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THE USE OF POLYNOMIAL SPLINES AND THEIR TENSOR
PRODUCTS IN MULTIVARIATE FUNCTION ESTIMATION!

BY CHARLES J. STONE
University of California, Berkeley

Let X;,...,Xp,Y1,...,Yy be random variables, and set X =
X3, ...,Xp) and Y = (Y3, ...,Yy). Let ¢ be the regression or logistic or
Poisson regression function of Y on X (N = 1) or the logarithm of the den-
sity function of Y or the conditional density function of Y on X. Consider
the approximation ¢* to ¢ having a suitably defined form involving a spec-
ified sum of functions of at most d of the variables x1, ...,x, y1, -..,¥N
and, subject to this form, selected to minimize the mean squared error of
approximation or to maximize the expected log-likelihood or conditional
log-likelihood, as appropriate, given the choice of ¢. Let p be a suitably
defined lower bound to the smoothness of the components of ¢*. Consider
a random sample of size n from the joint distribution of X and Y. Under
suitable conditions, the least squares or maximum likelihood method is
applied to a model involving nonadaptively selected sums of tensor prod-
ucts of polynomial splines to construct estimates of ¢* and its components
having the Ly rate of convergence n~—P/(2p+d),

1. Introduction. A theoretically and practically important task is sys-
tematically to extend generalized linear modeling [see McCullagh and Nelder
(1989)] in all of its various aspects (including regression, logistic regression,
Poisson regression, log-linear models and proportional hazards models) to han-
dle multivariate data involving response variables and covariates that may
be mixtures of categorical and continuous variables and to do so in a manner
that balances the desire for flexibility with the need to temper the “curse of
dimensionality.” [See Fienberg (1975) for some comments along this line.]

The use of polynomial splines and their tensor products provides one viable
approach to the accomplishment of this task. The most promising methodology
is more complicated than the theory can evidently handle, but the theory and
methodology can fruitfully be developed in a synergetic manner. The main
goal of this paper is to extend the theoretical development of this approach.

In order to motivate the notation that is used in this paper, consider a
response variable whose mean depends on the level of three factors. Suppose
the three main effects are present, as is the interaction between the first
two factors, but that the other two-factor interactions and the three-factor
interaction are absent. Then the mean response p;; when factors 1, 2 and 3
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are at levels i, j and &, respectively, can be written as
(1.1) Wijk = o+ B; + v + O+

Using variable instead of subscript notation for the levels of the various effects,
we can rewrite (1.1) as

(1.2 u(i,j, k) = a+6(0) +~() + 6() +n(i, j).
Using x;, x2 and x3 instead of i, j and &, respectively, we can rewrite (1.2) as
(1.3) w(x1,%9,%3) = o + B(x1) +v(x2) + 8(x3) +n(1,%2).

To allow for more factors and interactions, it is convenient to use subscripts
instead of distinct Greek letters to denote the various effects on the right-hand
side of (1.3), which leads to

(1.4) p(x1, %0, %3) = po + p1 (1) + pa(w2) + p3(3) + paz (1, %2).

In practice, the variables x, x; and x3 appearing in (1.4) could be categorical
or continuous or a mixture of these two types, and they could be deterministic
or random or a mixture thereof.

Consider an estimate

(1.5) fi(xc1,%2,23) = fio + f1(x1) + H2(x2) + A (%) + 1z (x1,%2)

having the same form, but based on sample data, where each nonconstant
component is empirically orthogonal to the corresponding lower-order compo-
nents. (Such orthogonality will be defined precisely later on in this section.)
We can think of i as an estimate of the regression function u. Alternatively,
we can think of it as an estimate of the corresponding best theoretical approx-
imation

(1.6) p* (21,2, %3) = g + i (%) + pid (22) + o3 (w3) + piia (21, %2)

to this function, where “best” means having the minimum mean squared error
of approximation subject to the indicated form and each nonconstant compo-
nent is theoretically orthogonal to the corresponding lower-order components.
The right-hand sides of (1.5) and (1.6) are referred to as the ANOVA decom-
positions of 77 and u*, respectively. Hopefully, the components of the ANOVA
decomposition of i will be accurate estimates of the corresponding components
of the ANOVA decomposition of p* . If so, then examination of the components
of the ANOVA decomposition of i should shed light on the shape of 1* and,
to a lesser extent, on the shape of i as well [see Section 9.5.3 of Hastie and
Tibshirani (1990)].

Consider now logistic regression. Let the (conditional) distribution of Y for
given values of x;, x and x3 be Bernoulli with parameter m(x;,x2,x3) . Then
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the logistic regression function is given by 8 = logit7 = log(r/(1 — n)). The
model for the logistic regression function that is analogous to (1.4) is given by

(1.7 0(x1,%2,%3) = 0o + 01 (x1) + 05 (%2) + O3 (%) + O12(x1, %5).
Similarly, the analogs of (1.5) and (1.6) are given, respectively, by
(1.8) B(x1,%2,%3) = Go + 1 (1) + Bz (x2) + B3 (ws) + Bz (31, x2)
and

(1.9) 0* (1,22, %3) = 63 + 05 (xx1) + 03 (22) + 03 (x3) + 635 (x1,%2)

(where “best theoretical approximation” is suitably defined).

Equations (1.7)-(1.9) also apply to Poisson regression. Here the distribution
of Y for given values of x;, x and x3 is Poisson with mean \(x;,x,%3), and
the Poisson regression function is given by 6 = log \. Logistic regression and
Poisson regression are the two most practically important special cases of
what will be referred to in this paper as generalized regression.

Consider, next, a random vector Y = (Y;,Y3,Y3), where Y3, Y, and Y5 are
categorical or continuous or a mixture thereof. Let f denote the probability—
density function of Y, and set ¢ = logf. Then a model for ¢ that is analogous
to (1.4) is given by

(1.10) <p(y1,y2,y3) =@ + <P1(y1) + 2 (ye) + <P3(y3) + <p12(y1,y2).

According to this model, Y; and Y3 are conditionally independent given Y5, and
Y, and Y3 are conditionally independent given Y;. The corresponding analogs
of (1.5) and (1.6), respectively, are given by

(1.11) P(r1,52,¥3) = @o + @1(1) + Pa(y2) + Ba(ys) + Pra(y1,¥2)

and

(1.12) 0*(Y1,92,73) = 0 + 01 (v1) + p3(¥2) + 03 (¥3) + Vi (y1,y2)-

This setup is a special case of what will be referred to in this paper as density
estimation.

Consider, instead, variables x;, x, and Y, which may be categorical, contin-
uous or a mixture of these two types and where x, and x2 can be deterministic
or random, and let ¢ denote the logarithm of the (conditional) probability—
density function of Y corresponding to x; and x;. One possible model for ¢ is
given by

(L18) ¢(%1,%2,5) = 0o + ¢1(x1) + 02 (%2) + 12(x1,%2) + 3(y) + p13(%1, %)
' + a3 (xg,y).
The analogs of (1.5) and (1.6) that correspond to (1.13) are given, respectively,
by .
(L.14) B(x1,%2,) = Bo + P1(x1) + Pa(x2) + Pra(x1,%2) + Ba(y) + Prs(x1,y)
+ Pa3 (xg,y)
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and

(L15) 0" (x1,%2,%) = 0} + 0} (x1) + 03 (x2) + @2p (¥1,%2) + @5 () + lg(x1,)
+ @3a(x2,5)-

This setup is a special case of what will be referred to in this paper as condi-
tional density estimation. The right-hand sides of (1.10)—(1.15) are subject to
obvious normalization constraints (density functions and conditional density
functions must integrate to 1), which will be handled in a different manner
later on.

In this paper, we will consider four contexts, each of which has been illus-
trated above: regression, generalized regression, density estimation and con-
ditional density estimation. In order to handle in a systematic manner the
ANOVA models that may arise, it is convenient to replace the subscript nota-
tion for the various effects and their estimates and approximations by subset
notation.

In particular, in the regression context, we can rewrite (1.4) as

(116) (21, %2,%3) = pg + pyay (1) + pgzy (%2) + gy (ws) + p1, 23 (%1, %2),

where @ is the empty set. Letting S be the collection of subsets @, {1}, {2}, {3},
{1,2} of {1,2,3} and suppressing the variables x;, x, and x5, we can rewrite
(1.16) in turn as

(1.17) /1, = Z: p,s.
Ses

Similarly, we can rewrite (1.5) and (1.6), respectively, as

(1.18) A=) Bs
Ses

and

(1.19) w=Y
Ses

In the same manner, in the generalized regression context, we can rewrite
(1.7)—(1.9), respectively, as

(1.20) | 0= 6s,
Ses

(1.21) 9=3 0s,
Ses

(1.22) =3 63
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In the density estimation context we can rewrite (1.10)—(1.12), respectively,
as

(1.23) v=Y_ s,
Ses

(1.24) =) s,
Ses

(1.25) o= h
Ses

Moreover, in the conditional density estimation context, we can rewrite (1.13)—
(1.15) as (1.23)—(1.25), respectively, where S is the collection @, {1}, {2}, {3},
{1,2}, {1,3}, {2,3} of {1,2,3}.

Although the techniques of this paper are applicable to mixtures of cate-
gorical and continuous variables and to mixtures of deterministic and ran-
dom variables, for simplicity, in the remainder of the paper we consider only
continuous random variables. Thus consider (real-valued) random variables
X, .. XY, ..., Yy, set X=X, ..., Xy) and Y= (Y, ..., Yy), and let ¢ be
a function that depends on the joint distribution of X and Y. In the regression
and generalized regression contexts, N =1 and Y =Y = Y;; in the regression
context, ¢ is the regression function u of Y on X, and in the generalized re-
gression context, ¢ is (say) the logistic or Poisson regression function 6 of Y
on X. In the context of density estimation, X is irrelevant and ¢ = logf, where
f is the density function of Y. In the context of conditional density estimation,
¢ = logfyjx, where fyx is the conditional density function of Y given X.

Let Xy, ...,%0)1, ...,V denote the ranges of X, ...,Xy,Yy,...,YN,
respectively, and set ¥ = X; X --- x Xy and Y =Yy x --- x Yn. Then X is an X-
valued random vector and Y is Y-valued. It is assumed that &3, ..., X, V1, ...,
Y are intervals having positive length. (In the theoretical results in Section
2 it will be assumed that certain of these intervals are compact.)

In the regression and generalized regression contexts, ¢ is a function on
X; in the density estimation context, ¢ is a function on Y; in the conditional
density estimation context, ¢ is a function on X x Y. Thus, in all four con-
texts, ¢ is a function on the set Z defined as follows: In the regression and
generalized regression contexts, £ = X; in the density estimation context,
Z =); in the conditional density estimation context, Z = X x ). Observe that
Z =2y x --- X Z, where L = M in the regression and generalized regression
contexts, L = N in the density estimation context and L = M + N in the condi-
tional density estimation context; the intervals 2, ..., Z; are defined in terms
of X1, ..., %, V1, ..., Yy in the obvious manner in the four contexts. Similarly,
given x = (x1, ...,xy) € X and y = (y1, ...,¥n) € Y, We can write z = (X,y) as
(21, ...,21), where zy, ...,z are defined in terms of x3, ..., %, 1, ...,yn in the
obvious manner in the various contexts. Moreover, we can write Z = (X,Y) as
(Zii...,21), where Z,, ...,Z; are defined in terms of X, ..., X, Yy, ..., Yy in
the same manner. [Consider, e.g., the conditional density estimation context
withM=2and N=1.Here L =3,X =(X1,X;), Y=Y and Z = (Z,,2Z,,Z,),
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where Z1 =X1, Z2 =X2 and Z3 =Y.l

We turn to the specification of the model for . Given a subset s of
{1, ...,L}, let H, denote the space of square integrable functions on Z that
depend only on the variables z;, I € s. Then, in particular, Hy is the space of
constant functions on Z. Given a collection S of subsets of {1,...,L}, let H
denote the space consisting of all functions of the form Y5 A;, where h; € H
for s € S. Then we can model ¢ as being a member of the space H; correspond-
ingly, S specifies which main effects and interaction terms are in the model
for .

In order to obtain an identifiable ANOVA decomposition for the functions in
H, we assume that Z has a positive density function f on Z. In the regression
and generalized regression contexts, f is the density function of X; in the
density estimation context, f is the density function of Y; in the conditional
density estimation context, f is the joint density function of X and Y. Consider
the inner product (;, ;) defined for square integrable functions &, and A3 on
Z by

(ha,hg) = /Z hy(2)hs(2)f (2) dz = E [hy(Z)ha(Z)],

and let || - || denote the corresponding norm (||2||? = (h,h)). Set H} = Hy and,

for s a nonempty subset of {1, ...,L}, let H? denote the space of functions in
H;, that are orthogonal (relative to (-,-)) to each function in H, for every proper
subset r of s.

