

where W(t) is a (two-sided) Wiener process [W(—a) = 0]. [This is a rigorous
way of writing dY(¢) = f(¢) + 0 dW(¢), hence the term “observations in white
noise”.] We wish to estimate the linear functional T(f ), and we know a priori
that f € F, a convex subset of Ly[—a,al.

This reduces to a model of our type with K = I. With {¢;}{°, a complete
orthonormal basis for Ly[—a,al, let x; = x;(f) denote the ith Fourier-Bessel
coefficient of f with respect to this basis, so that f ~ ¥°,x;¢;. Then set X =
the set of coefficient sequences x = (x;) of members of F, and set L(x) = T(f)
whenever x = x(f). Observing Y is equivalent to observing the Fourier—Bessel
coefficient sequence y = (y;) where y; = [ ¢;Y(d¢). However, for this we have
the observation equation y; = x; +2;, i = 1,2, ..., with (2;) i.i.d. N(0, ¢2). Thus
the mapping from functions to their coefficient sequences maps the white noise
model (33) onto the present one.

It follows from Corollary 1 that in all the models just mentioned, minimax
affine estimates are nearly minimax among all estimates.

9.2. Deriving minimax affine estimates. Our theory may be used to derive
new approaches to the models just mentioned. For example, in Heckman’s
treatment of the semiparametric model, only two particular function classes F
are considered, and minimax linear estimators are derived for those two cases.
Our approach would allow derivation of parametric quadratic programming
algorithms to design estimators useful for convex function classes other than
the two considered by Heckman; for example, for classes of smooth monotone
functions. However, for reasons of space we turn to other matters.

9.3. Asymptotic statistical theory. The results of Sections 7 and 8 allow
us to derive, by simple, general techniques, relatively precise results on the
behavior of asymptotic minimax risk in statistical estimation problems with
increasing sample size. In essence, the risk in problems such as semipara-
metric and nonparametric estimation with n — oo is equivalent to the risk in
white noise problems with ¢ — 0. This principle has been formulated for local
asymptotic minimax risk in Low (1988), for minimax affine risk in Donoho and
Liu (1991) and in Donoho and Low (1990), and for minimax risk in Brown and
Low (1990).

Theorems 1 and 2 and their corollaries provide asymptotics in the white
noise problem as ¢ — 0 and thereby give asymptotics in the statistical prob-
lems as n — co. Thus the results of this paper, together with approximation
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arguments developed elsewhere, give a variety of results in asymptotic deci-
sion theory. We mention three examples.

Optimal rates of convergence in nonparametric regression [Donoho and Low
(1990)]. In the nonparametric regression model mentioned earlier, suppose
that the evaluation points ¢; are a random sample from the uniform distribu-
tion on D.

We are interested in estimating the affine functional T(f). An affine rule
for this problem is any rule of the form T(y) = e + ¥;l;y;, where the [; are
allowed to depend on the (¢;) but not the (y;). Denote by R4(n) the minimax
risk of an affine procedure based on n observations, with respect to squared
error loss. Define As(n) and Cy, o(n) similarly. Combining results in Donoho
and Low (1990) with those of Section 7, we get the following theorem.

THEOREM 3. Let w(e) be the La(D) modulus of continuity of the functional
T over the class F. Suppose that the function class F consists of elements all
bounded by M in supremum norm. Let T = Vo2 + M2 Then

A7) <Rale) < T5),

o(%5") <talm) ()

w(zzl_a _\/ﬁ) <Cypaln) < w(221_a/2\%1-),

for all n. Hence, the modulus of continuity w(e) < Ae" as € — 0 iff

Ra(n)=<n=",
As(n) xn="/2,
Cao(n) xn"/2,

In other words, determining the rate at which the minimax risk converges
to zero as n — oo is completely equivalent to determining the exponent in the
modulus of continuity of T over F.

Minimax risk in density estimation [Donoho and Liu (1991)]. Suppose we
observe X;,i = 1, ...,n, independent and identically distributed F, where the
distribution F is unknown but assumed to have a density f = F” in a class F,
and we wish to estimate the linear functional T(f) = f(0). Suppose F is the
class of decreasing, Lipschitz densities defined by

F={f12f(-) 20 2/ 20, foree(-1,1)
and 0 <f(¢) —f(t+h) <Ch, forh >0, and /1f=1}.
-1

This class is convex asymmetric.
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Donoho and Liu (1991) studied this problem from the minimax mean squ-
ared error viewpoint. Their calculations, combined with Section 8 of this pa-
per, give results for other performance measures. Some terminology follows:
an affine procedure is any rule of the form e + (nh,)~15;k(X;/h,), a “kernel
estimate”. Let A4(n) denote the minimax expected absolute error for estimat-
ing T by an affine procedure using n observations, and define the confidence
statement measure Cy4 ,(n) similarly.

