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LOG-PERIODOGRAM REGRESSION OF TIME SERIES
WITH LONG RANGE DEPENDENCE!

By P. M. RoBINSON

London School of Economics

This paper discusses the estimation of multiple time series models
which allow elements of the spectral density matrix to tend to infinity or
zero at zero frequency and be unrestricted elsewhere. A form of log-peri-
odogram regression estimate of differencing and scale parameters is pro-
posed, which can provide modest efficiency improvements over a previ-
ously proposed method (for which no satisfactory theoretical justification
seems previously available) and further improvements in a multivariate
context when differencing parameters are a priori equal. Assuming Gauss-
ianity and additional conditions which seem mild, asymptotic normality of
the parameter estimates is established.

1. Introduction. In the analysis of stationary time series the behaviour
of the spectral density around zero frequency is often of interest. For a scalar
covariance stationary process X,, ¢t = 0, + 1,..., assume absolute continuity
of the spectral distribution function, so there is a spectral density f(A),
—r < A < 7, such that the autocovariance

Y = E[(Xl - E(Xl))(Xl+j - E(Xl))] = f_ﬂ cos(jA) f(A) dA.

Many time series models imply 0 < f(0) < «, but empirical observation is
sometimes consistent with the possibilities that either f(0) = © or f(0) = 0.
These can be examined by means of a model of the form

(1.1) f(A) ~Cr2% asA—>0+,

where “~ ” means that the ratio of left- and right-hand sides tends to 1, C is
positive and finite and — 1 < d < 1 because for d > 1 a function behaving
like A2¢ as A - 0 + will not be integrable so that covariance stationarity
cannot obtain, while d > — 1 corresponds to an invertibility condition in
parametric models with property (1.1). When d > 0, X, is often said to have
“long range dependence.” Property (1.1) is also useful in the modeling of
nonstationary processes. If there is a somewhat greater degree of nonstation-
arity in the process than implied by a unit root, (1.1) with d > 0 could be a
useful model for first differences, while d < 0 can model the first differences

of a process which is nonstationary, but less so than a unit root process. Two
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parametric models for f(A) over all frequencies which imply (1.1) are the
“fractional noise” spectral density
A
i+ 5]
—nwT< AL,

402T(2d) *
(12) f( ) = ——')—3:2—d—COS(7Td)Sln ( ) Z

and the fractional autoregressive integrated moving average (ARIMA) spec-
tral density

-2-2d

2

(2

2

2

) a ( eu\)
1.3 f(A) = —[1 — e 2 ——=

( ) ( ) I | b ( ez).) ’

where a(-) and b(-) are polynomials, all of whose roots lie outside the unit
circle. A recent review of the long range dependence literature is Robinson

(1994c).
In applications, C and d are generally unknown. Introduce the discrete
Fourier transform and periodogram

T<ALZ T,

(L4 w) = @en) Y DX, 1) =l (),

and also
A =2mj/n, a; = —log(4sin® (1;/2)),

— m _\2
a=(m-1) Z] 14195, S = XJ;.4(a; — @)

and

m
d(l) = Y (a;—a)logI(A)/S,, 0<l<m<n,

j=i+1
which is the least squares estimate of d in the “regression model” given by
the identity

logI(A;) =c+da; +U;, j=1+1,...,m,

where c =logC — 7, n is Euler’s constant 5 =0.5772... and U, =

log{(4 sin® (,/ 2))°1 (1))/C} + 7. Geweke and Porter-Hudak (1983) made the
important contrlbutlon of 1ntroducmg d(0). They assumed, as in (1.1), that
f(A) can be approximated by C(4sin%(A/2))"¢ in only a neighbourhood of
zero frequency, so an asymptotic theory will require that m tend to infinity
more slowly than n. When a finite-parameter model for the spectrum across
all frequencies can be accurately specified, d(0) is bound to be asymptotically
less efficient than a Gaussian maximum likelihood estimate of d; indeed, its
relative efficiency will be zero. Now that Gaussian parametric estimates for
long range dependent time series models have been rigorously justified by
Fox and Taqqu (1986), Giraitis and Surgailis (1990) and others, they thus
provide an attractive alternative. However, if the parametric model has been
misspecified, these estimates will be inconsistent, whereas if both autoregres-
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sive and moving average orders in the fractional ARIMA are overstated,
there is a loss of identifiability. So far as computation is concerned, the
Gaussian parametric methods require software that is not very widely avail-
able, whereas least squares is extremely familiar. At least when 7 is large,
the weak model assumptions apparently underlying d(0) make it rather
appealing, and it has been frequently used in empirical work [for applications
of this and related estimates, see, e.g., Cheung (1993), Cheung and Lai
(1993), Diebold and Rudebusch (1989), Geweke and Porter-Hudak (1983),
Porter-Hudak (1990), Shea (1991) and Tschernig (1993)]. A rival semipara-
metric estimate was recently proposed by Robinson (1994a) and shown to be
consistent under very mild conditions, but its limiting distributional theory is
rather complicated [Lobato and Robinson (1993)].

Geweke and Porter-Hudak (1983) attempted a proof of asymptotic proper-
ties of d(0) in the case — 3<d < 0, only, and the following theorem has
implications for their method of proof. In the theorem, (1.1) is augmented by a
related [see Yong (1974)] condition on y;. The theorem merely extends an
earlier result of Kiinsch (1986), and we omit the straightforward proof.

THEOREM 1. Let (1.1) hold and v; ~ Cb,j?? 1 asj — o, where by = 2I'(1
— 2d)sinwd. Then for 0 <|d| < 3 and any fixed positive or nonnegative
integers j and k,

(1.5)
I()) bgljl*

li L =

ngroon{ f()tj)} (277)1—2d

1
x {4f01u2d-1(u ~ sin? (mju) du + m}’

and, defining

. —2b,ljkI" o
P,(j, k)= (277)1_2‘2(‘]_ %) fo w2~ Ysin(2wju) + sin(2wku)} du,
j+Ek#0,
we have
w(A;)w(A) .
(1.6) lim E L =P,(Jj, k),
n— o f(Al)l/zf(Ak)l/z
and, if X, is Gaussian,
I(A;
a7 lim Var{ ( ’)} = 2P2(j, ),
noew f(A)

I(A; A
(1.8) lim Cov{ (AJ) I(x)

, = P2(j, k) + P2(j, —k), i+ k#0.
im CovlZ) Fagy) ~ Fi R+ Bl J
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In the case 0 < d < 3, Kiinsch (1986) previously obtained a formula which
(after division by 2) is equivalent to (1.5), leading him to propose d(I) for
! > 0, though he did not establish its asymptotic distribution. Kiinsch’s
important observations were noted by Smith (1989, 1993), but have been
overlooked in much of the literature. [Smith (1993), Delgado and Robinson
(1994) and Lee and Robinson (1993) carried out empirical applications of d()
and related estimates for [ > 0].