In the usual ANOVA context, a model involving various terms is said to
be hierarchical if, for every term involving certain factors that is included in
the model, all lower-order terms with one or more of these factors removed
are also included. Correspondingly, we say that a collection S of subsets of
{1, ...,L} is hierarchical if it satisfies the following property: if s is in S and r
is a subset of s, then r is in S. Clearly, if S is hierarchical, then ¢ € S. Suppose
S is hierarchical, and let H be as defined before. Under further conditions, it
can be shown that every function 2 € H can be written in an essentially
unique manner as Ycshs, where h; € H? for s € S. It is easily seen that
hg = E[h(Z)]. We refer to S,cshs as the ANOVA decomposition of /#, and we
refer to H?, s € S, as the components of H. The component H? is referred to as
the constant component if #(s) = 0, as a main effect component if #(s) = 1 and
as an interactive component if #(s) > 2; here #(s) is the number of members
of s. Set d = max,cs #(s). If d = 1, then the functions in H are additive, but if
d > 2, then H has one or more interaction components.

This approach to modeling is appropriate for regression and generalized re-
gression, but it needs to be modified somewhat for density estimation and con-
ditional density estimation. First consider density estimation. Given a func-
tion A on Z = ), set c(h) = log fy exp(h(y))dy. If ¢(h) < oo, then exp(h — c(h))
is a density function on Y. In this context, it is convenient to remove the
constant term from the space H as defined before. In other words, let Sy be
an hierarchical collection of subsets of {1, ...,L} = {1, ...,N}, set S = So\{0},
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and let H denote the space of all functions on Z = Y of the form Y,csh,, where
hs € H? for s € S. Then we can model ¢ = logf as being of the form A — c(h)
for some h € H. .

Consider next conditional density estimation. Given a function # on Z =
X x Y, set c(x;h) = log [, exp(h(x,y))dy for x € X. If c(x;h) < oo for x € X,
then exp(h(x,-) — c(x;h)) is a density function on ) for each x € X. In this
context, it is convenient to remove from H as originally defined those terms
that do not involve any of the variables z37,; =y1, ..., 2L =yn. In other words,
let So be an hierarchical collection of subsets of {1,...,L} = {1,...,M + N}
such that {1, ...,M} € Sy, and let S denote the sets in Sy that are not subsets
of {1, ...,M}; that is, set

S={seSp:sNn{M+1,... M+N}#Q}.

Let H denote the space of all functions on X x Y of the form Y,cshs, where
hs € H? for s € S. Then we can model ¢ = logfyx as being of the form
p(X,y) = h(x,y) —c(x;h) forx e X and y € ).

The best theoretical approximation ¢* to ¢ in H is defined in terms of a
functional (real-valued function) A(2), o € H. Specifically, ¢* is the function
in H such that A(¢*) = max,cg Ah).

In the regression context, ¢* = u* is chosen in H to minimize

Il = 1~ l? = | [h(o) ~ ) F(x) i = B {IA() - w(R)P).

Thus A(k) = — ||k — ¢||? = —||h — p||? in this context.

The generalized regression context involves an exponential family of distri-
butions on R of the form exp[B(8)y — C(0)]p(dy), where the parameter 6 ranges
over R. Here p is a nonzero measure on R which is not concentrated at a single
point and

/R exp[B(0)y — C(6)]o(dy) =1, 6€R

The function B(-) is required to be twice continuously differentiable and its
first derivative B'(-) is required to be strictly positive on R. Consequently, B(-)
is strictly increasing and C(-) is twice continuously differentiable on R. The
mean u of the distribution is given by u = A(6) = C'(6)/B'(6) for § € R. The
function A(-) is continuously differentiable and A’(-) is strictly positive on R,
so A(") is strictly increasing on R. It is assumed that E(Y|X = x) = A(d(x)),
x € X, where 0 = 6(-) is bounded on X.

The practically most important example of generalized regression is logistic
regression, in which the conditional distribution of Y given X = x is Bernoulli
with parameter n(x) = u(x). Here

6(x) = logit 7(x) = log %, X € X,
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p is the uniform distribution on {0,1} and B(d) = § and A(9) = log(1 + °) for
0 € R. [The generalized regression setup is also applicable when the logit of
m(X) is replaced by its probit; see Stone (1986).] Another practically important
example of generalized regression is Poisson regression, in which the condi-
tional distribution of Y given X = x is Poisson with mean A(x) = u(x). Here
0(x) = log Ax) for x € X, p is the measure on the set of nonnegative integers
given by p({y}) =1/y! fory =0,1,2, ..., and B(d) = 6 and A(9) = e° for § € R.
In the context of generalized regression, set

A = [ B:@)AGE) -Cr@)Fx)dx, ke

In the context of density estimation, set
Aw) = [ Ih(s) - eW)dy,  heH;

in the context of conditional density estimation, set

A(h) = /X ( /y [h(ylx) - e(x:h)]f (%) dy) dx
- [ (st - el fen(ote) ay) ) dx, - e

In the contexts of generalized regression and density and conditional density
estimation, A(h) is the expected log-likelihood of 2 (based on a random sample
of size 1).

We turn to the construction of an estimate o based on sample data. In the
regression and generalized regreéssion contexts, let (X;,Y7), ...,(X,,Y,) be a
random sample of size n from the joint distribution of X and Y, and set Z; = X;
for 1 < i < n; in the density estimation context, let Yi, ..., Y, be a random
sample of size n from the distribution of Y, and set Z; = Y; for 1 <i < n; in the
conditional density estimation context, let (X;,Yy), ...,(X,,Y,) be a random
sample of size n from the joint distribution of X and Y, and set Z; = (X;,Y;)
for 1 <i < n. In all four contexts, let (-,-), denote the empirical inner product
defined by (h1,h2)n = n715:h1(Z;)hs(Z;), and let || - ||, denote the corresponding
norm (|h2 = (k, h)»).

Let Sp = S in the contexts of regression and generalized regression, and let
S be defined as before in terms of Sy in the contexts of density estimation and
conditional density estimation. Let G4 denote the space of constant functions
on Z. Given a nonempty set s in Sy, let G; be a finite-dimensional space of
square integrable functions on Z that depend only on the variables z;, € s.
It is assumed that if s € Sy and r is a subset of s, then G, is a subspace of
G;. Let G° denote the space of functions in G; that are orthogonal (relative to
4h1,ha)n) to each function in G, for every proper subset r of s, and set

G={zgs:gs€G2 forsGS}.

sES
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Observe that the spaces G% s € S (and G in the contexts of density and
conditional density estimation), depend to a limited extent on the sample data.
We refer to G?, s € S, as the components of G, to G%, s € S with #(s) = 1, as
its main effect components, and to G?, s € S with #(s) > 2, as its interaction
components. Under suitable conditions, each function g € G can be written
uniquely in the form Y,csgs, where g, € G? for s € S. If so, then we refer to
Yses8s as the ANOVA decomposition of g.

The estimate $ in G is defined in terms of an empirical functional I(g),
g € @G. Specifically, @ is the function in G such that () = maxgeql(g). In
the regression context, @ = i is the least squares estimate in G; that is, it is
the function in G that minimizes Y;[Y; — g(X;)]%. Thus l(g) = —%;[Y; — g(X;)]
in this context. In the other three contexts, l(g), g € G, is the log-likelihood
function and ¢ is the maximum likelihood estimate in G. Thus, in the context
of generalized regression,

e) = - BE(X)%: - Cle(X))], g0y

in the context of density estimation,

I(g) = Z (Y;) -clg)], g€G;

in the context of conditional density estimation,

Ig) =) [g(VilX:) —c(Xi;8)], &g€G

i

Suppose that the components ¢}, s € S, in the ANOVA decomposition of
¢* have p derivatives. In light of various rate-of-convergence results in the
statistical literature, it is reasonable to conjecture that if the subspaces G;,
s € Sy, are chosen appropriately in terms of n, then, for s € S, the integrated
squared error of J; as an estimate of ¢} should converge to zero at the rate
n=2/@+d) a5 np — oo, and hence the integrated squared error of @ as an
estimate of ¢* should converge to zero at the same rate. Such a result would
allow us to tame the curse of dimensionality by choosing d < L. The main
purpose of this paper is to give a precise statement and proof of this result
when G, s € S, are suitable spaces of polynomial splines and their tensor
products.

2. Statement and discussion of results. In this section we give a pre-
cise statement of the rate-of-convergence result and of the additional condi-
tions that are required for its validity. Then we discuss the related literature.

In the regression and generalized regression contexts, it is assumed that
X, ..., Xy are compact intervals. Without additional loss of generality, it is
assull‘rlled that each of these intervals equals [0, 1] and hence that Z = X =
[0, 11™.
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In the regression context, it is assumed that the function E(Y2]X = x), x € X,
is bounded.

In generalized regression context, for any positive constant T, there are
positive constants § and D such that

@2.1) /R exp(ty) exp[B(6)y — C(0)]o(dy) <D,  |6| < T and |t| <.

It is required that there be a subinterval U of R such that p is concentrated
on U [i.e., p(U°) = 0] and

(2.2) B"(6)y—C"(6) <0, 6@cRandyel.

[If B”(-) = 0, then the last requirement is automatically satisfied with U = R.]
In the density estimation context, it is assumed that }; = --- = Yy = [0, 1]
and hence that Z = Y = [0, 1}V, In the conditional density estimation context,
it is assumed that &} = --- = Ay = Y} = .- = Yy = [0,1] and hence that
X=00,1,Y=[0,1N and Z = X x Y = [0, 1]+ = [0, 1}L.
Recall that f is the density function of Z.

CONDITION 1.  The function f is bounded away from zero and infinity on Z.

Under Condition 1, each 2 € H can be written in an essentially unique
manner in the form A = Y;cshs, where h; € H? for s € S (see Lemma 3.1).

In the regression context, there is an essentially unique function ¢* € H
such that A(p*) = minscy A(h) (see Theorem 3.1). In the generalized regres-
sion, density estimation and conditional density estimation contexts, a weaker
result holds in which ¢* is not necessarily square integrable (see Theorems
4.1 and 5.1).

Next, a smoothness assumption on ¢* will be stated. To this end, let
0 < 8 < 1. A function % on Z is said to satisfy a Hélder condition with expo-
nent § if there is a positive number v such that |h(z) — h(zo)| < 7|z — z¢|® for

2o, Z € Z; here |z| = (F_t,[;lzlz)l/2 is the Euclidean norm of z = (z4, ...,z;) € RE.
Given an L-tuple a = (o, ..., ar) of nonnegative integers, set [a] = a3 +- - - +ay,
and let D* denote the differentiable operator defined by

olal

D= —— |
027" -+ - 021"

Let m be a nonnegative integer and set p = m + 3. A function 4 on Z is
said to be p-smooth if h is m times continuously differentiable on Z and D*h
satisfies a Hélder condition with exponent 3 for all o with [a] = m. In the
generalized regression, density estimation and conditional density estimation
contexts, it is required that p > d/2 (in order to use Lemma 4.3 to bound
certain functions).

CONDITION 2. There are p-smooth functions ¢} € H? for s € S such that
A(p*) = maxpey A(h), where ¢* = Secspk € H.
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We turn to the construction of the spaces G, s C {1,...,L}. Let K = K,
be a positive integer and let I;, 1 < k£ < K, denote the subintervals of [0, 1]
defined by I, = [(k — 1)/K,k/K] for 1 <k <K and I; =[1-1/K,1] for k = K.
Let m and q be fixed integers such that m >0 and m >q > —1. Let S = S,
denote the space of functions g on [0, 1] such that the following hold:

(i) the restriction of g to I}, is a polynomial of degree m (or less) for 1 <k < K;
and if g > 0, then

(ii) g is g-times continuously differentiable on [0, 1].

A function satisfying (i) is called a piecewise polynomial; if m = 0, it is
piecewise constant. A function satisfying (i) and (ii) is called a spline. Typically,
splines are considered with g = m —1 and then called linear, quadratic or cubic
splines according as m = 1, 2, or 3. (In particular, if m = 8 and q = 2, then
S is the space of cubic splines, that is, of twice continuously differentiable,
piecewise cubic polynomials.) Let Bj, 1 < j < J, denote the usual basis of S
consisting of B-splines [see de Boor (1978)]. Then J = (m + 1)K — (g + 1)K — 1)
[there are m + 1 parameters corresponding to each of the K intervals I, ...,Ix
and g + 1 continuity restrictions at each of the K — 1 interior knots 1/K, ...,
(K -1/K],s0 K+m < J < (m+1)K. Also, B; > 0 on [0, 1] and Bj =0 on the
complement of an interval of length (m + 1)/K for 1 <j < J, and %;Bj = 1 on
[0, 1]. Moreover, for 1 < j < J, there are at most 2m+1 values of j/ € {1, ...,J}
such that B;B; is not identically zero on [0, 1].

Let Gy = G?a denote the space of constant functions on Z. Given a subset s
of {1, ...,L}, let G, denote the space spanned by the functions g on Z of the
form

g(z) = ng(zz), where z= (21, ...,2;) and g; € S for [ € 5.
les

Then G; has dimension J*®, Let GY, s € S, and G be defined in terms of G,
s € Sy, as in Section 1, and let Gy be the space of functions of the form Sscs,8s
where g; € G? for s € S, (or, equivalently, g; € G; for s € Sp). (Observe that
Gy = G in the context of regression and generalized regression.) The space Gy
is said to be nonidentifiable if there is a nonzero function g in the space such
that g(Z;) = 0 for 1 < i < n; otherwise this space is said to be identifiable.
Suppose Gy is identifiable, and let g be a member of this space. Then (see
Lemma 3.2) g can be written uniquely in the form ¥, 5,85, where g; € G? for
s € S. [In particular, g, = n=15" 12(Z)).]