THEOREM 4. The triangular kernel k(t) = (1 — |t|), asymptotically minimax
among kernel estimates for estimating T(f) = f(0) over F for each of our loss
functions, when the bandwidth is chosen appropriately. For absolute error loss,
the optimal choice of bandwidth is

2/3 13—23—13‘

and to get asymptotic minimaxity for (1 — «) confidence statement length, we
should use bandwidth

h, = 01{3/361/30"2/%‘1/3.

Moreover, the optimally tuned triangular kernel is within 23% of minimax (ab-
solute error loss) and 19% of minimax (95% confidence statement loss). Finally,

As(n) = €1,4(2/3)(6C)Y3n~13(1 +0(1))
and
Ca,o(n) = €,,4(2/3)(6C)3n~13(1+0(1)).

The results of Section 8 play an integral role in this result, which explains
the appearence of the constant v and ¢, and the figures 19% and 23%. For this
application it is important that our theorems hold for convex, asymmetric X.

The approach is, of course, not limited to this one example; it can easily give
minimax risk for /; and confidence statement loss in many other problems of
density estimation, in particular, all those discussed in Donoho and Liu (1991).

Minimax quadratic estimation of a quadratic functional [Donoho and
Nussbaum (1990)]. Suppose we have nonparametric regression data y; =
(&) + z;, with the ¢; equispaced on [—m,7]. We are interested in estimating
the quadratic functional [” (f®(#))2dt using a quadratic rule e + (y, My). We
know a priori that f® is periodic and absolutely continuous for 0 <! < m and
that [7_(f™()2dt < 1.

While this is a quadratic, rather than linear, problem, Donoho and
Nussbaum exhibit a transformation which allows a solution using the methods
developed here. They derive a formula for the asymptotic minimax risk among
quadratic estimates and a formula for a computationally effective quadratic
estimator attaining this asymptotic minimax risk. Theorems 1 and 2 and their
corollaries, play a key role in this solution. For this application it is crucial
that these theorems hold for asymmetric convex sets X.
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10. Optimal recovery. Our inequalities between minimax risk and the
modulus of continuity have a deeper explanation—they express a close con-
nection between the problem of optimal recovery and that of statistical esti-
mation.

Suppose that we have data of the form (1), where z is assumed to satisfy
only ||z|| < . Our measure of performance is the worst-case error:

E(L,x) = sup [L(y) - L(x)|

This problem setting has been treated by many authors, for example,
Micchelli (1975), Micchelli and Rivlin (1977), and Traub, Wasilkowski and
Wozniakowski (1983, 1988). See these sources for further references, going
back to the 1965 Moscow dissertation of Smolyak and the seminal paper of
Golomb and Weinberger (1959).

For the sake of later sections, we pedantically spell out our approach to the
problem. We are interested in the minimax error, either over affine estimators
or over general nonlinear estimators. Hence, set

E;(e) = _inf supE(L,x),
T affine x€X

E}(¢) =infsup E(L, x).
L xeX

We consider lower bounds based on hardest subproblem arguments. Begin
with the analog of the bounded normal mean. Suppose that we are interested
in estimation of the scalar 6 from data y = 6 +2z; we know that |§| < 7 and that

|z2| < e. If T < &, a minimax procedure is § = 0. If 7 > €, a minimax procedure
is to estimate 6 = y. If 7 = ¢, any procedure cy with ¢ € [0, 1] is minimax. Thus,
the minimax errors satisfy

34) en(7,¢) = ea(r,€) = min(7,¢).

Now suppose we wish to estimate L(x), for x known to lie in [x_l, x1] . The
minimax errors satisfy

(35) Ey(e;[x-1,%1]) =

L(x1) - L(x.1)| (lm —X—IHK,E),

%1 —x_1]lx 2

and so on. The difficulty of a hardest subproblem is

(36) sup Ex(e;[x-1,%1]) = sup gé)eN (g,e) :

X, X_ lex

Now w is monotone, so

w(&)eN(g,E) w(6) & (_u_@,

6<2c 0
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and it is subadditive, so

(6) (6 \_ (8) _ w(2e)
bogs 0 © (5’5) eSS =g
Hence
37 sup Ex(e[x_1,%1]) = M
x;,Xx_;€X 2

On the other hand, the nonlinear procedure
~ 1 .
L*(y) = 5 sup {L(x): ly - Kx| <&, x € X}
+ % inf{L(x): |ly - Kx|| <¢, x € X}

[called the central algorithm in Traub, Wasilkowski and Wozniakowski (1983)]
attains, as one can check,

(38) supE(L*,x) = w(2e)/2.
xeX

So, in our terminology, the difficulty of a hardest subproblem for nonlinear
estimates is equal to the difficulty of the full problem, and

(39) E}(e) = w(2¢)/2.