Theorem 1 does not imply that choosing ! > 0 is essential in order to
achieve good asymptotic properties of d(!), though it suggests that this may
be a desirable practical policy. The intuition behind d(0) is based on a belief
that the U, are approximately uncorrelated and homoscedastic. However,
because (1.5) and (1.7) vary with j, while (1.8) is nonzero, the theorem implies
that for both — 1<d <0 and 0 <d < 1, the normalized periodograms
I(A)/f(A)), and thus the U, are asymptotically neither independent nor
1dent1cally distributed when n — o but Jj stays fixed. To justify d(0), Geweke
and Porter-Hudak (1983) argued [as a preliminary to applying the Linde-
berg—Feller central limit theorem (CLT)] that for fixed m, the U, j = 1,..., m
are approximately iid to any specified degree of accuracy for n large enough
when — 1< d < 0. Having met this accuracy criterion, m is replaced by
m + 1 and n is increased suitably, and so on, leading to a sequence such that
as n — o, the effect of replacing U;, j = 1,..., m, by an iid triangular array
(call it U ,m) is asymptotlcally negligible. However, Theorem 1
implies that we cannot choose a finite m to initiate this sequence. Part of
Theorem 1 rests on the Gaussianity assumption, but the asymptotic non-iid
property is likely to hold much more generally; indeed (1. 7) and (1.8) are true
when 0 <d <3 and X, is instead fourth-order stationary with
3337, - —wlcum(X,, X;, X, X))l < . Independently, and at around the same
time as our work, Hurvich and Beltrao (1993, 1994) obtained results corre-
sponding to Theorem 1, though theirs are presented in a different form.

Apparently independently of Kiinsch’s (1986) earlier work, d(0) was re-
cently criticised by Agiakloglou, Newbold and Wohar (1993) in the case
0<d < 3. For d <0, Hassler (1993b) [correcting arguments in Hassler
(1993a)] clalmed to have shown that if X, is Gaussian, S}/ 2(d(l) - d) —»
N(, 7%2/6) for suitable [ > 0. Hassler noted that for suitable A > 0
E(I(N)/f(N) = J(WF = O(n~#) for some B > 0, where the J(A)),0 <j <n/2,
the periodograms of standard normal white noise innovations of X, under
model (1.3), are exactly iid for all n. Hassler claimed that these properties
imply that the I(A)) /f(A)), | <j < n/2, converge to iid variates, for [ increas-
ing suitably with n, and thence that the corresponding U; can be replaced by
the iid U, in S}/Q(d(l) — d), to give S; '?L" ., (a; — a)U which tends to a
N, 72/ 6) variate by a straightforward apphcatlon of the Lindeberg-Feller
CLT. However, the difference between S}/?(d(I) — d) and S; '/?L7, \(a; —
a)U is 8, 'L, (a; — aXU; - U ), and Hassler’s arguments do not appear
to amount to a proof that the latter quantity is 0,(1), especially bearing in
mind that S;!/2 decreases only at rate m~1/2 2’ We thus disagree with
Hassler’s claim to have verified the limiting distribution of d(I) [and for
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similar reasons, his claim to have completed Kashyap and Eom’s (1988) proof
of asymptotic normality of a parametric log-periodogram regression estimate].

Yajima (1989) gave useful results for the limiting joint distribution of w(A)
at finitely many fixed A, but not at an increasing number of A; on an interval
which degenerates to zero as n — «, so these results do not form a basis for
theory for d(I) with m — «. Despite the theoretical and practical interest
that has been shown in d(1), no satisfactory asymptotic distribution theory
seems to be available for it, for any value of d. The present paper attempts to
provide one. We deal simultaneously with 0 <d < 3 and — $<d < 0 (and
d = 0), unusually in the asymptotic theory of series satisfying (1.1), and
correcting an impression which might have been conveyed, that a proof for
d < 0 is relatively easy, while for d > 0 it is much harder. Our theory also
covers estimates of the scale parameter C in (1.1). We in fact propose a more
general class of estimates of C and d, including ones which have modestly
superior asymptotic efficiency to d(0). We treat directly a multivariate model,
and also show that further improvements are possible when differencing
parameters are known to be common to more than one series. On the other
hand, our work provides justification for tests that different time series share
a common differencing parameter. A large-sample theory similar to ours may
be useful in completing proofs for related estimates of Janacek (1982) and
Kashyap and Eom (1988), and efficiency improvements similar to ours can be
made to these estimates.

The regularity conditions we impose are in one sense extremely strong and
in others, rather weak. We assume Gaussianity of the time series, finding
this very helpful because of the complicated and nonlinear way in which
parameter estimates depend on the data, but conjecture that a limit distribu-
tion theory can be obtained under more general distributional assumptions. A
desirable side effect of the Gaussianity assumption is that further assump-
tions on the time series can be expressed purely in terms of the spectral
density (or spectral density matrix) f, and our assumptions on [ seem weak.
On a neighbourhood of zero frequency, we make stronger assumptions on f
than (1.1), but we impose no restrictions on f elsewhere, apart from the
integrability necessary for covariance stationarity, and in this respect our
conditions are milder than those conjectured by Geweke and Porter-Hudak
(1983).

The following section introduces the multivariate model, modified and
improved estimates and related test statistics. Regularity conditions are
introduced in Section 3, where asymptotic results are presented. Proofs of
these conditions appear in Sections 4 and 5.

2. Multivariate semiparametric model, estimates and test statis-
tics. Let X, now represent a G-dimensional vector with gth element X, ,,
g=1,...,G. We assume that X, has a spectral density matrix given by
E{(X, - E(X)XX,,; — E(X,))} = [T e’*f(N)d) The (g, h)th element of
f(X), the cross spectral density of X,, and X, when g # h, is denoted f,,(A).
The gth diagonal element of f(A), f,,()), is the power spectral density of
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X,,. For C,,d, satisfying 0 < C, <, — 3<d, < 1, we assume that
(2.1) frg(A) ~C,A7%% as A >0+,

forg=1,...,G.