CONDITION 3. J2¢ = o(n!=9%) for some § > 0.

(Condition 3 is used in the proofs in Sections 4 and 5. In the regf‘ession
context, it can be replaced by the weaker Condition 3’ in Section 3.)

THEOREM 2.1. Suppose Conditions 1 and 3 hold. Then, except on an event
whose probability tends to zero with n, Gy is identifiable, the maximum like-
lihood estimate in G exists, and it can be written uniquely in the form YcsPs
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with 3 € G? for s € S.

Given the positive number b, and the random variable W, forn > 1, W, =
Op(b,) means that lim._, lim sup, P(|W,| > ¢cb,) = 0.

THEOREM 2.2. Suppose Conditions 1-3 hold. Then
|8 — @3> =0p (J "2 +d%n), s€8,
so

|8 - ¢*||* = Op (=% +J%n).

Given positive numbers a, and b, for n > 1, let a,, ~ b, mean that a, /b, is
bounded away from zero and infinity.

COROLLARY 2.1. Suppose Conditions 1 and 2 hold and that J ~ nl/@+d),
Then

|55 — 90;“2 =O0p (/@) ses,
so

6] = 00 (n/00%).

Observe that Condition 3 and the requirement J ~ n1/2°*® in Corollary 2.1
imply that p > d/2. For a weaker requirement on p in the regression context,
see the parenthetical remark following Condition 3’ in Section 3.

The proofs of Theorems 2.1 and 2.2 are given in Section 3 in the regression
context, in Section 4 in the generalized regression context and in Section 5 in
the density estimation context. The proofs of these theorems in the conditional
density estimation context are a refinement of those in Section 5; for details,
see Stone (1991b).

The Ly rate of convergence in Corollary 2.1 does not depend on L. Roughly
speaking, this rate is optimal under the given conditions. In particular, if
Condition 2 is replaced by the condition that ¢ be p-smooth and a member of
H, then it should follow by arguing as in Stone (1982) that n=%/@+d ig the
optimal rate of convergence for the integrated squared error of any estimate
of p. (Condition 2 itself seems awkward to use in the context of demonstrating
that the given rate of convergence is optimal.)

In the context of regression, generalized regression and conditional den-
sity estimation, results analogous to Theorem 2.2 and Corollary 2.1 should
hold with Xj, ..., X, replaced by suitably regular deterministic design points
X1,y ..., Xp.

In the univariate regression context with suitably regular deterministic
designs, results similar to those of the present paper were obtained by Agarwal
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and Studden (1980). In the additive (d = 1) regression context, the results in
this paper were obtained by Stone (1985) and they have been extended to a
time series setting (and in other respects as well) by Newey (1991). His paper
was written independently of but after the original version of the present
paper, Stone (1990b), which involved only the regression context.

The results in Stone (1985) for additive regression have been extended to
robust additive regression by Mo (1990a, b). Since the original version of the
present work in the regression context, Mo (1991) has used elegant methods to
obtain clean and general results involving the Lg rate of convergence for non-
parametric estimation in that context by means of parametric least squares
with increasingly many parameters.

In the regression context, Chen (1991) has obtained results along the lines
of those of the present paper with penalized least squares estimation. For
mathematical tractability, however, he replaces the random points Xj, ..., X,
by deterministic points that form a suitably regular balanced complete fac-
torial design. [Under this severe restriction, his results are closely related
to those of Cox (1984).] Chen also imposes a much larger lower bound on p
than the one mentioned in the parenthetical remark following Condition 3’ in
Section 3. )

In the context of generalized additive modeling (generalized regression with
d = 1), Corollary 2.1 was established in Stone (1986). In this context, Burman
(1990) treated adaptive selection of K in an asymptotically optimal manner.
Presumably the techniques in Burman’s paper can be extended to handle re-
gression and generalized regression with any value of d.

In the context of (logspline) density estimation with NV = 1, Stone (1990a)
contains a more detailed theory, some of which is given in more general form
by Barron and Sheu (1991). Koo (1991) uses AIC to select K adaptively in an
asymptotically optimal manner in the context of univariate logspline density
estimation. In the context of conditional density estimation, Stone (1991a)
contains a more detailed theory when M =N = 1.

Practically speaking, highly adaptive procedures such as those involving
stepwise knot addition and deletion should typically be used to construct the
spaces Gs, s € Sp. In the various contexts of the present paper, such proce-
dures do not appear to be theoretically tractable. Nevertheless, the theory for
nonadaptive procedures can be useful as a guide in the development of more
practical methodology.

With or without such guidance, the methodological literature on the use of
polynomial splines and their tensor products in statistical modeling has been
growing steadily in recent years. In particular, in a pioneering paper, Smith
(1982) initiated the use of knot deletion in the context of univariate regres-
sion. Stone and Koo (1986a), Friedman and Silverman (1989) and Breiman
(1993) used polynomial splines in additive regression. Stone and Koo (1986a)
also used polynomial splines in additive logistic regression, and Hastie and
Tibshirani (1990) contains a wide ranging discussion of the methodological as-
pects of generalized additive modeling. Stone and Koo (1986b) and Kooperberg
and Stone (1991, 1992) developed the practical aspects of univariate logspline
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density estimation. More recently, Masse and Truong (1992) have been devel-
oping practical implementations of logspline conditional density estimation as
treated theoretically in Stone (1991a). ]

In the pioneering paper on MARS, Friedman (1991) introduced the use of
adaptively selected tensor products of polynomial splines in the regression con-
text. (The quantity mi introduced in Table 1 of the MARS paper corresponds
to the use of d in the present paper.) The MARS procedure is a refinement
of AID [Morgan and Sonquist (1963)] and CART [Breiman, Friedman, Olshen
and Stone (1984)], which give highly adaptive tree-structured, piecewise con-
stant estimates of regression functions. The theory developed in the present
paper for nonadaptive procedures suggests that extensions of MARS to handle
generalized regression and density and conditional density estimation should
be practically useful.

3. Regression. The proofs of Theorems 2.1 and 2.2 in the regression con-
text are broken up into a number of lemmas and theorems, some of which
are of independent interest (especially Theorems 3.2 and 3.3). In particular,
in Lemma 3.1 we show that the theoretical components H?, s € S, are not too
confounded. In Lemmas 3.2-3.9, we show that the components G?, s € S, are
not too confounded, either empirically or theoretically, and we show that the
empirical inner product and norm on G are close to their theoretical counter-
parts. Starting with Lemma 3.11, we apply the material in de Boor (1976) as
extended to tensor product splines. The application is somewhat convoluted
because of the need to cover the possibility that d < M. A number of the results
and techniques developed in this section are also used in Sections 4 and 5.

Under Condition 1, let M; and M; be positive numbers such that

Ml‘l <f<M; onX.
Then Ml,Mz > 1.

LEMMA 3.1. Suppose Condition 1 holds. Set 6, = 1—1/1 - M7M;? € (0, 1),
and let hy € H? for s € S. Then

8.1) E [(Z hs(x))2j| > 649-13" E[p2(X)].

PROOF. Recall that M;,M; > 1. We will verify (3.1) by induction on #(S).
Observe that it is trivially true when #(S) = 1. Suppose #(S) > 2 and that (3.1)
holds whenever S is replaced by S’ with #(S’) < #(S). Choose a “maximal”
r € S (i.e., such that r is not a proper subset of any set s in §). We first verify
that

3.2) E I:(Zhs(x)) 2:| > MI‘IM;2E[h3(X)]
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If #(r) = M, then (3.2) follows immediately from the definition of HY?. Suppose,
instead, that 1 < #(r) < M — 1. We can write X = (X}, X,), where X, consists of
X;,1 ¢ r, in some order and X; consists of X;, | € r, in some order. Then X, is
X,-valued and X, is Xp-valued, where X; = [0, 11~#" and X; = [0, 11*”. Let
fx, denote the density function of Xj, fx, the density function of X and fx, x,
the joint density function of X; and X;. Then fx, and fx, are bounded above
by Mg, so

3.3) fxl,xz (X1,82) > Mi-le_zfx1 (xl)fxz (XZ), X €EX and xp € Xp.

Correspondingly, we write h,(x) as h,(x3) for x = (X1, X3). Since f, is bounded
below by M 1

E [(};m(x))z] - /X 1 /X 2 [hr(X2)+Zhs;x1,x2)]2

s#Er

X fx, %, (X1, X2) dXz dx;

> M;M;? /X 1 [ /X 2 (h,(xz)+Zhs(x1,x2)>2]

s#r
x fx,(x2) dXafx, (X1) dx;

- MM /X E [(h,(Xg) + Zhs(xl,xz))z]

s#r
x fx, (xl) dx;.

Now

E [(h,(xz) + Zhs(xl,xz))z} > E[R(X)], =x1€ X,

s#r

by the definition of H?, so (3.2) again holds.
It follows from (3.2) that

E [(h,(x) - 5};hs(x))2} > M{M;’E [h3(X)], BeR

Setting A = E [h, () Sesrhs (] /E { [SenrhsX)]" }, we get that

et

s#r s#r
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Thus, by the induction hypothesis,
()]
> (1— \/IW) { E[h3(X)] +E [(Zh (x)) ]}

s#r
> (B 200] + 619 B 42(x)

s#r
> 6171 Y E [h(X)]

Therefore (3.1) holds for S. O

THEOREM 3.1. Suppose Condition 1 holds. Then there is an essentially
unique function p* € H such that ||p* — p||? = mingeg |h — p||%

PROOF. Since each of the spaces H;, s € S, is complete, it follows from
Lemma 3.1 that H is complete. Choose h, € H such that ||, — |2 — infycq
|h — u||? as n — co. Then

hm + hy

2
L P
2 u

1 —0 asm,n— o©

Vn — -

(draw a nearly isosceles triangle), so ||k, — An|2 — 0 as m,n — oco. By the
completeness of H, there is a function yu* € H such that ||h, — p*||? — 0 as
n — oco. Since ||k, — p||? — ||p* — pl|? as n — oo, it is clear that
2 . 2
=l = h—u|”.
I = pll” = min |2 — 4|
Suppose also that i* € H and ||i* — p||2 = minycy ||k — p||%. Then

* . Tk 2 ~% *(|12
N + N * N - /“l‘ *
— - u“ =t — g2 - = 1 < e - i,

so ||i* — p*||? = 0 and hence i* = u* almost everywhere. O

LEMMA 3.2. Suppose G is identifiable, g; € GO for s € S and Ysgs = 0. Then
g =0forseS.

PROOF. It suffices to show that if s is maximal, then g; = 0. To this end, let
(,+) temporarily denote the inner product given by (hy, k) = [, h1(X)ha(x)dx
and, for s € S, let G! denote the corresponding orthogonal complement of G
relative to the sum of G, as r ranges over the proper subsets of s. Then the
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spaces G, s € S, are orthogonal to each other and G2, r C s, are orthogonal
spaces whose direct sum is G; [see Takemura (1983)]. Consequently, for s € S,

8s = ngr’ Where 8sr € G} C Gr for rcs.

rcs

Thus
0= ng =3 Y ge=>.> &

s rcCs r sDr

‘and hence
2
= Z ngr

r |isor

Therefore,

ngr=0a res.

sor

In particular, if s is maximal, then g, = 0 and hence g; = ©“)g;,, where £
denotes summation over the proper subsets of s.
Let s be maximal. Then

lealls = (g =er) =0.
Since G is identifiable, we conclude that g; =0. O

In the next result and its proof, if w = (w;, ...,wM) and j = (j1, ...,Jm) i8
an M-tuple of nonnegative integers, then [j] =j; +- - - +ju and wi = wj1 wj;’
Let W be a rectangle in R having finite, positive volume vol(W) = f dw, let
W be a W-valued random vector and let Wy, ..., W, be a random sample of

size n from the distribution of W. Given a functlon h on W, set
E.[h(W)] =n~1) " h(W)).

Let m; be a nonnegative integer. Then an arbitrary polynomial p of degree
my (or less) on X =[0,11¥ can be written as

(3.4) p(w)= ) bwi, weax.

[j1<m,

Observe that if p is such a polynomial and [, p3(w)dw = 0, then p is the zero
polynomial on X and hence all of its coefficients equal zero. It now follows
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by scale invariance and an elementary compactness argument that there is a
positive number c,,, such that if p is given by (3.4), then

2
3.5 bl | <cm, | p?(w)dw.
(3.5) (ZI,I) <c /Xp(W)W

§i<m,

[Alternatively, (3.5) follows from the equivalence of any two norms on a finite-
dimensional linear space.]