Micchelli (1975) and Micchelli and Rivlin (1977) showed that if X is cen-
trosymmetric about 0, there exists a linear optimal algorithm. Since we have

(40) sup E}(e;[x_1,%1]) = %,
x;,Xx_€X

existence of linear optimal algorithms is equivalent to the statement that the
difficulty, for linear estimates, of the full problem is the same as the difficulty,
for linear estimates, of a hardest one-dimensional subproblem.

It is possible to generalize the optimal recovery theorem. Assuming just
convexity of X, but not centrosymmetry, we can say that affine optimal algo-
rithms exist. '

THEOREM 5. Let X be convex, closed and bounded, and let L and K be well-
defined. Then the difficulty of a hardest one-dimensional subproblem is equal
to the difficulty of the full problem

Ej}(e,X) = max Ej (e, [x_1,X1]).

X, X}
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Even if we assume only that X is convex and that L and K are well-defined,
we may still conclude that there exists an affine estimator which attains the
minimax error and that

w(2¢) .
2

(41) Ei(e) =

Combining (41) with Corollary 2 yields
(42) (Ex(0))*/4 < B3 (0) < (B3(0))"

In other words, if we equate noise levels ¢ = o, then (E*(¢))? is approximately
R(0). The connection between the optimal recovery and statistical estimation
model will be further spelled out in Section 12.

11. Proofs of Theorems 1 and 5. We may assume that w(e) is finite for
all ¢ else the subadditivity of w(e) implies that there are one-dimensional
subproblems with arbitrarily high difficulty, in which case the theorems are
trivially true.

PROOF OF THEOREM 1. We claim that, for a specific subproblem [x_;, x;]
and a specific choice of d, the affine estimator

(43) Lo(y) = L(xo) +d(wo,y — Kxo)

has two properties:
PROPERTY Py. Ly is affine minimax for the subproblem [x_;,x;].

PROPERTY P;. L, attains its worst-case risk, over all of X, in the subprob-
lem [x_1,x;].

Thus, the difficulty of the full problem for this particular estimator is no more
than the difficulty of the subproblem, but as this estimator is affine minimax
for the subproblem, it must also be affine minimax for the full problem. We
conclude that the subproblem is a hardest one-dimensional subproblem and
that the difficulty of the subproblem is equal to that of the full problem.

The proof shows that the set & of estimators of the form (43) which have
Property P, and the set £; of estimators which have Property P; have nonempty
intersection. This shows there is an estimator (43) with both properties and
implies Theorem 1.

To begin, we state without proof the following result, which follows by easy
calculations and standard results in Rockefellar (1970).

LEMMA 3. The modulus of continuity of an affine functional over a convex
set is a concave function of €. It is nonnegative and, if it is bounded on an
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interval [0,e], it is locally Lipschitz continuous at 6§ to that interval. It has a
bounded superdifferential dw(6) at each § interior to that interval. That is, let
Ow(6) denote the set of slopes of lines passing through (8,w(6)) which lie above
the graph of w(¥),

dw(8) = {d: w(e) < w(6) +d(e —6), e > 0}.

Then Ow(6) is a nonempty, closed, bounded, convex subset of R. Viewed as a
curve in the plane (g, 8w(e)).>¢ is a connected, monotone nonincreasing curve.

Define the set I'y(e) = edw(e)/wle). Then T'y = |J,50 ({s} X I‘l(e)) is a subset
of [0,00] x [0,1]. By Lemma 3, (g, 8w(e)).>0 and hence also I'; are connected
subsets of R2.

Under our assumptions,

€* = sup [|x; — X_1[[x < oo.
As w(e) = w(e*), for € > ¢*, we have 0 € dw(e),e > *. Thus
(44) 0e Fl(&‘*).

Also, as L is nonconstant (otherwise the theorem is trivially true),

(45) O]

mir - (e) > const. > 0.

For the criterion of interest, define

To= J ({e} x {eo(e/2,53)}).

e>0

As ¢ is monotone increasing and continuous for whichever of the three criteria
we have chosen [see Section 2, equations (6), (8) and (11)], I’y is a connected

monotone increasing curve of R2.
It follows from (45) and (12) that, for all sufficiently small ¢,

inf Ty(e) > co(e/2,03 ).
However, by (44), (6), (8) and (11),
| 0 =inf Ty (¢*) < co(e*/2,03").
Hence, by connectedness of I'; and Ty, these two curves “cross”:
I NTy # Q.