We can motivate this model as follows. Let ¢ be a G-dimensional zero-
mean unobservable stationary process having spectral density matrix which
is continuous and nonsingular at the origin, and

(2-2) X, = E(Xt) + Z Ajf:—j,

J=—®
where the A; are G X G matrices. Denote by « (A)’ the gth row of A()) =
Xi__ Ale”)‘ and suppose that for some d, € ( 11 (/\))tdg tends to a

ﬁmte, nonnull vector as A = 0, for g =1,...,G. Then (2 1) holds. As an
example, take ¢, to be a stationary and invertible vector ARMA process and
let each X, be formed by separate fractional differencing of the correspond-
ing ¢, element, so that

(2.3) A(N) = diag{(l —e) N1 —eh) )

The periodogram of X,,, t = 1,..., n, is denoted by
2

I(A) = (2mn) " , g=1,...,G.

n

it
Z the
t=1

Let J be a given integer greater than or equal to 1. Define

J
Yg(,;’) = log{ Y Ig(Ak+j_J)}, g=1,....G,k=1+J,l+2J,...,m
j=1
In the asymptotic theory ! and m both tend to infinity with n, but more
slowly, while /m — 0 also. We have for simplicity assumed here that m — 1
is a multiple of J, but because J is held fixed as n — =, the end effects in
case this is untrue when J > 1 are easily shown to exert a negligible
influence on asymptotic properties. Whatever the value of J, the Yg(,;’ ) for the
given values of k use all the I,(A)), j=1+1,...,m, once, but when J > 1,
there is a pooling of contributions from adjacent frequencies.
Define the unobservable random variables U(J) by

Y = —d(2log &) + U,
h = Gk—l+Jl+2J

where ¢{”) =1logC; + l/l( J ) and ¢ is the ngamma functlon P(z) =
(d/d2)log I'(2), where I is the gamma function. Now if the C,,d,, g =

1,...,G, are all functionally unrelated parameters and if one pretends that
the vectors U, U = U, ..., ULD) are uncorrelated and homoscedastic with
zero mean, 1t is well known that least squares estimation of the G equations
(2.4) provides the best linear unbiased estimates of the ¢, d ¢» €ven in the
presence of correlation between elements of Uy (). Of course the U’ do not

(2.4)
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have the former properties, but we will show that the least squares estimates
have the same limiting distributional behaviour as if such properties held.

The least squares estimates of ¢?) = (c{”,...,c¥?) and d = (d;, ..., dg)’
are é7) and d), given by

& Y 7D 7Y 7y
(2.5) [J(J)] = vee{Y'Z(ZD'ZD) T,
Where Z(J) (Zl+J’ Zl+2J’ .. Z )’ Y(J) = (Y(J) . ) ZK
(1, —2log A,) and Y = (Y, J,Yg('ﬂze,, LYY In the case J =1,d"

is d(1) apart from the multlvarlate generalization and our use of —2log A, as
a regressor in place of —log(4sin? A, /2). We have stressed —2log A, owing
to its slightly greater notational and computational s1mplicity, and it is easily
shown that the same results go through if —log(4 sin? $1,) is used.

Denoting the gth element of ¢ by &, we can estimate C, by Cj
exp(c‘J ) — y(J)). We can also compute dlagnostlc statistics assomated w1th
least squares estimates. The residual vectors are U’ =YD — &) +
d(2log )tk) kE=1+dJ,l+2d,...,m, and the matrix of sample variances
and covariances is Q) = {J /(m - l)}Z’ UDULY, where the primed sum is
over k=1+d,l +2d,...,m. A standard error for d(") the gth element of
d¥, is given by the square root of the (g + G)th diagonal element of
(ZW'Z)1 @ (). Consider the homogeneous restriction

(2.6) H,: Pd =0,

() =

where P is an H X G matrix of rank H < G. For example, we might assert
that one or more d, are.zero, to indicate the absence of long range depen-
dence, or that two or more of the d, are equal. A statistic for testing (2.6) is

~ s , _ - -1 -
(2.7) do'p[(0, P){(292) " @ a9, Py| Pd.

In the case H = 1, a corresponding one-sided statistic is constructed in the
obvious way.

We can incorporate the assumption that some or all the G series share a
common d-parameter. An analogous assumption is taken for granted in much
of the unit root literature. There is a large literature concerning multivariate
processes with d = 0 and one might respond to nonrejection of a hypothesis
of equality of d-parameters (following a test such as that described in the
previous paragraph) by exploiting this information in the parameter estima-
tion. By suitably pooling information from different series with common
d-parameter, we could expect to obtain estimates which are asymptotically
more efficient than &7 and d). Impose the restrictions

(2.8) d=Qe,

where @ is a given G X K matrix of rank K < G and 6 is a K-dimensional
column vector of functionally unrelated parameters. Any set of G — K homo-
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geneous linear restrictions on d can be so represented. Consider

A . - ) ,
[C ] = @29z & OD-1)Q,) 'Q, vec(QUD -1y D ZDy,

1G]
1 0
Ql = ¢ ’

0 @
where I, is the G-rowed identity matrix and d'/> = @6/, Denoting the gth
element of &) by é{0, we can estimate C, by C;,J) = exp(é{” — ¢(J)). When
there are no restrlctlons so @ = I, (2.9) reduces to (2.5). A standard error for
the kth element of 67 is given by the square root of the (G + k)th diagonal

element of the inverse matrix in (2.9). A statistic for testing the further
restrictions

(2.10) H,:S0=0
where S is a L X K matrix of rank L < K, is given by

(2.9)

(2.11)  6978'[(0,8){@( 22 @ 01)Q,)(0,8)] ' SEY.

3. Limiting distribution theory. In order to establish the limiting
distribution of statistics introduced in the previous section, a number of
assumptions are introduced. We strengthen (2.1) as follows:

AssuMPTION 1. There exist C, € (0, =), d, € (- 3,3) and a € (0,2] such
that

fre(X) = C,A72% + O(A*"%%) asA—>0+,g=1,...,G.

AssUMPTION 2. In a neighbourhood (0, £) of the origin, f,,(}) is differen-
tiable and

d
ﬁfghu)‘ =O(A %) asA-0+,g,h=1,...,G.

Define the coherency between X, and X,,: R, (A) = £, (V) /F} 12D fif (D)
[see, e.g., Brillinger (1975), page 297]. Introduce the following assumption:

AssumPTION 3. For some B € [0,2],
|R (X)) —R,,(0)| =O(AP) asA—>0+,g<h=2,...,G.