LEMMA 3.3. Let W be a W-valued random vector having a density func-
tion fi that is bounded below by Ms/vol(W), let m; be a nonnegative in-
teger and let t > 0. Then, except on an event having probability at most
2(my + 1)M exp(—2nt2), the inequalities

. [p1(W)p2(W)] - E [p1(W)p2(W))]| < tem,Msy/E [p2(W)]/E [p2(W)]

hold simultaneously for all polynomials p, and py of degree m; on W.

PROOF. By applying an affine linear transformation to W if necessary,
we can assume that W = [0, 1]X. It then follows from Hoeffding’s inequality
[Theorem 1 of Hoeffding (1963)] that, except on an event having probability
at most 2(m; + 1)2M exp(—2nt2), the inequalities

3.6) |E,, (Wi W) _ E (Whwh)| < ¢

hold simultaneously for all choices j; and j, of M-tuples of integers in
{0, ...,m,}. It follows from (3.4)—(3.6) that

Ex [p1(Whea(W)] - E [pa(Wpa(W)] | < 2, [ pi(w)aw [ ph(w)aw.
Since

Ep}W)] = [ pw)(w)dw> 5" [ pi(w)dw
and, similarly, E [p2(W)] > M;! [,,, p3(w)dw, the desired result holds. O

Set d; = max{#(rUs: r,s € S}. Then d < d; < 2d. Suppose, for example,
that M = 4. If S consists of all 2* subsets of {1,2, 3,4}, then d; =d = 4; if

§={2,{1},{2},{3}, {4}, {1,2},{3,4}},

thend =2 and d; = 2d = 4; if S = {®, {1}, {2}, {3}, {4}, {1,2}}, then d = 2 and
d, =3.
In the regression context, Condition 3 can be replaced by the following

(possibly) weaker condition.
-
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CONDITION 8'. J% = o(n!~%) for some 6 > 0.

[Observe that if Condition 3’ holds and J ~ n'/@®+® ag in Corollary 2.1,
then p > (d; — d)/2.]

LEMMA 3.4. Suppose Conditions 1 and 3’ hold, and let € > 0. Then, except
on an event whose probability tends to zero with n,

|<g1’g2>n -E [gl(x)g2(x)]|

3.7
< e\/E [g2(X)] \/E [g2(X)] forallr,se S and g1,82 € Grus.

PROOF. It suffices to verify the desired result wheng=—-1andd =M [ie,
we can ignore the g continuity restrictions on the functions in S at the interior
knots 1/K, ...,(K — 1)/K, and we can ignore the coordinates x,,, m ¢ rusl.
Then d; = M, G is the span of all functions g on X of the form

g(x)=g1(x1)--guxn), X=(x1,..-,%M),
where g; € S for 1 <1 < M, and (3.7) simplifies to
(61, £2), — E [1(X)g2(X)]| < e/ E (2K VE[g3(X)),  g1.82€ G
Given ky, ..., ky € {1, ...,K},set k=(ky, ..., ky) and

I = {x=(x1, XM X GIkl, ceey XM EIkM}-
Let g € G. Then, for all k,
g(x) =px(x), xek,

where py is a polynomial of degree m; = Mm. Similarly, for g1, g2 € G, we can
write

g1(x) = pix(x) and g2(x) =pak(x), x€l
Thus

E[g1(X)g:(X)] =Y PXeE (plk(X)P2k(X) ‘X € Ik) .
k
Set 7y = {i: 1 <i < n and X; € I;}. Then

Eu [61(X)82(X)] = - Po X € WO, (pu(Epan(X) \x ek),
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where

E, [g:1(X)g2(X)] = (g1.82) Zgl X g2 (X)),

1
PoXecly)= ;#(Ik),

and

1
B, (p(X)pax(X)[X € i) = 5= 3 puc Kpa (Ko,
i€Zx

Choose ¢; € (0, 1) such that £2 +2¢; < ¢. It follows from Conditions 1 and 3’
and Bernstein’s inequality [see (2.13) of Hoeffding (1963)] that, except on an
event whose probability tends to zero with n,

|Pr(X e L) ~P(X e Lk)| <erP(X € L) for all K,

and hence

1- (1+61)M2
g <P X e ho < S

By Condition 3’ and the inequality K < J, KM = o(n'~?) for some § > 0. Thus
there are positive numbers M, and § such that, except on an event whose
probability tends to zero with n, #(Zy) > M; 158 for all k. Observe that the
conditional distribution of X given that X e Ix has a density function that
is bounded above by Mj3/vol(Iy) on Iy, where M3 = M;M,. We conclude from
Lemma 3.3 that, except on an event whose probability tends to zero with n,

E, (plk(X)sz(X) Xe Ik) -E (Plk(X)sz(X)

< 61\/ E (P?k(x) IX € Ik) \/E (ng(x)

for all k and all choices of pyx and pg,. Consequently, except on an event
whose probability tends to zero with n,

| (61, 82), ~ E [g1(X)22(X)) |
< e1Eg: (X)g2(X))|
+er(1+ el)ZP(X € L) \/E (g2(X)[X € L) \/E (g3(X)[X € Iy)

for all k.

XGIk)

XGIk)

SE\/E [g2(X)] \/E €2(X)], &1.8:€G. a]

As a consequence of Lemma 3.4 and the inequality |ab| < (a2 + b%)/2, we
get the following result.
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LEMMA 3.5. Suppose Conditions 1 and 3' hold, and let ¢ > 0. Then, except
on an event whose probability tends to zero with n,

ol -#{[5eo]

Observe that the spaces G?, s € S\{®}, depend on the data X, ....X,
through the definition of the inner product (*s)n- In the next result the expec-
tation is with respect to X with X;, ...,X, held fixed.

<e) E[g(X)], & <G, forses.

LEMMA 38.6. Suppose Conditions 1 and 3' hold, and let 0 < 02 < 61. Then,
except on an event whose probability tends to zero. with n,

(38) E [ (ng(x)) } 289N Eg}(X)], & ecGforses.

PRrROOF. We will verify (3.8) by induction on #(S). Observe that it is trivially
true when #(S) = 1. Suppose #(S) > 2 and that (3.8) holds whenever S is
replaced by S’ with #(S') < #(S). Choose a maximal r € S and choose ¢ > 0,
Then, except on an event whose probability tends to zero with n,

B{ [ L]} = w7578 [g2(x)

3.9)
Y E[g2(X)], g eGforses.

In verifying (3.9), we suppose first that r = {1, ...,M}. Then, by the defini-
tion of GY,

2
2
2 ”g"”n
n

hI:2
s

According to Lemma 3.5, except on an event whose probability tends to zero

with n,
E { [z;g,(x)r} >3 j - %ZE [22(X)]
2 el -~ 5 2 (e (X)
> (1- £) Eg2(%)] - § S F [g(X)]
SRS )
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Suppose instead that 1 < #(r) < M — 1, and let X = (X;,X;) as in the proof of
Lemma 3.1. Then, by (3.3),

E [ (;gs(X)> ZJ > M;M;*? /X IE [ (g,(x) + ggs (xl,X2)> 2] fx, (x1) dx;.

Now
2

> ”gr”i9 X) € Xl’

g+ g (x1,)
s#r

n

by the definition of G?. According to Lemma 3.5, except on an event whose
probability tends to zero with n, >

leel? = (1 - £) B [e(x)]

and
2

8r + ng (x1,")
s#r

<E [ (g,(X)':- ggs (xl,Xz)) 2} +z (E [E2(X)] + ;;E [gf(xl,Xz)])

for x; € X;; therefore,

E [ (gr(X) +) g (xl,Xz)) 2]

shr
> B ) - (B IE) + S %))
s#r

for x, € &3, and hence
B [ (&(x))z} > MM (X))
e (E [2(X)] + /X 1 3 E [ (x1,Xa)] fi, (x1) dx1> .

s#r
* By using Condition 1 and redefining ¢ if necessary, we get (3.9).

It follows from (3.9) that, except on an event whose probability tends to
zero with n,

Ed

E [(gr(X) —ﬁzgs(x)) J > (M'M;* - ) E [g}(X)] - A% Y_E [g%(X)]
s#r s
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when 3 € R and g; € G? for s € S. Choosing 3 to maximize the difference
between the two sides of this inequality, we find that, except on an event
whose probability tends to zero with n,

[E (g, ® e (x))] 2

s#r

<(1-M{\M;2+¢)E| gz(X)]{ [(ng(x)) } +eY E [gf(x)]}

s#r

when g; € GY for s € S. Hence, except on an event whose probability tends to
zero with n,

(50 Ta)|
s#r
<y/1 -M;1M2-2+e{ [g2(X)] +E [(ng(x)) ] } +szs:E [g2(X)]

s#r

when g; € G? for s € S. Consequently, by the induction hypothesis, except on
an event whose probability tends to zero with n,

. [(Esjgs(x))z}
5 (1_ Vi-M7m; ) { g7 (X)] +E {(;gs(" ) ]}
—EXS:E [g2(X)]

> 4 (E CORE Y [gz(xn) S ER®)]
> [61S-1_ Z E gz(x)]

provided that 1 — \/ 1-M;M;2+¢ > 6. Since € can be made arbitrarily
small, (3.8) holds for S. O

The next result is an extension of Lemma 3.4 to a larger collection of pairs
81, 82

LEMMA 3.7. Suppose Conditions 1 and 3’ hold, and let € > 0. Then, except
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on an event whose probability tends to zero with n,

| (e1.82), — E [1(X)22(X)] | < e\/E [E(X)]VE[B(X)],  g1.82€C.

ProOOF. It follows from Lemma 3.4 that, except on an event whose proba-
bility tends to zero with n,

(817,800 — B [g1r(R)ges (X)) | < 575 VE 61 (X)) [, (X))

for r,s € S, g1 € G° and gy, € G°.

(3.10)

If (3.10) holds, then

(81,82 — E [ (®g=(R)] | < e\/ZE 83, (%)] \/ZE 82,(%)],

where g1 = 3,81 and g2 = Y82 are in G. The desired result now follows from
Lemma 3.6. O

LEMMA 3.8. Suppose Conditions 1 and 3’ hold. Then, except on an event
whose probability tends to zero with n, G is identifiable.

PROOF. It follows from Lemma 3.7 that, except on an event whose proba-
bility tends to zero with n,

(3.11) lel? > 1E [g2(X)], g€G.

Suppose (3.11) holds, and let g € G be such that g(X;) =0 for 1 <i < n. Then
llgli? = 0, so E[g%(X)] = 0 and hence g = 0 almost everywhere. Thus g = 0 by
the definition of G. Consequently, if (3.11) holds, then G is identifiable. O

LEMMA 3.9. Suppose Conditions 1 and 3’ hold, and let 0 < 63 < 6;. Then,
except on an event whose probability tends to zero with n,

> 8
8

2
>89y |lgl?, g e@forses.
n 8

PROOF. It follows from Lemma 3.7 that, except on an event whose proba-
bility tends to zero with n,

Ilgsll,z, <(1+e)E[(X)], & €Glforses,

SO

(3.12) Yolgl: < (1+e) Y E[g3(X)], &eGlforses.
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Choose 83 € (62, 61). It follows from (8.12) and Lemmas 3.5 and 3.6 that, except
on an event whose probability tends to zero with n,

e ZE{[Z&(X)] }—szE [£(X)]
> (3971~ &) YE [2(X)]

6#(8)_1 —c 2
> l]—._-;-_e_ E ||gs||n, 8s € Gg fors € S.
s

Since ¢ can be made arbitrarily small, the desired result holds. O

Set Jy = {0} and By = 1. Then By, is a basis of Gy. Next, let s € S with
s # @. Then tensor products of the basis functions of S can be used to construct
a basis of Gs. Specifically, let J; denote the collection of ordered #(s)-tuples j,
les, withj; € {1, ...,J} for l € s. Then #(J,) = J*®. For j € J;, let Bg; denote
the function on X given by

st(x) =HBjt(xl)’ X= (xl’ %)

Then the functions B, j € J;, which are nonnegative and have sum 1, form
a basis of G;.

LEMMA 3.10. Suppose Conditions 1 and 3’ hold. Then there is a positive

number Mg, which does not depend on J, such that, except on an event whose
probability tends to zero with n,

2
DD buBa| =Mz b
j n s

if ) byB;€G) forses.
j

(3.13)

PROOF. It follows from the basic properties of B-splines and repeated use
of (viii) on page 155 of de Boor (1978) that, for some positive number My,

2
/ [Z bs;Bs; (x)] dx > 2M; 'Y " pd
XL i
for all choices of s € S and b; € R for j € J;. Thus, by Condition 1 and Lemma
. 8.7, except on an event whose probability tends to zero with z,

2
> byBs
J

j

n
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for all such choices. The desired result now follows from Lemma 3.9. O

Suppose G is identifiable and let g € G. Recall from Lemma 3.2 that g =
¥.:8s, where g; € GY, s € S, are uniquely determined. Moreover, g, = YibsiBs
for s € S, where the b’s are uniquely determined. Let s and j be fixed. Let
&sj € G denote the representor of the linear functional g — by on G relative
to the inner product (-,-),, so that by = (g,,8)n. Now g5 = Y5845, Where
&sisw € GY for s’ € S. Thus gyjs = Sy Vsjsrj Berr for s’ € S, where the Vsjs’j’’S are
uniquely determined. Observe that

(84j>8s3), = YVaiy» 5,8’ €S,je€ Ty and§ € Jy.