The crossing of the curves implies that, for some ¢y € [0,£*],

7

(46) 00(60/2,0; ) € F1(€o).
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Let (x_1,X;) attain the modulus at £y. Define

@) La(y) = L) +eo( 2,63 ) X o,y — 30,

We claim that L has the two properties desired.

Property P, follows from the use of ¢y in (47) and from the discussion in
Section 6.

As for Property P;, let £L;V denote the probability law of the random vari-
able V when x is the true object. Set

P(Lo, [x_l,xl]) = {Lx(Lo(y) - L(x)): x € [x-1,%1]}
and )
P(Lo,X) = {Lx(Lo(y) — L(x)): x € X}.

We wish to show that the full problem is no harder than the subproblem, so
that

(48) P(Lo,X) = P(Lo, [x-1,%1]).
Note that
Lx(Lo(y) — L(x)) = N(Bias(Ly,x),d%0?).
Thus it is enough to show that
(49) |Bias(Lo, x;)| > |Bias(Lo,x)|, x€X

We now exploit the intersection condition (46). By definition of I'j, this
implies that Ly is of the form (43), where d € dw(gg). The following result is
fundamental to the article and is proved is Section 14.

LEMMA 4. Let the modulus be attained at £y by (x_1,X1), and let d € dw(gy).
Suppose that labels are chosen so that L(x,) > L(x_1). Then, for every x € X,

L(X) - L(Xl) < d(Wo,Kx - KX1>,
(50)
L(x) - L(x_l) > d(Wo,KX —Kx_1>.

To apply this lemma, note that Bias(Ly,x) is an affine functional with
Bias(Lg, X¢) = 0. Thus Bias takes opposite signs at x; and x_;. Our choice
of labels L(x;) > L(x_;) forces Bias(Lg,x;) < 0. Then, using (50),

Bias(Ly,x;) — Bias(Lo,x) = Lo(Kx;) — Lo(Kx) — L(x;) + L(x)
= d{wo,K(x; — x)) — L(x;) + L(x)
<0 (by 50).
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On the other hand, our assumption forces Bias(Ly,x_1) > 0, and again using
(50),

Bias(Lo,x_1) — Bias(Lo,x) = d(wo,K(x_; — x)) — L(x_;) + L(x)
>0.

Finally, as |Bias(Lo,x;)| = |Bias(Lo,x_1)|, we have (49) and the proof is
complete. O

PROOF OF THEOREM 5. Theorem 5 makes two statements. The first state-
ment is analogous to Theorem 1 and will be proven in a moment. The second
statement, which is analogous to Theorem 2, follows by applying the proof of
Theorem 2 word-for-word, only using the auxiliary function m(a,b) = a +¢|b|.

The proof of Theorem 1 is also a proof of the optimal recovery theorem.
To see this, define I’y = (0,2¢) x {0} U {2} x [0,1]1U (2¢,00) x {1}, and define
T'; exactly as before. Then, just as before, 'y N T'; # @; in fact the two sets
intersect at g = 2¢. Let (x_1,X;) attain the modulus at ¢y and let d € dw(eyp).
Define the rule

Lo(y) = L(x0) +d(wo,y ~ Kxo).
We claim that Ly has two key prbperties:

PROPERTY Py. It is minimax for the subproblem [x_;,x;].

PROPERTY P;. It attains its worst error over all X in the subproblem
[x—l’xl]-

As a result, in the optimal recovery setting, the estimator is minimax for the
full problem, the family [x_,X;] is a hardest subproblem, the difficulty of the
hardest subproblem is equal to that of the full problem. This establishes the
first part of Theorem 5, as desired.

We verify that Ly has Property P,. For estimating 6 = (wy, Kx — Kx;), from
y = (Wo,y —KX,) we have that |§| < € and that z =y — 0 has |z| < ¢ also. By an
earlier comment, any estimator cy with c € [0, 1] is minimax for estimating 6.
It follows that any estimator

L(y) =L(xo) + cw—(zii)@"o,y - Kxo),

with ¢ € [0, 1] is minimax for estimating L in the subproblem. By monotonicity
and subadditivity of w, any element d € dw(2¢) satisfies 0 < d < w(2¢)/(2¢),
that is, we can write d = cw(2¢)/2¢ with ¢ € [0, 1]. So our choice of d makes Ly
a minimax estimator in the subproblem.