No assumptions whatsoever are imposed on f outside a neighbourhood of
the origin, apart from integrability implied by covariance stationarity. As-
sumption 1 strengthens (2.1) by imposing a rate of convergence of
fee(M/C, A% to 1; a similar assumption was made by Robinson (1994b) in
studying the averaged periodogram. Assumption 2 is similar to assumptions
of Fox and Taqqu (1986) and Giraitis and Surgailis (1990) in studying the
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asymptotic properties of Gaussian parameter estimates in scalar series and
assumptions of Robinson (1994b) in a semiparametric context. Assumption 3
is vacuous when G = 1. When G > 1, it holds with 0 < 8 < 1 when all R, ()
are in Lip( 8); it holds for 8 > 1 when their derivatives are in Lip(B — 1),
and are zero at A =0 [the real part of R,,(\) automatically has zero
derivative at A = 0 when B > 1]. Note that for any vector process admitting a
spectral density matrix, including one with power spectral densities which
are zero or infinite at some frequencies, |R gh( M| < 1 for all A [see Brillinger
(1975), page 297]. Assumptions 1-3 are simultaneously satisfied with a = B
= 1in the case X, is given by (2.2) and (2.3) when the spectral density matrix
of ¢, is nonsingular and boundedly differentiable in a neighbourhood of the
origin. If this matrix is twice boundedly differentiable with zero first deriva-
tive at A = 0, we can take o = B = 2, as is the case with certain fractional
ARIMA processes. [Note that (sin A/A)"2¢ =1 + O(A?) as A — 0 for all d.]
Assumptions 1 and 2 hold with @ = 2 in models (1.2) and (1.3).

Before listing further assumptions, we present some results that depend
only on Assumptions 1-3 and that are of considerable importance to our
limiting distributional theory: they concern the limiting covariance properties
of discrete Fourier transforms at frequency A; such that j is allowed to
increase with n while j/n — 0 as n — «. The results provide a contrast to
those of Theorem 1, where j was fixed, and they are of some wider relevance
to the theory of frequency domain analysis of time series with spectra having
zeros or singularities, and seem original even in the case G = 1. The proof,
which involves careful use of truncation in order that the mild Assumptions
1-3 can suffice, is in Section 4. Denote by w,(1) the gth element of w(A)
given by (1.4) with vector X, and introduce the scaled discrete Fourier
transform v, (1) = w, (1) /(C A" %).

THEOREM 2. Let Assumptions 1-3 hold. Then for g,h = 1,...,G and any

sequences of positive integers j = j(n) and k = k(n) such that j >k and
j/n—0asn — x,

(a) E{v,(1)04(A))} = Ra(0) + O

logJ J min(a, 8)
)
J n

log j
(b) Efv,(A)va(¥))} = O(ﬂ ;

log j
@ Eunio)-o ).

@  Efv,(4)va(A)} = o(loij).

For the limiting distributional properties of the estimates of Section 2 we
need three further assumptions and some additional notation.
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Introduce the matrix of coherencies at the origin, R(0) = (R,,(0)). The
following assumption will not hold if any of the series is perfectly predictable
from the others.
ASSUMPTION 4. R(0) is nonsingular.
As discussed in Section 1, we introduce the next assumption:
AssumptioN 5. {X,,¢t = 1,2...} is a Gaussian process.

Finally a condition on the bandwidth and trimming numbers is introduced:

ASSUMPTION 6. As n — oo,

ml/2 log m l(log n)2 ml+1/2min(a, B)
+ +

) m n

- 0.

Assumption 6 implies that the weakest possible upper bound on m relative
to n is m%/n* > 0, whereas acceptable ! and m sequences exist for any
a, B > 0. Some limited knowledge is now available concerning the choice of
m. Robinson (1994b) derived formulae for m which are optimal in the sense of
asymptotically minimizing mean squared error of the (unlogged) peri-
odograms averaged over m frequencies near the origin, in the case of (1.1)
with 0 < d < 1. Feasible “plug-in” versions of the optimal m were given by
Delgado and Robinson (1993). As in other problems involving trimming
numbers, there seems to be no optimality theory to guide the choice of / in a
given practical problem.

To motivate Assumptions 4 and 5, introduce real-valued vR(A) and vI( ’y)
such that v (1) = vF(D) + ivj(M), so

J

(3.1) USD =log| X {vf(/\kJrj_J)z + v;(/\k+j_J)2}e_"’(J) .

j=1
Now introduce the vector v(A) = (vE(),...,vEN),vi(N),...,vé(N), where
variances and covariances of elements of v(/\ ) and v(A,) can be deduced from
those of the v,(A,) and v,(A,) and their complex conjugates. Approximations
to the latter, with error bounds were given in Theorem 2. These indicate a
sense in which the v(A)), for j increasing slowly with n, can be regarded as
approximately uncorrelated with mean zero [because w(A;) =
@mn) 2L} (X, — EX,)exp(it);) for 1 <j < n] and covariance matrix

R -R
_ 1 R 1
R_z[RI Ry ]’

where Ry and R; are the real and imaginary parts of R(0). (The matrix R is
Hermitian, so Ry is symmetric and R; = —R’.) Assumption 5 implies the
v(A;) are Gaussian and thus that the approximate uncorrelatedness can be
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reinterpreted as approximate independence. Thus, introduce the 2G-dimen-
sional vector variates

~

(3.2) V,~NID(0,R), j=1+1,...,m

Assumption 4 is equivalent to positive definiteness of R [see Hannan (1970),
page 224], so the V; have a nonsingular distribution. Denoting by V,; the gth
element of V, introduce the variates

J
(3.3) Wg(;e]) = log Z (ng,k+j—J + V2 g+G, k+j— J)e_%]) ,

Jj=1

for k=1+dJ,l +2J,..., m. Because Rgg(O) =1 for each g, it follows that
the diagonal elements of Ry and R; are all, respectively, unity and zero, so
that 7, (V2. ;+ V26 rij o)~ 3x3; for each g, k. Thus [see, eg,
Johnson and Kotz (1970) pages 167 and 181] E(WS) = 0 and W,;’ has
finite moments of all orders. Denote the covariance matrix of W‘J) =
WD, ..., WD) by QY. From Johnson and Kotz [(1970), page 181] the
dlagonal elements of Q) are all '(J), where (z) =(d /dz)l,lr(z). Further,
independence of the V; implies independence of W W), .., WD, Thus
if the US; in (2.4) can indeed be replaced by the W w1thout affectmg the
limit dlstrlbutlon of our centred and suitably scaled estimates, we can apply
the Lindeberg-Feller CLT to complete the proof, as discussed in Section 1.
The proof that the Uyj’ can be replaced by the WS rests heavily on the error
bounds established in Theorem 2, but also involves considerable additional
manipulation.