In particular, v = ||gs,|| >0forse Sandje J;. [ThlS and the next result
were suggested by de Boor (1976).1

LEMMA 3.11. Suppose Conditions 1 and 3’ hold. Then, except on an event
whose probability tends to zero with n, _

(3.14) DN Wy <M, seSandjeJ.
sl U

PROOF. Suppose G is identifiable and that (3.13) holds, and let s € S and
j € J;. Then

Mz 5 S MY S Vy < leally = i
L
SO
(3.15) Yejsj < Ma?

and therefore (3.14) is valid. We now obtain the desired result from Lemmas
3.8 and 3.10. [Actually, it is only (3.15) rather than the stronger result (3.14)
that will be used later on.] O

Recall, in the regression context, that Go = G and 7 = [i is the least squares
estimate in G. We now investigate the behavior of this estimate. Observe
first that the least squares estimate is unique if and only if G is identifiable
(or, equivalently, if and only if the design matrix corresponding to a basis of
G has full rank). It follows from Lemma 3.2 that if G is identifiable, then
B = Yeeslis, where [i; € GO are uniquely determined; moreover, i, = Ejﬂsstj
for s € S, where ,38,, s € S and j € J;, are uniquely determined. Recall from
Lemma 3.8 that, except on an event whose probability tends to zero with n,
G is identifiable. These remarks yield Theorem 2.1 in the regression context.

JLEMMA 3.12. Suppose Conditions 1 and 3’ hold. Then, except on an event
whose probability tends to zero with n,

max max var (st|x1, . ..,X,,) =O0p (J%/n).
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PROOF. Let 02 = 02(-) be the function on X defined by o%(x) = var(Y|X = x)
for x € X. Recall that in the regression context it is assumed that the function
E(Y?|X =x), x € X, is bounded. Thus o2 has a finite upper bound M4 on X.

Suppose G is identifiable. Let @ denote orthogonal projection onto G relative
to L,. Then (g,Qh), = (g,h), for all real-valued functions # whose domain
includes the “design set” {Xi, ...,X,} and all g € G. Given such a function 4,
write QA in the form

Qh = Z stst , - where ststj €@ forseS.
8 j j

Then bsj = (gsj, Qh)n = (gsj’h>n-

Let Y(-) be defined on the design set by Y(X;) = Y; for 1 <i < n. (Since X
has a density function, the “design points” X, ...,X; are distinct with prob-
ability 1.) The least squares estimate in G can be written as

i=QY()=>"S BBy, where > BBy € G} forseS.
Thus J j
Boi = (85Y()),=n""D g4(X)Yi, seSandje,.
i
Consequently,
var (@,-|xl, . .,x,,) =n-! Z:a“’(x,-)gﬁj (X;) < Myn~Ygg|2 = Man 'y
The desired result now followsl from Lemmas 3.8 and 3.11. O

THEOREM 3.2. Suppose that Conditions 1 and 3’ hold. Then
sup var (s(x) Xy, ..., X, ) =0p (JYn), s€S,
x€X

S0
31615 var (i(x)|Xy, ..., X,) =Op (J%n) .

PROOF. Choose s € S. Since the functions Bgj, j € J;, are nonnegative and
have sum 1, we conclude from the Schwarz inequality that

var (i (%) Xy, -, X»)
=var (Z stst (X) le, ves ,Xn)
3
< 35" By(x)Buy (x)SD (By[Xu, %) 8D (B Xy, -. %)
T

< m;ax var (,885|X1, ,X,,) .
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Lemma 3.12 now yields the first result of the theorem, which in turn yields
the second result. O

LEMMA 3.13. Suppose Conditions 1 and 3' hold and that u* = 0. Then
|E @y, ..., X |, = Op[y/J¢/n],  ses.

PROOF. Choose s € S and let g € G;. Then g = $b4B,j, where bsj, j € Ts,
are uniquely determined. Suppose G is identifiable. Let g € G, denote the
representor of the linear functional g — by on G; (rather than G as above)
relative to the inner product (-, ), so that by = (gj,&). Then gy = Tj 55 By,
where 535/, J' € J;, are uniquely determined. [Alternatively, (7 ) is the inverse
of the Gram matrix ((Bgj, Bsj)n) -]

Let Ji; denote the orthogonal projection of 4 onto G; relative to L,. Then
B = Ejﬂsstj , Where

(3.16) Bi = Fsii Bsishn,  JE€ T
j’
Thus
2
(3.17) 1%l = || BsBa| =" Buifsy (Bsjy B )n-
] n 3V

Let j,j’ € S. Then
1
(Bujs Bay)n = 3 _ Byj(Xi) By (X).
i
Now Bg; = 0 on the complement of a rectangle I; in X such that

m+11%® m+1)2\*®

Set Z; = #{i:1 <i <n and X; € I;}. It follows from Conditions 1 and 3’ and
Bernstein’s inequality that

-1 - —#(s)
maxn™# (Zy) = Op (/7).

and hence that

— —#(s
jg}gg. (st’st')n = Op (J # )) .

Moreover, for each j € J;, BiBsj» = 0 on X except for at most (2m +1)*®) values
of j’ € J;. Consequently, we conclude from (3.17) that

818) 13- 0r (40 3°3).
j
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Y
It follows from Condition 1 by an extension of arguments in de Boor (1976)
and Stone (1989) that, with the proper ordering of By, ..., B, there are num-
bers M, € (0,00) and ¢ € (0, 1) (both independent of J) such that, except on an
event whose probability tends to zero with n,

sy | < MyJ*@H 01 5.5 e 77

here |j’ —j| is the /; distance between j and j'. Consequently, we conclude from
(3.16) that

2
ZZ.% =0p (Jz#(s) Z [chj'_jl| <Bs.i"”)n |] )
j j ¥
and hence that

(3.19) > B4 =0p (J”“” > ((st,#)n)z) :
j J

Since p* = 0, we see that E((Bgj, 1)») = E[Bg(X)u(X)] = 0 for j € J;. Moreover,
by Condition 1, the boundedness of p and the properties of By, ...,By,

max var ((Bsj, m),) =n~t max var (Bg(X) (X))
- max E (55 (%),(X)]
=0 (n—lJ—#(s)) .

Thus E[Z}j(~(st, m)n)?] = O(1/n) and hence T;({Bsj, u)n)?> = Op(1/n). Conse-
quently, 5382 = Op(J?*®) /n) and therefore

||} = Op (7% /n) = Op (J/n), seS.

Let uQ denote the orthogonal projection of 1 onto G? relative to L,, which
equals the orthogonal projection of fi; onto G?. Then ||u?||? < ||||2 and hence

(3.20) IK|? = Op(J%/n), ses.

Observe that E(ii|Xy, ...,X,) is the orthogonal projection (relative to 1,) of
1 onto G. We can write this orthogonal projection as Y, u,, where

ps =E (BeXy, ..., Xp) €GB, seS.

Now 10 is the orthogonal projection of 3,1, onto G° for s € S. (Note that 0
need not equal y, since the spaces G, s € S, need not be orthogonal.) Thus

[ z<uzu> =5 G ), < 3 sl 1,
< (msax lisall,) 21l
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Since max; || ;1,8”,21 = Op(||Sss)|?) by Lemma 3.9, we conclude that

2
S| =0r (Z uu::n:i)
s n s

~ 2
”E(IJ'IXI’ S &) ”n =

and hence from (3.20) that
(3.21) |IE @Ky, ... %) || = Op(J%/n).

The desired result now follows by another application of Lemma 3.9. O

LEMMA 3.14. Suppose Conditions 1, 2 and 3’ hold and that p* = p. Then
|E @lXy, ... Xn) - 5|2 = Op (J~# +d%2/n),  seS.

PROOF. By Condition 2 [see Schumaker (1981), (13.69) and Theorem 12.8],
there is a positive number M4 not depending on n or J such that, for s € S,
there is a function g, € G, with ||gs— ¥ ||c < M4JP; here ||h|loo = supge x |R(X)|
is the Lo, norm of a function % on X. Choose s € S, let g; be as just described
and let r be a proper subset of s. Then E[B;(X)u;(X)] = 0 for j € J;, so

max |B [B5(X)g, (X)]| = 0 (/*"7) .

Moreover,

max var (B;;(X)gs(X)) =0 (7).

Suppose G is identifiable. Let g denote the orthogonal projection of g; onto
G, relative to L,. Then g, = 3;5,;B,5, where

Bi=Y_ Ay Brys8s)y» FE T
jl

Now
2

> BiB:;

i

~ 12
|Eerll, =

=Y BiBy (BB,
w3 ¥

so [see the proof of (3.18)]
Bl = 0p (44 7).
j
Also [see the proof of (3.19)],

0 (7 )
J J
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Observe that
max E ((By4),)| = max|E (B(X)es(X))| = 0 (/7).

Moreover,

mex ver (B, £),) = ™" maxvar (B;(X)gs(X)) = 0 (n71J77)..
J
Thus E [Ej ({Bs» gs)n)z] =0 (J~*7-% +n~!) and hence

Z ((B':i, gs>n)2 =Op (J_#(")—2P + n—l) .

s

J

Consequently, Ejﬁ% = Op (J*V~% + J2) /n) and therefore
Borl® = Op (T2 + 5% /n) = 0, (J~% +J4Y/n), seS.

Let g°. denote the orthogonal projection of g, onto G?, which equals the
orthogonal projection of g5 onto G°. Then ||g%.||2 < ||gs-||? and hence

(3.22) Ig2.1I2 = Op (J~% +J%Yn).

Write g; = ¥rcssr, Where gq € G2 for r C's. Then g, is the orthogonal projec-
tion of ¥®g,. onto G?, where ©.® denotes summation over the proper subsets
of s. Arguing as in the derivation of (3.21) from (3.20), we conclude from (3.22)
that

(s

2
”gs _gss”: = || 8sr n Op (J_2p +Jd_1/n) .

Replacing g; by g if necessary, we see that, for s € S, there is a function
& € G? such that ||g; — p¥||2 = Op(J~% +J9~!/n) and hence

2
ng - pt
8

=0p (J—Zp +Jd_1/n) .
Write the orthogonal projection E(zi | Xy, ..., X,) of u = p* onto G as Tsp,,
where s = E(fs | X1, ..., Xa) € G? for s € S. Observe that

Zl‘s_l‘* ng_l"*
) )

n

2

2
<
n n

Thps
4 2
=Op (J'2" +Jd‘1/n)

n

Zﬂs_l‘*
8
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and hence

2
=0p (J™%® +J% 1 /n).

D= &
] ]
We conclude from Lemma 3.9 that

lne = &all, = Op (T +%1/n),  ses,

and therefore that

s — 2|2 = Op (J~% +J%/n), s€S. 0

LEMMA 3.15. Suppose Conditions 1, 2 and 3’ hold.. Then there is a posi-
tive number M4 not depending on n or J such that, except on an event whose
probability tends to zero with n,

le-um|* <Mi(llg- sl +9%), seSandgeG,

PROOF. Given s € S, set A = p} and let g € G;. Then (see the proof of
Lemma 3.4) g can be written in the form g(x) = Lppx(X)ind(x € I), x € X. By
Condition 2 and the above citation to Schumaker (1981), there is a function g,
of the same form such that ||g; — A||cc < MsJ P, M5 being a positive number
that does not depend on n or J. Then ||g; —A| < MsJ P and ||gy—hll, < MsJ 7P,
so we conclude from the triangle inequality that

le - Bl < 2l — s+ 2225
and
le - &xll; < 2llg All; + 2037 .

It follows from Lemma 3.7 that, except on an event whose probability tends
to zero with n, ||g —g1||? < 2|lg —g£1/|? and hence, by another application of the
triangle inequality, that

2
le - 2||* < 2llg — &1 + 2lig1 — &/
< 4lg —gully + 2MET %
<4 (2l - I + 237 %)
= 8|lg — h|? + 10M2J 2. 0

THEOREM 3.3. Suppose Conditions 1, 2 and 3’ hold. Then

IE (s | X1, .. Xn) — ]| = Op (J‘P + \/Jd/n) , SES,
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8o

IEG| Xy Xy =] = O (32 4\/Ti/n)

PROOF. It follows from Lemma 3.13 applied to the regression function
p— p* and Lemma 3.14 applied to the regression function p* that

IE (@ | Xy, ... Xn) — pil2 = Op (J~2 +J%/n), se8.
We conclude from Lemma 3.15 that
|E @ | Xy, ..., %) = 3|1 = Op (J7# +J%/n),  seS. D

In the regression context, Theorem 2.2 (with Condition 3 replaced by the
weaker Condition 3’) is an immediate consequence of Theorems 3.2 and 3.3.