Finally, we verify that Ly has Property P;. Write

Lo(y) — L(x) = Lo(Kx) — L(x) + Lo(y) — Lo(Kx)
=Bias(Lo, x) +d(wy, 2).
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Picking the noise z aligned with wy [i.e., (wo, z) = sgn(Bias(Ly, X)) - €], we see
that

sup |Lo(y) — L(x)| = |Bias(Lo,x)| + de.
llzll<e

In this expression only Bias depends on x. In this case (50) again implies (49),
and so

|Bias(Lo,x1)| = sup |Bias(Ly,x)|,
xeX

which implies

sup|E(Lp,x) = sup E(Ly,x), "
xeX

xelx_q,x]
that is, property P;. O

11.1. Other situations. The proof of Theorem 1 may obviously be adapted
to other performance measures in the statistical estimation problem. The fun-
damental issue is that the minimax affine estimator for |9| < 7 be linear and
that the coefficient ¢y which furnishes the minimax affine estimator be con-
tinuous in 7. This will hold for many other loss functions. )

In other words, a single proof idea handles various performance criteria in
the statistical estimation problem and also the optimal recovery problem.

12. Correspondence theorem. The preceding proof also establishes the
following.

COROLLARY 5. Let the assumptions of Theorem 1 hold. Choose any one
of the three performance criteria in the statistical estimation problem. Let a
hardest subfamily for affine estimates under that criterion have length ¢,. Then
the estimator :

(51) Lo(y) = L(xo) +d(wo,y — Kxq),

where d € 0w(eo) is an affine minimax estimator for the statistical problem
and is also an optimal algorithm for the optimal recovery problem at noise
level € = ¢¢/2.

In words, if we calibrate noise levels so that the hardest one-dimensional
" subproblems for optimal recovery and for statistical estimation have the same
length, then they have optimal estimators in common.

Here is a simple illustration. Speckman (1979) proved the following result,
which”expresses the minimaxity of cubic smoothing splines. [For extensions
of this result, see Li (1982).]



262 D. L. DONOHO

THEOREM 6 [Speckman (1979)]. Lety; = f(t;)+zi,i=1,...,n, where t; €
[0,1] and the z; are i.i.d. N(0,0?) and where the function f is known to satisfy
JXF"@)2dt < C2. Let g,, be the solution to

min Y(a(6) )"+ [ (& (0)?dt

Then g, is a cubic spline. Let L be a linear functional with finite minimax risk.
Then, with p = 02/C2, the estimate

Lo(y) = L(g,)

is the minimax linear estimator of L under squared error loss.

Now consider the associated optimal recovery problem, with observations
yi=f@t)+2;,i=1,...,n, fol(/"”(t))2 dt < C2, where now the z; are nonstochastic
and are known only to satisfy ¥;22 < 2. Speckman’s theorem and our Corol-
lary 5 imply that, for some por = por(e,C), the cubic-spline-based estimator
Lo(y) = L(g,,) is an optimal recovery algorithm—a fact due, essentially, to
Schoenberg (1964a, b). In other words, Speckman’s theorem implies Schoen-
berg’s. And, of course, vice versa.

In the other direction, consider the prototypical problem of optimal recovery:
estimating the integral L(f) = fol f@)dt from data y; = f@¢) +2;,i=1,...,n.
Here we take t; = (i — 0.5)/n. We know a priori only that f belongs to F =
{f: If(s) - f®)] < C|s — t|} and the nonstochastic noise satisfies ¥;2? < 2. Then
the modulus is attained with f_; = —f;, where f; is the sawtooth function

€

fi(t) = min (ﬁ +Clt - t,-|) .

We get w(e) = ¢/y/n + C/(n — 1) and that Ly(y) = (1/n)T%,y; is an opti-
mal algorithm, for each ¢ > 0. Turning to the associated statistical esti-
mation problem, where the noise is i.i.d. N(0,62), we note that the formula
sup, (w(e)/e)?pale/2,0) has its maximum at some &y € (0,0), and it follows
that the associated L, is minimax affine for the statistical estimation prob-
lem. A side calculation gives R};(c) = C?/(16n2) + 0%/n.

In short, if a problem has been solved in one of the two literatures, that
solution may be considered as a solution of the problem in the other literature.

We also have correspondence between the solutions to the statistical esti-
mation problem with different loss criteria.