The proofs of Theorems 3 and 4 below, which deal, respectively, with the
least squares and generalized least squares estimates of Section 2, are in
Section 5.

THEOREM 3. Let Assumptions 1-6 hold. Then as n — o,

1/2

m
A(JI) _ A(J)
@9 |Ten " " o Nog[ L “Hea)]
2m/2(d) - d)

and the covariance matrix in the limiting distribution is consistently esti-
mated by

(3.5) J[_l ‘H ® 0,

REMARK 1. Theorem 3 provides simple formulae for standard errors,
interval estimates and test statistics, but a version which corresponds to the
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methodology based on standard output from a regression package, presented
in Section 2, is readily deduced from Theorem 3,

J 2 1/2
{Z’(2log A - ——(Z'2log Ak) }
k m—L\%

X Q- 12(d — d) -, N(0,1;),

(3.6)

because the quantity in braces is 4m/J + o(m) as n — ». We likewise
deduce the usual large-sample interpretation of regression ¢-ratios and that
(2.7) has a limiting y2 distribution under (2.6).

REMARK 2. The normal distribution in Theorem 3 is singular, the covari-
ance matrix having rank G owing to perfect negative correlation in the
limiting joint distribution of &) and d{), for each g. Individually, the
vectors ¢) and d‘) have nons1ngular 11m1t1ng distributions.

REMARK 3. For each g, 2m'/2(d{" —d,) —, N(0, Jy/'(J)). In the case
J =1, asin d(1), JY'(J) = w2 /6 = 1.645. The recurrence relation '(J + 1)
= '(J) — J~? indicates that the function Jy'(J) decreases in oJ, taking
values 1.289 at J = 2 and 1.185 at J = 3, and tending to 1 as J — . One
can modify d() in the opposite direction, logging the squared cosine and sine
transforms separately, to give 2(m — [) rather than (m — 1)/J “observations.”
It may be shown that the formulae of Theorem 3 apply to this estimate with
J = 1, but because 3¢/'(3) = 2.467, there is now substantial efficiency loss.

REMARK 4. In inference on a single d, one can use Ji'(JJ) in place of the
gth diagonal element of ‘), but in inferences involving more than one d,
one would use the latter, including relevant off-diagonal elements, in order to
ensure nonnegative definiteness.

REMARK 5. &) converges more slowly than d(*).

REMARK 6. A simple application of the “delta” method provides a CLT for
the estimate C) = (C{”,...,C§") of the vector C = (Cy,...,Cg)’ of scale
parameters in (2.1):

(m/log n)"*(CY — C) -, N(0, J diag{C} Q" diag{C}).

REMARK 7. In practical applications, X, may be a vector of unobservable
erfors, which can be expressed as a parametric or nonparametric filter of
observable time series. Then if X, can be proxied by residuals X by means of
estimates of the filter which ignore the long range dependence of X, but are
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consistency-robust to this, with a suitably fast rate of convergence, our
results should still go through for estimates of the C,, d, based on the X,.

Now we turn to the generalized least squares estimates.

THEOREM 4. Let Assumptions 1-6 hold. Then as n — =,
1/2

A) _ a(d)
logn(c )

(3.7) 2m'2(d — d)

-y N(O,J[ 1 “” ® Q(Q'Q<J>-1Q)“Q')

and the covariance matrix in the limiting distribution is consistently esti-
mated by

(3.8) J[_i _H ® QRO 1Q) Q.

Because Q) — Q(Q'Q’"1Q)"1Q’ is nonnegative definite, the usual sort
of efficiency improvement achieved by generalized least squares is confirmed.
We have equivalently 2m/2(6)) — 6) -, N(0, J(Q'Q~'@Q)~1). The re-
marks following Theorem 3 continue to apply with obvious modifications. In
particular, we have an analogous result to (3.6)—the standard errors men-
tioned in Section 2 can be used instead to normalize individual d(J )—and
(2.11) has an asymptotic y? distribution under (2.10).

For scalar X,, Hassler (1993a) proposed an estimate of d, which we denote
d(1)*, and which involves not our pooling, but replacing each I(A)) in d(1) by
a smoothed nonparametric estimate F(A ;) of f(A;). He did not give an
asymptotic distribution theory but an order of magnltude for the variance of
d(1)* when d < —1; his proof seems to entail assertions that the f(A ) are
asymptotically uncorrelated across adjacent A; [compare, however, Hannan
(1970), pages 280-281] and that the contribution from the O(m) variance
terms in Var{d(l)*)} [arising from the summation form of d(l)*] is not
dominated asymptotically by that from the O(m?) covariance terms.

4. Proof of Theorem 2. Fix g, h and for notational simplicity write
gjk = k_l longjfdg/\};dh, p()l) = fgh(/\)’ p,(A) = (d/dA)fgh(A) and 6 = dg +
d},. The proof of (a) is in two parts. First we show that
(4.1) E{w,())@x(1)} = p(4;) = O(e

and then that

(4.2) p(A;)) — C;/2Ch/?A; °R,,(0) = O

The left-hand side of (4.1) is
(4.3) f_""{p(A) — p(M)}K (A = 1)) dA,
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where K()) is proportional to Fejér’s kernel,
K(A) = (27n) UZEE g e,

Assumption 1 implies that we can pick & so small that for some C, < =,
[ p(M)I <f1/2(A)f1,{2(A) < CIAN™° and |pW| < CIANT' 72, for A € (—¢, 0 U
©,¢), g,h ,G. For such &, the component of (4. 3) due to integration
over (—m, —s) U (s 7) has bound

—& o
+
[+,
by elementary inequalities and because 2A; < ¢ for n sufficiently large,
because

(4.4) KN =0((n¥) "), 0<N<m

[see, e.g., Zygmund (1977), page 89], because | (A)I < fH2fy?(A) and
because [7, f,,() dA = Var{X,,} <. However n -1 fJ/n)“ﬁ )=
o(s;;) because

(4.5) 1+6>0.