4. Generalized regression. In this section, the techniques in Section 3
are augmented to prove Theorems 2.1 and 2.2 in the generalized regression
context. In Theorem 4.1, we verify the existence of a function 6* of the de-
sired form that maximizes the expected log-likelihood, but is not necessarily
square integrable. Lemmas 4.6—4.9 lead up to Lemma 4.10, which gives the
consistency of § as an estimate of 6*. The approach here is modeled after the
multiparameter extension of the consistency argument for maximum likeli-
hood estimates in Rao [(1973), 5f.2()]. The proof of Theorem 2.2 at the end
of the section incorporates standard techniques for treating the large-sample
behavior of multiparameter maximum likelihood estimation.

Given a subset s of {1, ...,M}, let H; denote t}ie space of functions on X
that depend only on the variables x;, I € s. Then Hy is the space of constant
functions on X. Let H denote the space of functions on X of the form ¥sh; =
Yseshs with hs € H for s € S. We first prove a result about the space H that
may be useful in other situations.

LEMMA 4.1. If h, are in H for n > 1 and h, converges in measure to a
function h, then h is essentially equal to a function in H.

PROOF. Let h be a real-valued function on X. Given ! € {1,...,M} and
x € R, consider the function I'; ;4 on X defined by

T,:h(W) =hwi,...,wi_1,%,Wi1,. .., Wy), W=@i,...,wy),

which corresponds to replacing the /th coordinate w; of w by x. Consider also
the function V;.h on X defined by V, s = I';,h — h. Given a subset s =
{lis...,ln} of {1,...,M} of size m and given x € X, consider the function
Iy, xh on X defined by

Lo xh(W) =Ty 5 -+ Tt (W), wWeR,
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which corresponds to replacing the /th coordinate w; of w by x; for I € s.
Consider also the function V; xh on X defined by

Vexh(W) = Vi Vi, 0 B(W), weX.
(We set ', xh = h and V5 < = h.) Now

Vs, xh = Z(— 1)#(8)—#(7‘)1'\"’ xh,

rcs

from which we can easily verify that

4.1) h(x) =) Vizh(w), w,xexX:

Observe that, for fixed w € X, V,xh(w) depends only on the coordinates x;,
les,of x=(xq,...,xp).

Let s and r be subsets of {1,...,M} such that s is not a proper subset of
r, and let & be a function on X that depends only on the coordinates x;, € r.
Then V,xh(w) = 0 for w,x € X. Suppose now that » € H. Then V, h(w) = 0
forse Sand wx e X.

Let A now be as in the statement of the lemma. By taking a subsequence if
necessary, we can assume that 4, converges almost everywhere to h as n — oo.
Then, for almost all choices of x,w € X, V;xh,(w) — Vsxh(w) as n — oo for
s C {1,...,M}. Hence, for some choice of w € X, Vyh,(w) — Vs xh(w) as
n — oo for s C {1,...,M} and almost all x € X. Since V;yh,(w) = 0 for
n>1,s¢S and w,x € X, we conclude that V,xh(w) = 0 for s ¢ S and almost
all x € X. It now follows from (4.1) that & is essentially (almost everywhere)

equal to a function in H. O

Consider now the generalized regression context, and recall from Section 2
the basic requirement that

4.2) B"(6)y—C"(6) <0, 6cRandyeU.
Now A(f) € U for § € R, so it follows from (4.2) that

(4.3) B"(n)A(8) —C"(n) <0, n,0€R.
Set

A(n,68) = B(n)A(6) - C(n), 7,0€R,
. X(n,0) =B'(n)A(6) - C'(n),  m,0¢€R,
and -

A (77, 9) =B" (n)A(e) -C ("7)’ n,0€R.
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Then (4.3) can be written as
(4.4) N'(n,0) <0, n,0€R.

Let T be a positive number. According to Lemma 1 of Stone (1986), there are
positive numbers M; and M, depending on T such that

(4.5) A(n,0) <My —M;'n|, |6|<TandneR.

Observe that, for any function ~ on X,
M) = [ A (), 00)) F(x) dx
Let T now be an upper bound to | § |. Then, by (4.5),
4.6) A(R) < My — M;* /X Ih(x)|f (x) dx;

thus if [, |h(x)|f(x)dx = oo, then A(h) = —o0.
Suppose that Condition 1 holds. Given functions 4; and Ay on X, set
h® = (1 — t)hq + thy for t € R. Suppose that ; and kg are bounded. Then

2 2

@n SA00) = [ @) - mE@)] ¥ (0@.0@) (R dx e,
x

so it follows from (4.4) that if 4, is not essentially equal to kg, then

®
dt2A(h ) <0, teR,
and hence A(h®) is a strictly concave function of ¢. In general, however, when
hy and ks need not be bounded, the use of (4.4) in obtaining the properties
of A(h®) as a function of ¢ is more complicated, as the proof of the following
theorem illustrates.

THEOREM 4.1. Suppose that Condition 1 holds Then there is an essentially
unique function 0* € H such that A(*) = 7 AR, If0 € H, then 6* = 0
almost everywhere.

PRrOOF. It follows from (4.6) that the numbers A(h), h € H, are bounded
above. Let L denote their least upper bound. Choose 4, € H for n > 1 such
that A(h,) > —oo for n > 1 and A(h,) — L as n — oo. Then, by (4.6), the
numbers Jx |ha®)| f(x)dx, n > 1, are bounded. let |A| denote the Lebesgue
measure of a subset A of X. We claim that

lim |{x€X |ha(x) — hm(x)|>s}| e>0.
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As a consequence of this claim, there is an integrable function * such that

h, — 6* in measure as n — co. By Lemma 4.1, we can assume that 6* € H It
follows from (4.5) and Fatou’s lemma that A(§*) > L and hence that A(6*) =L =
max, - A(h). It follows from the indicated claim that if » € H and A(h) = A(6*),

then A = 0* almost everywhere. Therefore, the first statement of Theorem 4.1
is valid. Observe that, for 6 € R, the function \(n, ), n € R, has a unique max-
imum at 5 = 0. The second statement of Theorem 4.1 is a simple consequence
of this observation.

It remains to verify the indicated claim. To this end, choose £ > 0. There is
a positive constant M3 such that |¥\An, | < € for m,n > 1, where

Amn = {xX € X: |hp(x)| < M3 and Ihn (x)|< M3}

There is a positive constant M, such that f > M4“1 on X and \'(n,0) < ——M;l
for |n| < M3 and |§| < T. Set Ymn(t) = A(L—8)hyp+thy) for 0 < ¢ < 1. Then ¢, is
bounded above by L and concave. Choose § > 0. Then ,,,(0) > L — § and
Ymn(1) > L — § for m,n > 1. Consequently,

Ymn (3) = ¥mn (3) <6/2 and Ymn (3) —¥ma (§) 2-6/2, m,n>1,
and hence '
48 Ymn (§) —¥mn (3) = [Ymn (B) —¥mn (3)] 2 =6, myn> 1.
Write A = A; + Ag, where

M) = [ A6, 0 () dx:

Correspondingly, Write Ymn = Ymn1 + Ymn2, Where Ymn1(®) = Af(1 — Oy + thyn)
for 0 <t < 1. Then ¥,,,; and 1,2 are concave. Consequently,

(4.9) "/Jmn2 (%) - "/Jmn2 (%) - ["»bng (%) - "/Jmn2 (%)] < 0.

Moreover,
o) = [ [hao) = ()" 7 (L= () + (), () £ ()

< —M‘;l/ [n(x) — Bn(x)]®dx, 0<t<1,

mn

SO

r8/5 1
¢,mnl(t2) - "p/mnl(tl) < /2'/5 "p”mnl(t) dt < ‘5_1‘?'2/‘4 [h"(x) - hm(x)]2 dx

for 1 <t; < % and £ <t, < . Thus, by the intermediate value theorem,
"/Jmnl (4/5) = Ymn1 (3/5) - ["pmnl (2/5) - "/Jmnl (1/5)]

1
< 9 [ (X) — B (%)]? dx.
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Using this inequality together with (4.9), we get that
"»bmn (4/5) - wmn (3/5) - [wmn (2/5) - wmn, (1/5)]

<- 25}% /A ) [n () ~ hn(x)]” dx

and hence from (4.8) that

2
/ [h,,(x) —hm (x)] dx < 25M25, m,n> 1.
A

mn

Since 6 can be made arbitrarily small, we see that

2
./ [n(x) ~ hm(x)] dx <, - mon> 1,
A,

mn

and hence that |{x € App: |hp(X) — An(X)| > €}| < € for m,n > 1. Conse-
quently,

[{x € X: |hn(X) —hm(x)| > e}| <2, mn>1

Since ¢ can be made arbitrarily small, the indicated claim is valid. O

We turn to the proofs of Theorems 2.1 and 2.2 in the generalized regression
context.

LEMMA 4.2. Suppose that Conditions 1 and 2 hold, and let T be a positive
constant. Then there are positive numbers M3 and My such that

~Ms|lh — 6*|* < A(h) — A(6%) < —My||h — 6*||?
for all h € H such that ||h|e < T.

PROOF. Given h € H with |h|lo < T, set h® = (1 — £)6* + th. Then

a, ooy _
)| -0

t=0

and hence
1 d2
A(R) = A(6*) = / (1-6) L A (A9)de
0 dt?
(integrate by parts). The desired result now follows from (4.4) and (4.7). O

LEMMA 4.3. Suppose that Condition 1 holds. Then there is a positive num-
ber M such that ||g|lo < MsJ%/?|g|| for g € G.

PROOF. Now g = Y,gs, where g; € Gs and g L G, forr C s withr #s. It
follows as in the proof of Lemma 3.1 that there is a positive constant Mg (not
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depending on n or J) such that ||g||> > M, '¥|lgs||2. Thus, by (3.5), there is a
positive constant M, such that

lgslloo < M7d*?|lgsll, s €S,

and hence

lglloo < D ligslloo < Mad¥2 " llgsll < Mrd*/2\/#(S)M gl o

Under Condition 1, it follows from a simplification of the argument used to
prove Theorem 4.1 that there is a unique 8;; € G such that A(6};) = max,cq A(g).
(Actually, 6y depends J rather than n, but we are mainly thinking of J as
depending on r.)

LEMMA 4.4. Suppose that Conditions 1 and 2 hold. Then

|65 — 9*“2 =0(J%) and |6;-06*| =0 (J9/2P) .

PROOF. We can assume that J — oo as n — co. By Condition 2 [see the
initial citation to Schumaker (1981)], there is a 6, € G such that ||6, — 0*||cc <
MgJP; here Mg is a positive constant. Consequently, ||, — 6*|> < MZJ 2.
Thus by Lemma 4.2 there is a positive constant M7 such that

(4.10) A(6,) — A(6%) > —MqT 2.

Let a denote a large positive constant. Choose g € G with |lg — 6*||2 = aJ~%.
Then, by the Schwarz inequality, ||g — 6,||> < 2(a + M2)J~?. Since p > d/2,
it follows from Lemma 4.3 that, for J sufficiently large, ||g|cc < ||0*||cc + 1 for
all such functions g. Thus by Lemma 4.2 there is a positive constant Mg such
that, for J sufficiently large,

4.11) A(g) — A(6") < ~Msad =% for all g € G with ||g — 6*|% = aJ 2.

Let a be chosen so that @ > M2 and Mga > M. It follows from (4.10) and
(4.11) that, for J sufficiently large,

A(g) < A(6,) for all g € G with ||g — 6*||® = aJ .

Therefore, by the concavity of A(g) as a function g, ||0; — 6*||> < aJ % for
~ J sufficiently large. (Draw a circle having center 6* and radius J?,/a and
containing 6, in its interior.) This verifies the first conclusion of the lemma.
Observe that ||0 — 6,||> = O(J~%) and hence by Lemma 4.3 that ||6}; — 0, o0 =
O(J%/2-P), Thus ||8} —8*||co = O(J%/2-P), s0 the second conclusion of the lemma
is valid. O
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If G is identifiable, then 0 = ¥3,0},, where 6}, € G? is uniquely determined
forseS.

LEMMA 4.5. Suppose that Conditions 1-3 hold. Then
167, — 6;1° = Op (J % +%/n),  s€S.

PROOF. Suppose G is identifiable, and let 6, denote the orthogonal projec-

tion of 6* onto G relative to L,. Then 5,, = 235,,3, where 5,,3 € G? is uniquely
determined for s € S. It follows from Theorem 3.3 and Lemma 3.8 that

(4.12) [1Bns — 67| = Op (J~2 +J%/n),  s€S,
and .
18 — 6%|]* = Op (=% +J%/n) .
Thus, by Lemma 4.4,
18 — 631 = Op (J~% + J%/n).

Consequently, by Lemma 3.6,
(4.13) 18ns — 63|1° = Op (I +J%/n),  seS.

The desired result follows from (4.12) and (4.13). O

Suppose Condition 3 holds, and let 7,,, n > 1, be positive numbers such that
J472 = 0(1) and J¢ log n = o(n7?2). (Such numbers exist under Condition 3.)

LEMMA 4.6. Suppose that Conditions 1 and 3 hold. Given a > 0 and € > 0,
there is a 6 > 0 such that, for n sufficiently large,

p (| HE) _ [agg) - agep)

for all g € G with ||g - 0%]| < am.