COROLLARY 6. Under the assumptions of Theorem 1 and 2, there exist
mionotone, continuous functions o1(c) and o,(c) (which depend on L,K and X)
so that an affine estimator can be found which is affine minimax for squared
error loss at noise level o, for absolute error loss at o1(c) and for the confidence
statement criterion at og(o).
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In situations where asymptotics as o — 0 make sense, of course, Corollary 4
shows that we must have the relationships

o1= z‘f’a(l +0(1)),

s T

Oa = 32’—'0(14-0(1)).
a,r

Speckman’s theorem, quoted previously, shows that cubic-spline-based esti-
mates of a linear functional are, under certain assumptions, minimax among
linear estimates under squared error loss. Corollary 6 says that the same es-
timates will also be minimax for absolute error and confidence statements
measures, at certain noise levels. For example, with absolute error loss, let
o7 (o) denote the solution to o1(s) = 0. If the true noise level is o, we set
wm = (o] 1(5)/C)? and set Ly(y) = L(g,,); this is affine minimax for absolute
error loss.

Even without recalibration, the solution to one problem furnishes a fairly
good solution to any one of the others. For example, suppose we know how to
design an affine optimal algorithm Ly, for the optimal recovery model at noise
level €. We pick ¢ = o and we apply the resulting L, in a statistical estimation
problem with noise level 0. With respect to the squared error loss criterion, a
simple analysis will show that

sup E(L () ~L(x))? < w(20)%/4,

whereas, by Theorem 2, R}(0) > w(0)?/5. Hence the optimal algorithm, al-
though designed for deterministic noise, is within a factor of about 4 of mini-
max in MSE for the statistical estimation problem.

Much the same story holds for other performance measures. Consider con-
fidence statement length. Set ¢ = Z;_, /50, and obtain an L, which is an affine
optimal algorithm for deterministic noise of norm . Apply this estimator in
the statistical estimation problem with noise level o. One calculates that the
interval

Lo (y) + w(2Zl_a/2a)/2

covers the true L(x) with at least 1—a coverage probability for any x € X. Thus
this optimal algorithm for dealing with deterministic noise may be used to
design a valid fixed-width 1—-a confidence interval. Moreover, by our preceding
results, any fixed-width interval which is a measurable function of the data
and which has at least 1 — a coverage probability must be at least a factor
Z1-o/2Z1-a/2 as long. So the interval is within a few percent of efficient.

13, Discussion.

13.1. Nonwhite noise. A certain class of problems with nonwhite noise can
be mapped onto the present one. If our observations (1) have z with nonwhite
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covariance, and if the covariance is an operator with a bounded inverse, then
we can transform the observations via y’ = /2y, giving data

y =K'x +z,

where now z is white and K’ = £~ V/2K. Proceeding as before, we define the
modulus with respect to the seminorm defined by K’, and the formulas from
before all continue to apply. In this way we could recapture results of not only
Ibragimov and Has’'minskii (1987), but others as well, since our results allow
indirect observations (K # I), asymmetry of X, various loss functions and so
on. Also, we could demonstrate a close mathematical connection between es-
timation in nonwhite noise and in the optimal recovery model with constraint
(z,n71z) < €2

13.2. Nonlinear functionals. We have shown here a close connection be-
tween the modulus of continuity and the difficulty of estimation of linear func-
tionals from incomplete data with Gaussian noise. The connection between
the modulus and difficulty of estimation need not persist when we consider
estimation of nonlinear functionals. Some basic information about estimation
of nonlinear functionals in white noise is given in, for example Ibragimov,
Nemirovskii and Has’'minskii (1986) and Fan (1991). Donoho and Nussbaum
(1990) show that in such problems the minimax risk may go to zero much
more slowly than the rate at which the modulus goes to zero.

In contrast, in the optimal recovery model, under very mild conditions, the
modulus of continuity measures the difficulty of estimation quite precisely
for general nonlinear functionals, that is, the “central algorithm” described in
Section 10 can be used for general nonlinear functionals; it gives the worst-
case error w(2¢)/2 for quite a wide variety of situations, and this can be shown
to be the minimax error. Compare Traub, Wasilkowski and Wozniakowski
(1983, 1988).

Thus the connection we are describing between optimal recovery and sta-
tistical estimation need not persist when we consider estimating nonlinear
functionals.

However, the results of this paper are still useful in nonlinear cases, as we
have suggested in Section 9.3.