For n large enough there is also a contribution to (4.3) bounded by

—A,/2 |P(/\)| ™ _
< max ———s AL=DZK (N 4+ A)dA
f_g { \1-8)/2 Lj/z ( J)

< maxK(A — )tj)f_:l p(A) — p(/\j)|d/\ = O(n‘l(l + Ajfa))

Al &

A/2<A<s
+|p()tj)U:2K(/\+ A;) dA.

This is O(j~*A; °) because the factor in braces is O(max, 2 <)<, AAFe2y —

O(A; 1+8)/2) ) "due to (4.5), because

T oya-sy2 — -1 (" -(3+8)/2 — -1, —(1+8)/2
L/2A K(A+))dr=0[n fuzl\ dA| = 0(n™}; )

J

from (4.4) and (4.5) and because [, K(A+A)d\ = O(n~Yy A72dA) =
O(j~1). By an identical argument, | /3, \ | = O( J_l)t %). The mean value theo-

rem glves
f2)\j
Aj/2

The factor in braces is O(A;!~?) by Assumptions 1 and 2. Writing K(A) =
(27n)"1|D(V)?, where Dlrlchlet’s kernel D(A) = L7, e'** satisfies

(4.7) ID(A)] <20A7Y, 0 <A<,

[see, e.g., Zygmund (1977), pages 49-51] and, from Lemma 5 of Robinson
(1994Db),

(4.8) [ 1Dy dx = 0(log )

(4.6) s{ max |p()\)|}f IN = MIK(A = A) dA

A /2<A<2A;
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for C < o, it follows that (4.6) = O(¢;;). To complete the proof of (4.1),

/2
L

A2
< lMIEi%K(A - /\j)f_wz{l p(V)| +|p(1)]} d2

=O(n'l)tjfz{fo/\j/\'sd)\+)\}_6}) O(¢j)).

The left-hand side of (4.2) is dominated by
1/201/%
A 2()t )fa 2()t~)
As n — o, the second term is O( )tﬁ %) from Assumptlon 3, whereas the first
term is O()«;‘ %) from the 1nequahty 1-x2<21 —x), for 0 <x <1, and

Assumption 1. Thus (a) is proved.
To prove (b), for 1 <j <n/2,

(4.9)  E{w,(1;)wy(A;)} —(2wn)'1f { (A) = p(A))E;, _j(A) da,
where E;, (1) = @7n) " 'D(A; — ) D(A — A,), because

fed2 (M) R (M)[1 +|Rya(A;) = Rgn(0)[C/2C7 %2,

(4.10) j_" E, _4()d =0 forl<j+Fk<n.
Decompose (4.9) as
[ B I SR N S A

The calculations are much as before and so we present them in a more
abbreviated form. We have

[ [ = of s [ (el et} aa) = o)

—2); £ |P(/\)|
“[ ’ '/;/\,

=0 max ————-
_e ({2)\j51\se /\(1_8)/2}

1 » A o
X—/ A BT822 ) 4 |p( J)If A_zd)t)
n y n Aj
—A;/2 21 1 3,
T+ = "(A) ] — " D(A)|dA O
1 - o{ e, Ll [ Dol < o,

o( max | E; _j(A)|fo*f{|p(,\)| +|p()tj)|}d)t) =o(g;).

I/\|</\ i/2

A2
I

Thus (b) is proved.
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To prove (c), write E{w,(A)w, (M)} = [T, p(ME;(A) dA, for O <k <j<n.
This can be expanded as

2Aj _ . .
(4.11) J Aj+A,,>/2{"(A) p(A))Ex(2) dA
(4.12) + [MEWE (0 = p(A)IE(A) dA
/2
( j+ Ag
(4.13) {p(/\)—p()tk)}f )‘/2 Ve E;,(A) dA
(4.14) + {fzzj + f_)‘:ﬂ}{P( ) = p(A)}Ep(A) dA

because of (4.10). From Assumption 2, (4.7) and (4.8), it follows that (4.11) is
bounded by

22

{ max et [ D= &)|dA=0(sy),
A+ A)/2<A <2, (A +Ap)/2

which is O(sj,) for j > k. Next, (4.12) is bounded by

max | p/ (M)t [YTD(2; - )|

Ap/2<A<(X;+A)/2 Ar/2
logJ
= 0( 6) = O(ajk)

when %k > j/2 and by

(Aj+Ag)/2
M +1p(A A)|dA
{,max o]+ o1} [ By

_ _ . -1 [
= 0((,\j *+ A °)(J — k) fo |D(A)|dA)
= 0(&p)
when k < j/2. Next, (4.13) is bounded by

(’\j_)‘k){ max |P()‘)|}f(l\/2+/\k)/2l k(’\)|d’\

- O(A‘l‘an_lfAj|D(/\)|d)‘) O(ep)

when & >j/2, and by O{l p(A)l + | p(A)I} /sl DV dA) = O(ej,) when
k <j/2, as in the evaluation of (4 12). To estimate (4.14), first consider the
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integral on [2A}, ¢], where & and n are chosen as in the proof of (a). This
integral is bounded by

ax | (A
A<ace AL 0/

}fg X072 By (V) [ dA
21,

- o({ max )r<1+5>/2}n—1 [A°°A—<3+6>/2d)\) = 0(j™%%) = O(&p)-

Aj<A<e

The components of (4.14) due to the integrals on [—A,/2,A,/2] and
[—Aj, —A,/2] are, respectively,

1
O( nA;A, fj::iz{l PV +| p()‘j)l} d)‘) = 0(&3)

and

o( max |0~ [P~ 4] da]

Ap/2<AsA,

o
- o(—"fi(Ast + A,;S)) — 0(ey).

The component of (4.14) due to the integral on[— ¢, — /\j] is handled like that
on [ZAj, €], and finally

Il

= O(n_lf;_2 f_:{| p(A)] +| p()tj)D d)t)
= 0(n 711+ A7%)) = O(ep).

Thus (c) is proved.
Finally, to prove (d) write

E{w, (A)wi (M)} = f:{p()t) — p(N))E; _(A) dA.