> e'r,?) < 2exp (—6n72)

PROOF. [Taken from the proof of Lemma 10 of Stone (1986).] It follows
from (2.1), the formula E(Y|X = x) = A(6(x)), x € X, and the boundedness of
0(-) [see the proof of Lemma 12.26 in Breiman, Friedman, Olshen and Stone
(1984)] that

(4.14) E(exp[t(Y —E(Y|X=x)] [X=x) <1+Mq#?, x€X and [t| <Ms.

(Here Mg, M, ... denote suitable positive constants.) Observe that

i)=Y [Be(X,)Y: - Cle(X)]
=3 {Be(X) [¥: - B(YIX)] - C(e(X1)) +B(g(X:))A(0(X,)) }.
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Consequently,
Ig) - 1(6) —n [Ale) — A6})] = Z {B1 (X)) [¥; - E(Y[X:)] +B2(X:)}
where
Bi(x) =B (g(x)) - B (6;(x))

By(x) = B(g(x))A(6(x)) - Clg(x)) - Alg)
— [B(6:(x))A(8(x)) — C(6;(x)) — A(67)] -

It follows from (4.14) that if |¢B1(x)| < Mg, then

and

E (exp [tB1(x)(Y — E(Y|X =x))] [X = x) < 1+ M7*B}(x)
and hence

E {exp (¢ (B () (¥ - B(¥% = %)) + Ba(a)]) X = x}
< [1+My£2B}(x)] exp [tBa(x)] -

Thus if 2[B3(x) + B2(x)] < Mg, then

E {exp (¢ [B1(x)(Y - E(Y|X = x)) + Ba(x)]) [X = x}
< 1+1tBy(x) + Mot? [B3(x) + B3(x)] -

Since EBy(X) = 0, it follows that if ¢2 (| B1|%, + |Bz/|%,) < Ms, then (by Condi-
tion 1)

E {exp (¢t [B1(X)(Y — E(Y[X)) + B2(X)]) }
<1+ Mo /X [B3(x) + BY(x)] f(x) dx

< exp {M9t2 /X [B2(x) + B3(x)] F(x) dx}
< exp {Mmt2 /x [B3(x) + B3(x)] dx} :
Consequently, if 2 (|B1]2, + |Bzll%,) < Mgn?, then
E [exp (Za(g))] < exp {Mgn‘ltz /x (B (x) + B3(x)] dx} ,

where

Zalg) = "E 1) _a(g) - a(a2)).
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Suppose now that g € G and ||g —6%|| < a7,. Then ||g— 62|00 < MsaJ%/?7, by
Lemma 4.3 and hence |By||%, + ||B2||%, < My J972 and [, [B3(x) + BZ(x)] dx <
Myo72. Thus if |t| < My3J~%2n7,7! and hence if |¢| < Myyn, then

E [exp (tZn(g))] < exp (Misn~'£%72).
Choosing ¢t = +Mgn with 0 < Mg < min(My4,6/(2M15)) and applying the

Markov inequality, we conclude that
P(|Z.(g)| = e7?) < 2 exp (—6n72)
with 6 = Myge/2. O

It follows from (2.1) that n=1y;|Y; — E(Y;X;)| is bounded in probability.
Since E(Y|X = x) is also bounded, the following result holds.

LEMMA 4.7. Suppose that Condition 3 holds. Given ¢ > 0 and Mg > 0,
there is a 6 > 0 such that, except on an event whose probability tends to zero
with n,

< 57',?

'l(gz) -U(g1)

for all g1, g2 € G with ||g1llo < Ms, |82llc0 < Mg and |ig2 — g1lleo < 677
We define the “diameter” of a subset B of G as sup {|lg2 — 81lo: £1,82 € B}.

LEMMA 4.8. Suppose that Condition 3 holds. Given a > 0 and § > 0, there
is a positive constant M such that {g € G: ||g — 6}|| < am,} can be covered by
O (exp (M7J%log n)) subsets each having diameter at most 612.

PROOF. Suppose g € G and ||g — 0;|| < a7. It follows from Lemma 4.3 that
lg — 0xll,, < MsaJ?/?r,. Consider, temporarily, the inner product (g;,82) =
[ 81(X)g2(x)dx on G and write g — 0} = %8, where, for s € S, g €
Gs and g; L G, for r C s with r # s. It follows from the extension of the
main result of de Boor (1976) to tensor products [see Stone (1989)] and the
inclusion—exclusion formula for orthogonal projections [see Takemura (1983)]
that, for some positive constant M}, ||gs||, < MiJ%/%r, for s € S. Consequently,

{g€G: g -6l < am}

d/2 Mst
(%)
Tn
subsets each having diameter at most 672. (Let A denote the points of [0, 1]¢
each of whose coordinates is an integer multiple of 1/m and let @ be in the

can be covered by
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d-fold tensor product of the space of polynomials on R of degree m. If @ = 0 on
A, then @ = 0.) Since log (J%/2/1,) = O(log n), the desired result is valid. O

LEMMA 4.9. Suppose that Conditions 1 and 3 hold, and let a > 0. Then,
except on an event whose probability tends to zero with n, l(g) < 1(6}) for all
g € G such that ||g — 0}|| = am,.

PROOF. This result follows from Lemma 4.2, with 6* replaced by 6, and H
replaced by G, and Lemmas 4.6-4.8. O

LEMMA 4.10. Suppose that Conditions 1 and 3 hold. Then the maximum
likelihood estimate 0 in G exists and is unique except on an event whose prob-
ability tends to zero with n. Moreover, |6 — 6;||__ = ap(1).

PrOOF. It follows from Lemma 4.9 and the concavity of A(g) as a function
of g that || — 63| = 0p(7») and hence from Lemma 4.3 that

“9\—0;;”00 =0p (Jd/zTn) =0p(1). O

In the generalized regression context, Theorem 2.1 follows from Lemmas
3.2, 3.8 and 4.10. We turn to the proof of Theorem 2.2 in this context.

Recall the basis B, j € J;, of Gs for s € S, which was introduced in Section
3. Set I = 3, #(J;). Given an I-dimensional (column) vector 3 having entries

Bsj»s €S and j € J;, set
8(+8) = ByBss

s jeTs

and write l(g(-;3)) as I(83). Let |
0
S(8) = 55!(8)
denote the score at 3, that is, the I-dimensional vector having entries

5%1(@ =2 By (X) [B' (eXi;8)Yi - C' (g Xis B)]

and let
62
be the I x I matrix having entries
02
, 7 a7 B
(4.15) B/lejlaﬁsib ( )

=Y Bi,;,(X;)B.y, (Xi) [B" € Xi;8)Y; — C" € Xi;8)] -
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Let 3" be given by 0} = Y6}, where

Ors=> BB €G), s€S,
i€Ts

and let 3 be given by 8 = z:s?);, where

6, = Z ,stst € Gf,’, sES.
JET:

The maximum likelihood equation S(3) = 0 can be written as
1
d * 2 * _ *
/0 ZS(8+t(B-p)) dt=-s(8".
Thus it can be written as D (ﬁ - ,B*) = —8(8*), where D is the I x I matrix

given by
1 92
o 8808

Let | | denote the Euclidean norm on R’. It follows from the maximum
likelihood equation that

(644 (B-5")) at.

@.16) (B-5)D(B-8)=-(B-8)s(8).
We claim that
(4.17) 18(8")|* = 0p(n)

and that (for some positive constant Mg)

2

4.18) (B-8)D(B-8") < -Mens |3 p"

except on an event whose probability tends to zero with n. Since | (,5 -B*)8(8")|
< |B - B*||S(8")], it follows from (4.16)~(4.18) that |3 — 8*| = Op (J2¢/n) and
hence [see the proof of (3.18)] that

- 2
(4.19) 0s — 03)| =Op (J%/n), seS
and
~ 2
(4.20) |o-6:|| =0p (7%/m).

Theorem 2.2 follows from (4.19), (4.20) and Lemmas 4.4 and 4.5.
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To verify (4.17) note that
E {B4(X) [B'(6;(X))Y-C' (6;(X))]} =0, seSandjeJ.

Consequently,

E[IS(8")[?] =nd_ > var (By(X)B' (6;(X)) Y)

s jeTs

<Mon ) > E[B5(X)] =0(n)

s jeTs

by Conditions 1 and 2, Lemma 4.4, the inequality p > d/2 and the properties
of B-splines, so (4.17) holds.

Finally, (4.18) will be verified. By Condition 2, the inequality p > d/2 and
Lemmas 4.4 and 4.10, there is a positive constant T' such that

(4.21) lim P ([6;]l,, <7 and ], <T) =1,

n—o0o

Given € > 0, set Uy = {y € U:B"(0)y — C"(0) < —¢ for |0)| < T} . By (2.2), ¢ can
be chosen sufficiently small that

(4.22) PY eUpyX=x)>¢, xc X.

SetZ, ={i:1 <i<nandY; € Uy}. It follows from (2.2), (4.15) and (4.21) that,
except on an event whose probability tends to zero with n,

(4.23) D6 < —e > g(X6), ©beR.
€T,

Write g (; 6) = £.85(-; 6), where

gs(6)= Z 6sstj, s€S.
A [VA

Let 6 now be chosen so that g(-;6) € G? for s € S. It follows from Conditions
1 and 3, (4.22) and Lemma 3.10 that, except on an event whose probability
tends to zero with n,

> 8% (Xi;6) > Mond 4|62

€Ty

for all such 6. (Note that the conditional distribution of X given that Y € U,
has a density function that is bounded away from zero and infinity on X.)
Eqguation (4.18) now follows from (4.23) applied to 6 = B — 8*. This completes
the proof of Theorem 2.2 in the generalized regression context.
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5. Density estimation. The proofs of Theorems 2.1 and 2.2 in the density
estimation context are similar to those in the generalized regression context,

which were given in Section 4. Given a subset s of {1, ..., N}, let fIs denote the
space of functions on ) that depend only on the variables y;, [ € s. Then ﬁ¢ is
the space of constant functions on ). Let H denote the collection of functions
on Y of the form h = Yycs,hs with h, € H, for s € Sy and such that c(h) < co.

_ THEOREM 5.1. Suppose Condition 1 holds. Then there is a function h* €
H such that A(h*) = maxyc3 A(h). The function ¢* = h* — c(h*) is uniquely
essentially determined. If ¢ = h — c(h) for some h € H, then ©* = ¢ almost
everywhere.

PROOF. Let h; and hs be in I:f, and set

hO=(1-t)h +thycH, C(t)=c(h’) and
oo (B0 -cC(A),  te(o1)

Then C is a continuous function on [0, 1] and

C'(¢) = /y [ha(y) - ha(3)]*FO(y) dy - [ /y [ha(y) — ha(3)] FO(5) dyr
6D = [ () -m@)

- [ ) -m@IP)ay] o), 0<<t

[1t follows by a standard argument in the context of one-parameter exponential
families or that of moment generating functions that the various integrals
appearing in (5.1) are finite.] We conclude from (5.1) that C is convex on
[0, 1] and that it is strictly convex unless hy — h; is essentially constant on ).

Moreover,
A (B®)=(1 - ¢)A(hy) +tA(R2) + (1 - t)e(h)
(5.2)
+te(hg) —C(t), 0<t<l.

The first part of Theorem 5.1 will now be verified. It follows from Condition
1 and the information inequality that

A= [ h@)r(y)dy —c(n) < /y [log/(9)]f (y)dy < co for h e i

and hence that the numbers A(h), A € H , have a finite least upper bound L.
Let |A| denote the Lebesgue measure of a subset A of ). Choose h, € H for
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n > 1 such that A(h,) —» L as n — oo. Since f, = exp(h, — c(h,)) is a density
function on ),

(5.3) |{y € V:ha(y) —c(hn) > M}| <exp(-M), n>1landMeR

Set A, = {y € V:fa(y) < 1} for n > 1. It follows easily from Condition 1, the
convergence of A(h,) to L as n — oo, and the inequality log £, /f < f./f — 1 that

liminf | Dlog £2(9)] () dy > o0
and hence that
(5.4) 4}‘.‘.20 liﬂSg:p [{y € Y:ha(y) —c(hn) < —M}| =0.
We conclude from (5.3) and (5.4) that ‘
(5.5) a}glgohﬂsotlp [{y € ¥: |ha(y) —c(hn)| = M}| =0.

It is a straightforward consequence of (5.1), (5.2), (5.5) and the definition of
L that there are constants a,, such that A, — k,, — @, — 0 in measure as
m,n — oo. Setting a, =5 f23 //55 [pth quantile of 2,(U)ldp, where U is uniformly
distributed on Y, we conclude that &, — a, — (A, — an) — 0 in measure as
m,n — oo. Consequently (recall Lemma 4.1 and use the definition of L), there
is a function A* € H such that A, — c¢(h,) — h* — c¢(h*) in measure as n — oo.
Necessarily A(h*) = L = max, i A(h). [Set f, = exp(h, — c(hy)) for n > 1 and
f* = exp(h* — c(h*)). Then f, — f* in measure as n — oo, which implies that

lim limsup fn (y ) dy = 0~]

M—o0o p—oo ./{y:f,.(y)ZM}

In order to verify that 2* —c(h*) is essentially uniquely determined, suppose
h} and b} are in H and that A(k}) = L and A(h3) = L. It then follows from (5.1)
and (5.2) that hj — h} is essentially constant on ) and hence that k3 —c(h3) -
[A} — c(h})] is essentially constant. Since

[ exp(ri(y) —e(hi))dy =1 and [ exp (h3(5) - e(3)) dy = 1,
Yy Yy

the constant difference must equal zero. Therefore i} — c(h}) = h; — c(h3)
almost everywhere on Y. O

We turn to the proofs of Theorems 2.1 and 2.2 in the density estimation
context.