13.3. Estimating the whole object. If, rather than estimating just a single
linear functional of the object, we were estimating the whole object x with, say,
I3 norm loss, statistical estimation and optimal recovery would no longer, in
general, have a close connection. In general, minimax linear statistical estima-
tion is connected with minimizing the Hilbert—Schmidt norm of the estimator,
subject to a side constraint on the norm of the bias, while linear optimal recov-
ery.is connected with minimizing the operator norm of the estimator, subject
to a constraint on the norm of the bias. Of course for estimators with one-
dimensional range, that is, functionals, Hilbert-Schmidt and operator norms
are the same, which explains why the connection holds for one-dimensional
functionals and not for more general objects.
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13.4. Other norms. The basic theorem of linear optimal recovery is not
restricted to use of the /3 norm in specifying the constraint ||z|| < . For exam-
ple, Micchelli and Rivlin (1977) showed that one can use any Banach space
norm for the error norm, and there will still exist an optimal linear algorithm
under quite general conditions. However, optimal recovery under these other
error norms does not necessarily relate to statistical estimation.

One exception is when one has in the optimal recovery model an /, error
norm ||z]|;, < ¢, for p € [2, 00). This corresponds to linear statistical estimation
with a white symmetric stable noise of index « conjugate top (1/p+1/a =1). Of
course, p = a = 2 is the case we have covered in this paper: the case p = 00, a =
1 might be an interesting one to consider. It connects deterministic noise small
in supremum norm with stochastic noise following a Cauchy distribution.

14. Proofs. Note that we omit detailed proofs of Corollaries 1, 2, 5 and 6;
these follow from Theorems 1 and 2 and from other information, such as the
discussion of Section 2 or the proof of Theorem 2.

PROOF OF LEMMA 2. The whole result follows once we know that the modu-
lus of continuity is attained. For, by Lemma 4, when the modulus is finite, it is
concave and continuous; the suprema over ¢ in the formulas are really there-
fore suprema of continous functions of . Moreover, under the assumptions,
only a finite range [0,6*] need be considered, where e* = sup, ,  [[X1—X_1|lx <
0o. A continuous function on a compact set takes on its maximum, and so in
each of the formulas the supremum is attained at some ;. The family that
attains the modulus at that ¢ is the hardest one-dimensional subfamily for
that criterion.

Suppose now that [x_; ,,X; ,]is a sequence of subfamilies of X, with ||x; ,—
X_1,»|lx < e but L(xy ,)—L(x_1,,) — w(e). By hypothesis, X is weakly compact,
and along a subsequence x; , and x_; , have weak limits x; and x_; in X. As
K is well-defined, the restriction to V = X — X of the seminorm J(v) = ||v||x
is continuous for l;-convergence; J is also convex. By (562) in Lemma 5, the
seminorm is lower semicontinuous for weak convergence. It follows that ||x; —
x_1|lx < &. As L is well-defined, the restriction of the functional J(v) = L(v) to
V is both convex and concave and is continuous for /;-convergence. Hence, by
(562), both L(x,,,) — L(x;) and L(x_; ,) — L(x_;), as n — oco. Thus

L(x1) - L(x-1) = w(e);
the modulus is attained by (x_;,x;). O

LEMMA 5. Let J(v) be a convex functional on a norm-closed, norm-bounded
convex set V which is continuous for strong la-convergence. Let v, be a sequence
of elements in V converging weakly to v. Then

(52) J(v) < liminf J(v,).
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PROOF. Define V¢; = {v € V: J(v) <j}. This set is convex and bounded.
Because J is continuous, the set is strongly closed, hence (by convexity)
weakly closed.

Suppose that along a subsequence, for all sufficiently large n, J(v,) < j,
that is, v, € V<. As V; is weakly closed, the weak limit v € V;. Hence
J(v) <j. Inequality (52) follows. O

PROOF OF THEOREM 2. Let MaxRisk(f, X) denote the supremum risk of L
over X, according to whichever loss criterion we are considering. We note that

(53) MaxRisk(L, X) = m(MaxBias(L,X), |L||),

where MaxBiasA denotes the supremum of the absolute value of the bias of
L over X, and L’ is the homogeneous linear part of L. Here the function m
depends on the loss criterion. For example, if loss is squared error, m(a,b) =
a2 + 02b2. In any event,

m(a,b) is a continuous function, monotone increasing

(54) in each argument separately.

We now explain why closedness of X is not necessary for the formulas to
work. Indeed, the minimax affine risk is unaffected by taking the l3-closure.

For an affine estimator L with finite minimax risk,
(55) MaxRisk(L, X) = MaxRisk(Z, c1(X)).

Indeed, by (53) the lenorm of the homogeneous linear part L' of L is finite.
As K is well-defined, L(Kx) is a uniformly continuous function of x € X, with
a unique continuous extension to cl(X). As L is well-defined, it too is a uni-
forle continuous function of x € X with unique extension. We conclude that
Bias(L, x) = L(Kx) — L(x) is a uniformly continuous function of x with unique
extension, and so

MaxBias(L,X) = MaxBias(L, cl(X)).