The remaining details are much like those in the proof of (c), but easier
because there is no need to distinguish between close and distant j, k. We

have
I

- e A o
e =0({ max 12 b [
—& 2A; A

- O(%f_:ﬂ p(A)] +| p()tj)l} d)t) =o(&j),

(1-8)/2
/\JSASEA J

L Lex)] fm/\‘zd/\) = 0(sy),

n A,
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Ll 0([{ ma | p(A)l}]j-l [0 /\)Id/\) —0(ey),
/") O(n%mff’;j " (1o +[o(3)]) da) —0(e),
[ = {me L0l [M1D()] A = 0(s),
Joul = O({A,/z“;i"én,' p(Wjn" fos”lD(A)ldA) = 0(ey). O

5. Proofs of Theorems 3 and 4. We shall prove these theorems more or
less simultaneously. The proof is via the method of moments. We show that
each moment of any linear combination of the variates on the left-hand side
of either (3.4) or (3.7) converges to the corresponding moment of the normal
distribution implied by the respective right-hand sides, and then appeal to
the Frechet—-Shohat “moment convergence theorem” [see, e.g., Loeve (1977),
page 187] and unique determination of the normal distribution by its mo-
ments. To accomplish this, we first use Theorem 2(c) and (d) to show that the
moments differ negligibly from those which would arise if the U’ (like the
W{?)) were actually independent. Then we use Theorem 2 to show that these
latter moments in turn differ negligibly from those which would arise if the
U (like the W{”)) were actually independent. Then we use Theorem 2 to
show that these latter moments in turn differ negligibly from those which
would arise if the v(/\j) had identical joint distributions to those of the V; [see
(3.2)]. We are left with a variate which is straightforwardly found to be
asymptotically normal by the Lindeberg—Feller CLT. Because each moment
of this variate is bounded uniformly in r, it follows from Theorem A of Loeve
[(1977), page 185] that all of its moments converge to those of the same
normal distribution.

For ease of presentation we omit the (J) superscript throughout. Define
z, = —2log A, and S(A) = Q(Z'Z ® A)Q,, s(B) = (X, U,B',x,2,U,B'Q)
for G X G matrices A and B, and put T(A) = S(A)"'s(A). Then T(I;) =
(¢ —c¢',d"—d') when @ =1I; and T(Q ') =(¢’' —¢c’,8’ — 0'). By inver-
sion of partitioned matrices, for nonsingular A,

1 m-—10)/J]| z _ql Z J -1
o - g A |5l

where z = (J/(m — 1)L, z,,. Also

(59, ~oJs(B) = ~@BE (= -9t |47 SJs(m) = (4| Do
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By approximation of sums by integrals we have, as n — =,

(5.2) Yz, =(2m/J){logn + 1} + O(llog n),
k

(5:3) X'z} = (4m/J){(log n)* + 2(log n) + 2} + O((log n)*),
and thus ’
(54)  12'Z| = 4m?/J? + O(Im(log n)*).
From (5.2), (5.4) and Assumption 6, as n — o,
(m'/?/1log n)z = 2m'/*(1 + O(log n)_l),
(J/(m —1))IZ'Z| = 4m/J + O(i(log n)?).
Putting

A (m'/%/log n)I, 0
B 0 2m2, |’

it follows that

AS(A)_IS(B) = —Jl/z([ —QI ](Q’AQ)_IQ'B, [ —A_IQB])
G

0
(5.5) 12 _
X J ZI %( 2y — Z)Uk
m + o(m) 3 U,/logn |
Assumptions 4 and 5 imply that there exists no set of constants o, ..., og,

not all zero, such that Zg= 1 wg logW,, = 0 a.s,; thus Q is nonsingular. Then
(3.4) and (3.7) will follow, if, as n — «,

(J/m)"* L' (2, — 2)U, =4 N(0,49),
(5.6) *

(m'/? log n)_1 %’Uk -, 0.

Consistency of (3.5) and (3.8) evidently follows if ( — » (1. However,

- J , , - = J ’ ~ 7 '
b= LBl - @Ered-d) (e —ed —d)
5.7
67 J e [ (ogn)’
TR AC ] i Bkl

from (3.4), (5.2) and (5.3). Thus consistency of (3.5) and (3.8) follows if

1 ’ !
(5.8) py % UU, >, Q asn—x
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Also, from (5.2) and (5.3),

(5.9) A-IS(A)A! = (log n)}(1 + 0(1))Q3{H }] ®A}Q1

as n — » and from (5.1), (5.2) and (5.4),

(5.10) (A"1S(A)A D! - J(Q', —I)(Q AQ)NQ', —I;) as n — =,
(5.11) AT(7Y) = (Ip, x + (A7IS(Q 1A TA-IS(0! - Q‘I)A‘l)_l
(5.12) X (AT(QY) + AS(Q7) s(t - ah).

It follows from (5.9), (5.10) and Slutzky’s theorem that the right-hand side of
(5.11) is Ig, g + 0, (1) if O =Q + 0,((log n)~?), which, from (5.7) and As-
sumption 6, is equivalent to

J
(5.13) — Y UU;, = Q + o,((log n)_z) asn — .
k
Also Q) -, Q, (5.5) and (5.6) together imply (5.12) is AT(Q ") + 0,(1) so that

(8.7) is a consequence of (5.6) and (5.13). It thus remains to establish (5.6) and
(5.13) [which implies (5.8)]. Now (5.6) is in turn a consequence of

(5.14) (J/m)""? ¥'ayv'U, >4 N(0,v'Qv) asn - =,
3

for any G X 1 vector v and triangular array a,, = a, satisfying, as n — o,
m
(5.15) mlflxlakl =o(m), Y'ai~ 7 Y'layl? = O(m) forall p > 1.
k k

This claim is clearly true in the case of the second part of (5.6). In the case of
the first part, note that the first two parts of (5.15) follow from z, —z =

O(log m) and (5.4), while the third part is verified by
k
o
m
1
= o(m{/ log x|? dx + 1}) = 0(m),
0
because [}llog x|” dx < = for all p. Write x, = (J/m)"/?a,v'U,. Fix an inte-
ger N; E(). x;)" is a sum of finitely many terms of the form
k

P
<ar 1y
k

P

+ O(m)

Z"Zk -z|? = Z'
k

k

J
logk — —— ) 'logk
m-—1%

M
(5.16) Yo Z’E( l—[X,fl’h),
kq ky i=1
where N,,...s N, are all positive and sum to N and 1 < M < N. Fix such

M and Nkl,...,ﬁl\fk . Introduce the 2GJ X 1 vector v} = (v(A,,;_;),
V(Apyo_g)seens v(/\k)%' and the 2GJM X 1 vector v* = (v}, ..., v}, ). Follow-
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ing the discussion of Section 3, v* is normally distributed with zero mean.
Theorem 2 implies that

min(a, 8)
E(v} *’)—IJ®R+O(—g—J+(J) ) j=t,
J n

-o[2L) G>w,

as n — . It follows from Assumption 6 that 3* = E(v*v*’) satisfies

min(a, 8)

(5.17) 2*—IJM®R+0( og m +('Z

as n — «, For n sufficiently large, ¥ = 3* ! exists by (5.17) and Assumption
4. Denote by ¥;; the (i, ))th 2GJ X 2GJ submatrix of ¥ and write

¥ = , T=v-1.