. LEMMA 5.1. Suppose Conditions 1 and 2 hold, and let T be a positive
constant. Then there are positive numbers M, and My such that

~My||h (k) - " < A(R) - A(g") < -Ma||h — (k) - ¢°|”
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for all h € H such that |h — c(h)||oo < T.

PROOF. Given h € H with ||h — ¢(h)||oo < T and given ¢ € [0, 1], set
P =(1-¢t)p*+th and C(f) =c (h®).
Then

LN -
T (r?) s 0

and hence, by (5.2) and integration by parts,
1 2 1
A(R) = Ap*) = / 1-0)L A n) dr=— / (1-¢)c"(¢) dt.
0 di? 0
Thus, by (5.1), there is a positive number M; such that

A(R) = A(p*) = ~My||h — (k) —¢*|°, e H with |h—c(h)|| <T.

By another application of (5.1), in order to complete the proof of the lemma,
it suffices to show that if h, € H and ||h, — c¢(h,)||cc < T for n > 1, then there
is an £ > 0 such that

( /y [hn(y) = c(hn) = " (¥)] F*(¥) d.v)2

<(1-¢) /y [ha(y) —c(hn) - ") FF(¥)dy, n>1.
This result is easily established under the additional assumption that
5.7) liminf /y [n(y) = c(n) — " ()] dy > 0.
(Set a, = [}, [ha(y) — c(hs) — *(y)1f*(y)dy, and note that if

lim [ [h(y) = c(hn) — 0*(y) — an] f*(y) dy = 0,

n—oo y

(5.6)

then lim,_, ., a, = 0.) Otherwise, we can assume that
tim [ a(y) =€) ~ " (v) Py = 0.
Then there is a bounded function R such that
1= [ exp(tuy) - e(a)) dy

=/yexp(hn(y) —c(ha) - 0*(¥))F*(y) dy
=14 [ [ha-ella) - (] () dy
y
[ RS Ba(s) ) - G 7 (),
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which yields the desired result. O

According to a simplification of the argument used to prove Theorem 5.1,
under Condition 1, there is a unique function g} € G such that A(g}) =
maxgcg A@). Set ¢}, = g5 —c(g;). (Actually, g» and ¢} depend on ¢ rather than
n, but we are mainly thinking of J as depending on n.) If G is identifiable,
then g} = Sses¢}s, Where ¢, € G? is uniquely determined for s € S.

LEMMA 5.2. Suppose that Conditions 1 and 2 hold. Then |} — o*|1% =
OWJ~%) and |¢% — ¢*|l, =0 (Jd/z—p).

PrROOF. We can assume that J — 0o as n — oco. By Condition 2 [see the
initial citation to Schumaker (1981)], there is a function g, € G and there is
an a, € R such that ||g, —a, — ¢*||,, < M3JP; here Mj is a positive constant.
Set ¢, =gn — c(gs). Then |, — ¢*||,, < MyJ P, where My = 2M3. (Note that

/ exp(pa(y))dy = / exp(¢*(y))dy=1.)
y y

Consequently, [¢, — ¢*||* < M2J-2. Thus by Lemma 5.1 there is a positive
constant M5 such that

(5.8) A(pn) = A(p*) > —Msd %,

Let a denote a large positive constant. Choose g € G with ||g — c(g) — ¢*|® =
aJ~%. Then, by the Schwarz inequality, |lg — c(g) — ¢n||® < 2(a+M2)J~%. Since
p > d/2, it follows from Lemma 4.3 that, for J sufficiently large, g —c(g)||oo <
le*lloo + 1 for all such functions g. Thus by Lemma 5.1 there is a positive
constant Mg such that, for J sufficiently large,

A(g) — A(p*) < —~MgaJ 2

(5.9)
for all g € G with ||g — c(g) — ¢*|” = aJ 2.

Let a be chosen so that a > Mff and Mga > M. It follows from (5.8) and (5.9)
that, for J sufficiently large,

A(g) < A(pn) for all g € G with |lg —c(g) — ¢*||?> = aJ .

Therefore, by the concavity of A(g) as a function g, ||¢} — ¢*|> < aJ~% for J
sufficiently large. This verifies the first conclusion of the lemma. Observe that
s — @nll? = OJ~2) and hence by Lemma 4.3 that ||o} — @, |, = OEJ/2-P).
- Consequently, ||¢} — ¢*||,, = O(J%/27P), so the second conclusion of the lemma
is valid. O

LEMMA 5.3. Suppose that Conditions 1-3 hold. Then

lots — @2|* = Op(J =% +J%n),  ses.
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PROOF. We can assume that J — 0o as n — co. Suppose G is identifiable,
and let g, denote the orthogonal projection of ¢* onto G relative to L,. Then
g,, = YsesPns, where $ps € G is uniquely determined for s € S. Set @, =
&n — c(gy). It follows from Theorem 3.3 that

(5.10) |Bns — @2)|° = Op(I2 +d%n), s€S,

and hence, by Conditions 2 and 3, (3.5), the inequality p > d/2, and the
reference to Schumaker (1981) in Section 3 that

18 - ¢l = Op (J‘W (724 \/Jd—/n)) = 0p(1).

Since [}, exp(¢*(y))dy = 1, we now see that [c@,)]* = Op(J~% +J%n) and
hence that

120 = ¢*|[* = Op (7% +J%n)..
Thus, by Lemma 5.2,

18 = e2[I* = Op (7% + J%n).
Consequently, by Lemma 3.6,
(5.11) Bns — 0%s||* = Op (I~ +J%n),  ses.
The desired result follows from (5.10) and (5.11). O

Suppose Condition 3 holds, and let 7,,, n > 1, be positive numbers such that
J12 = O(1) and J%logn = o(n7?). The next result follows from Lemma 4.3 and
Bernstein’s inequality [see the proof of Lemma 5 in Stone (1990a)].

LEMMA 5.4. Suppose that Conditions 1 and 3 hold. Then, given a > 0 and
€ > 0, there is a 6 > 0 such that, for n sufficiently large,

([P

for all g € G with ||g — c(@) — ¢;|| < ay.

Me) — ) _ [ (g) - (i)

> er, ) < 2 exp(—6nt?)

We define the diameter of a set B of functions on ) as
sup{|lgz — &1llo.: 81,82 € B}.

The proof of the next result is essentially the same as that of Lemma 4.8.

- LEMMA 5.5. Suppose that Conditions 1-3 hold. Then, given a > 0 and
6 > 0, there is a positive constant Mg such that

{g—c(g):g€Gand |lg—c(g) - ¢}l <am}
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can be covered by O(exp(MsJ?log n)) subsets each having diameter at most
672

LEMMA 5.6. Suppose that Conditions 1-3 hold, and let a > 0. Then, except
on an event whose probability tends to zero with n, I(g) < l(¢}) for all g € G
such that ||g — c@) — ;|| = amn.

_ PROOF. This result follows from Lemma 5.1, with ¢* replaced by ¢; and
H replaced by G, Lemmas 5.4 and 5.5 and the inequality

l(gz) "l(gl)

<|lgz —clgz) —[g1—c(gV)||,,» &1.82€G. 0

LEMMA 5.7. Suppose that Conditions 1-3 hold. Then the maximum like-
lihood estimate of ¢ of the form § = g — c(@), with g € G, exists and is
unique except on an event whose probability tends to zero with n. Moreover,
12 — palleo = 0p(1).

PROOF. It follows from Lemma 5.6 and the concavity of I(g) as a function
of g that ||§ — ¢}|| = op(7,) and hence from Lemma 4.3 that

12 = @} llco = 0p (J%/273) = 0p(1).

In the density estimation context, Theorem 2.1 follows from Lemmas 3.2,
3.8 and 5.7. We turn to the proof of Theorem 2.2 in this context.

For s € S, let J; denote the collection of ordered #(s)-tuples j;, I € s, with
Ji€{1,...,d} forl € s. Then #(J;) = J*®. For j € J, let B;; denote the function
on ) given by

Bi(y) =[IBi), y=(u1....on).

les

Then the functions By, j € J;, which are nonnegative and have sum 1, form
a basis of G;.

Set I = ,#(7;). Given an I-dimensional (column) vector # having entries
bs5,s € S and j € J;, set

gs(40) = Z 05iBs; forseS and g(0)= ng(-;e).
NV SES

Also, set C(0) = c(g(-;0)) = log fy exp(g(y; 0))dy and f(-;0) = exp(g(-;8) — C(9)).
Then the log-likelihood function can be written as

1(6) = Zlog f(Yi;0) = [g(Yi;0) - C(0)].

l

Let

$(6) = ~51(0)
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denote the score at 0, that is, the I-dimensional vector having entries
0
5-10) =3 [Ba(¥) - [ By(3)f(vi6)dy].
603] i y
Let

o
—1(0
00 60‘1( )
be the I x I matrix having entries

0*
005,5,005,3, He)

(5.12) =-n [ /y B, ;,(¥)Bsui, (¥)f (v:6) dy

_ ( /y B,,;,(y)f (v:0) dy) ( /y B, (y)f (v;0) dy)] .

Set © = {8 € R!: g,(;0) € G, for s € S}.

Let 6" be given by ¢, = Tsesys — C(8"), where o7, = g4(;;67) € G fors € S.
Let 8 denote the maximum likelihood estimate of 8, so that = Yes@s — c@®),
where s = gs( :9) € G° for s € S. Then 0* and 9 are in ©. The maximum
likelihood equation S(8) = 0 can be written as

/ 28 (6 +1(5-6")) dit = -S(0").

Thus it can be written as D(@ — 8*) = —S(6*), where D is the I x I matrix given
by

D= /6069‘ (6v+t(8-6")) ar.

Let | | denote the Euclidean norm on R’. It follows from the maximum
likelihood equation that

(5.13) (5 - o*)’n (6-6")=-(8- e*)t S(6*).
We claim that
(5.14) | S(6*)[2 = Op(n)

and that (for some positive constant My)

(5.15) (6 - 6*)'D(6 — %) < —MynJd |9 — "
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except on an event whose probability tends to zero with n. Since

‘(5—0*)ts(0

it follows from (5.13)~(5.15) that |§ —6*|2 = Op(J%¢/n) and hence [see the proofs
of (3.18) and (5.11)] that

S(6")1,

)| <[6-6

(5.16) 185 — ¢5||* = 0p(J%n), ses,
and
(5.17) 18— @3 |1% = 0p (J9n).

Theorem 2.2 follows from (5.16), (5.17) and Lemmas 5.2 and 5.3.
To verify (5.14), note that

E [B4(Y)] = /yst(Y)f(y;e*)dy, se€Sandje J.

Consequently,

E[|S(6*)]=n)_ ) var(B4(Y))<n> > E[B =0(n),

s JET, s jeT,

so (5.14) holds.
Finally, (5.15) will be verified. It follows from (5.12) that

5t 0% (9) 5——n[/g2(y,5)f(y, 0)dy

00 8¢’
- ( /y g(v; 6)f (y:6) dy)z], 6,0 €R'.

By Condition 2, the inequality p > d/2 and Lemmas 5.2 and 5.7, there is a
positive constant 7" such that

(5.19) Jim P(llohllo < T and [|@llo <T) =1.

(5.18)

It follows from (5.18), (5.19) and Lemma 3.7 that there is an € > 0 such that,
except on an event whose probability tends to zero with n,

(5.20) &§Dé < —en / g(y;6)dy, éce.
y

[Note that ¥;(Y;;8) = 0 for § € ©.] According to Conditions 1 and 3 and
Lemma 3.6, there is an € > 0 such that, except on an event whose probability
tends to zero with n,

(5.21) / g(y;6)dy >e) / 2(y;6)dy, éb€e.

sES
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It follows from the basic properties of B-splines and repeated use of (viii) on
page 155 of de Boor (1978) that, for some ¢ > 0,

/gz(y,is)dy > sJ‘#(S)Z 2, se€Sand ek,

and hence that

(5.22) > / gi(y;6)dy > eJ46|?, 6€eR.

sES

Inequality (5.15) follows from (5.20)—~(5.22) applied to 6 = 9 — 6*. This com-
pletes the proof of Theorem 2.2 in the density estimation context. O
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DISCUSSION

ANDREAS BuJa

Bellcore

Previous work by Stone has been impressive, and the present paper com-
mands even more respect. In one grand sweep, he develops convergence rates
for B-spline interaction models in LS regression, in ML generalized regres-
sion, in log-density estimation and in conditional log-density estimation. In