From this and from (563) and (54), (55) follows.

We now explain why norm-boundedness is unnecessary for the formulas to
work. We assume that the supremum, M, say, of minimax risks of all one-
dimensional subfamilies is finite; otherwise there is nothing to prove. Let X,
denote the set cI(X N B(0,k)) (restricting attention to only those 2 > &y for
which the set is nonempty). X; is a closed, convex, norm-bounded set. By
Theorem 1, there exists an affine estimator L;, say, which is affine minimax
for estimation of L over X;. Let M}, denote the affine minimax risk. Fix x, in
every X;, k > ko, and set [}, = L,(Kxo). Let L} be the homogeneous linear part
of L.
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The sequence of norms (||L;||) is bounded because

M > M), = MaxRisk(L;, X;)
= m(MaxBias(Lg, X;), | L;||)

We can extract a weak limit Ly from the norm-bounded sequence (L;). By
weak semicontinuity of the norm,

(56) L4l < liminf L

where & is along the subsequence which gives rise to L’
The sequence (/) is bounded because

M > M;, = MaxRisk(L,X;) = m(MaxBias(Ly, Xz), L1 ||)
> m(|Bias(Ly,xo)|,0) = m (|l — L(xo)|,0).

We can extract, along a further subsequence of the initial subsequence, a
Deﬁne Lo(y) = lp + Ly(y — Xo). This is affine and has Bias(Lg, x) = Lo(Kx) —
L(x). Pick any x € X. Now

Bias(Ly,x) — Bias(L,x) = Ly(x) — L, (x) +lp — 1.

Along the second subsequence, the right-hand side tends to the limit 0, and
S0

567 Bias(Lo, x) = liin Bias(Ly, x) < lim sup MaxBias(L;,X;),
k
where the last step follows from the fact that x € X,, as soon as & > ||x||.
It follows from (56), (57), (63), (54) and Theorem 1 that
m(MaxBias (Lo, X), |IL||) < limsup m (MaxBias(Ly,X;), |IL11)
k

=limsup M, = M.
k

In other words,
MaxRisk(Lo,X) <M.

Recalling that M is the supremum of the difficulties of all one-dimensional
subproblems, we show (by exhibiting the estimator Lo) that the difficulty of
the full problem is not harder. The formulas follow. O

PROOF OF LEMMA 4. We present only the argument for the first inequality;
the second is similar. Suppose that, for a given d, we have

(58) L(x) — L(x;) > (d + 6)(wo, Kx — Kx,)
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for some x € X, which remains fixed throughout the proof. We will show that
d & Ow(eyp).

Set x; = (1 — h)x; + hx. Using the definition of x; and x_;, we have L(x;) —
L(x_;) = w(ep), and so

L(x3) — L(x_1) > w(eo) +h(d + 6)(wo, Kx — Kxy).
Now

h — X_1{lg = || X1 — X1 h — X1||lg

llxn — X_1llF = %1 — X_1 + X5, — X3|%
= 5(2, +2(Kx; — Kx_1,Kx;, — Kx;) + x5 — xlll}‘}
=2 + 2heo(wo, Kx — Kx;) +h?||x — x| 2.

Note that |[(wy,Kx — Kx;)| > 0. Otherwise, we would have |x; — x_;||x =
|x1 —x_1]lx +0(h). But (58) shows |L(x;)— L(x_1)| > |L(x;) — L(x_1)| +const. A,
which contradicts the assumption that (x;,x_;) attain the modulus.

It follows that h2||x — x4||% = O(h%|(wo, Kx — Kx,)|?). Setting

n = h(wp, Kx — Kx,),
we have
(59) w(eo +n+0(n?)) > w(eo) + (d +6)n.
On the other hand, by definition, for any d € dw(ey) we must have
(60) w(eo +n) < w(eo) +dn,

for all admissible 5. However, (59) makes (60) impossible. As d does not satisfy
(60), it cannot belong to dw(ey). O

PROOF OF COROLLARY 3. The result follows by plugging in Ac™ + o(¢”) in
place of w(e) in earlier results, and bounding remainder terms. O

PROOF OF COROLLARY 4. Under the hypothesis that the modulus has ex-
ponent r, it follows from concavity of the modulus that we have the set con-
vergence

€ w(e) -
(o)

In the context of the proof of Theorem 1, this means that asymptotically,
for small ¢, we have I'y(¢) ~ r for small . It follows that asymptotically, as
o — 0, T'y intersects I'y, where both take approximately the y-value r. Hence
¢o ~ r, and the other formulas all follow. O

r, ase—0.
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