It follows that
(5.18) ¥ =1I,,® R +o(m V%), W=o0o(m %) asn- .

Now denote by ¢, the density function of a p-dimensional standard normal
variate. Then (5.16) is
M
619 T T | Tt ety @,
k4 i=1
for n sufficiently large. Consider

{ka "PzGJ(‘I’ U;:,)dvt,}'

The difference between (5.19) and (5.20) is

(5.20) pIRE Z RIEEE|
ky

i=1

M
pIAEE Z w|? f( l—[legk’)%GJM(‘I’l/ZU*)
ky i=

X {exp(— Y Wo*) — 1} dv*.

(5.21)

Fdr any positive integer r the mean value theorem indicates that |e*
Yrodut/tl < lule™/r!, for all u. For all &£ > 0 there exists C, < © such that
lul” < C,e®™ for all u. Following (5.18), choose n so large that |¥| < &,
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where ||-|| is the Euclidean norm, that is, exp(3/v*' Wv*|) < exp(lallv*ll ).
Again using (5.18), [v*'Wv*| = o(m~'/2||v*||*) uniformly in v*. Thus

1 _ r=1 (L1, % ,* t
exp(—Ev*’\va*) -y ——-———( 2V P )

| = olm T e(elvri?))
t=0 :

as n — o, uniformly in v*. Thus the difference between (5.21) and

L(- (1/2): "Po* ) do

(5.22) ;' k2'|‘1’|1/2f( ka )‘P2GJM(W Y2y v¥) Z

t=1

is

( YR ZI‘I’I”2fHIX

(5.23) B R
Xexp{—%v*’(\if - sIZGJM)v*> dv* |.

In view of (5.17), |¥| = O(1), while 20*(¥ — &L, 3 v* > Inllv*||? for some
n > 0. Because || x,|l < (J/m)?|a,|llv|lIU,l, we deduce from finiteness of
moments of all order of the log of a chi-squared variate that (5.23) is
o(mM-N/2-r/2) - 0 on choosing r = max(2M — N, 0). Now (5.22) makes a
contribution only when such r > 2, which occurs only when 2M — N > 2. Let
D be the number of N, which equal 1. Clearly D = 2M — N, thatis, D > ¢
fort=1,...,r—1=2M - N — 1 in (5.22). Note that v*' Wv* is bilinear in
the v} and for each t =1,. — 1, consider the following two poss1ble
circumstances. In the first, (v*’\va* )" is an odd function of the elements of v} k

for at least one k;. Then because U, and ¢, (¥'/20*) are even in the v}

and the integral is well defined, it follows that there is a zero contribution to
the ¢th summand of (5.22). The other possibility is that (v*' Tv*)! is an even
function of all elements of v*. Thus it cannot involve more than ¢ of the Ui -

The corresponding ¢ or fewer &, can overlap with the D &, for which Nk = 1

but because D > r — 1, the (kl, , by, t)th summand in (5.22) can be writ-

ten (taking Nk1 = =N, =1 Wlthout loss of generality)
(5.24) mfl“ { [0, 220, (Vi 01,) o
—1/2v%Wp* M
(5.25) Xf( / ) { Il X/i\-l"iGDzGJ(‘I'iyzvi) dv;:_}.
i=D-t+1 ' '
From (5.18),

(5.26) w¢2GJ(\Pi1i/2v;:i) = ¢’2GJ((IJ ® R‘l/z)vz’é‘,.)(l + O(m_1/2||v}:i||2))
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uniformly in v} and [ x, ¢26,((I; ® R™'/?)v§) dvi = 0 because the Wy, de-
fined by (3.2) and (3.3) were seen to have zero means. For all positive p and
g, uniformly in %,

f”ml/z)(k”p”v;:“q¢2GJ((IJ ® R_I/Z)U;:) dvi = O(la,l”),

from log(x) = O(x® + x~ ) for any x > 0, £ > 0 and finiteness of all moments
of normal variates. Thus (5.24) is olm P~/ ’I17/la, D and (5.25) is
o(m™*2TI™ ,_,, llak |N&.). Tt follows from the third part of (5.15) that (5.22) is
o(mM- N/2" D/z) — 0 as n — . Thus we have shown that (5.21) > 0 as
n — . Now from (5.18), |¥| = |R|""™ + o(m /%) and

|R|™7/? f)(,ff"zqozGJ(‘If v} ) dvg, = pil (1 + o(m™1?)),

where uw?) = |R|” J/fok¢2GJ((IJ ® R 1/%)v}) dv}. The difference between
(5.20) and

=

(527) Z (th)

k,

I
—

i

is readily seen to be o(mM~N/2-1/2max1, D)) yging (5.26), and using M —
N/2-D/2 <0 when D>1and M <N/2 when D = 0. However, ui? =
(J/m)?/?E(a, v'W,)P, so that by independence of the W,, (5.27) is

BT X (e 2 W)N}

ky Byt

Because N, M and k,,..., k, are arbitrary, we have just shown that the
moments of Y) x, differ negligibly from those of the variate
(J/m)%Y, a,v'W,. However, the latter —, N(0, »'Qv), on applying (5.15)
and the Lindeberg-Feller CLT, in view of the fact that the W, are iid with
zero mean, covariance matrix () and finite moments. For reasons indicated in
Section 3, this completes the proof of (5.6). To prove (5.13), note that

El(J/(m - 1)) L' UU; -l
k
(528) = (J/(m~ 1))? %’tr{E(UkU,; - 0)’)

+ Z,Z,tr{(UklUél - Q)(Uszéz - ‘Q)} :
ky#ky
Applying (5.26) with M = 1 and arguing as before indicates that E(U,U; —
Q)2 = EW,W; — Q)? + o(m~'/2) = O(1) uniformly. Employing (5.22) with
M =r =2 and arguing as before indicates that for k, #k,, E(U, U, —
U, Uy, — Q) = o(m ™) uniformly. It follows that (5.28) is O(m ™). From



LOG-PERIODOGRAM REGRESSION 1071

Assumption 6, (log n)*/m = o(m /1?) = o((m'/? log m /1)?) — 0, so that (5.13)
is true. O
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