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BIAS-VARIANCE TRADEOFFS IN FUNCTIONAL
ESTIMATION PROBLEMS!

By MaARrK G. Low
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It is shown in infinite-dimensional Gaussian problems that affine
estimators minimax the variance among all estimators of a linear func-
tional subject to a constraint on the bias. Likewise, affine estimators also
minimax the square of the bias among all estimates of a linear functional
subject to a constraint on the variance.

1. Introduction. In nonparametric functional estimation problems, esti-
mators which achieve good mean squared error performance usually balance
bias and variance. In particular, Liu and Brown (1993) have shown that in
many such singular estimation problems optimal mean squared error rates of
convergence can only be attained by estimators which have the same conver-
gence rate for both the square of the bias and the variance. For example, in
these problems estimators cannot be found which attain an optimal rate of
convergence for the mean squared error and have a faster rate of convergence
for the square of the bias.

In the nonparametric functional estimation literature, infinite-dimensional
Gaussian experiments play a central role. They capture many of the essential
features of other models, such as density estimation, without as many
technical difficulties. In particular, much attention has focused on problems
of estimating linear functionals L(f) based on observing data Y of the form

(1.1) Y(¢) =[O‘Kf(s) ds + oW(t), O<t<]I,

where W(¢) is Brownian motion, K is a linear map and f €. a convex
class of functions. Donoho and Liu (1991), Sacks and Ylvisaker (1978) and
Ibragimov and Hasminskii (1984) are just a sampling of the many papers
which have studied essentially this same model with a variety of assumptions
on both K and &. In this paper we give a fairly complete analysis of the
possible tradeoffs between bias and variance for problems of estimating
linear functionals based on such infinite-dimensional Gaussian experiments.
In particular, in these models we quantify the essentially qualitative results
of Liu and Brown (1993).
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The analysis relies heavily on one-dimensional subfamily theorems found
in Donoho and Liu (1991) and Donoho (1994). In particular, Donoho (1994)
gave a very general treatment of the Gaussian model (1.1) with K a general
linear map and . an arbitrary convex set under a variety of measures of
performance including mean squared error (MSE), mean absolute error (MAE)
and the length of confidence intervals with some minimal level of coverage
probability.

It is well known that for any estimator the mean squared error can be
written as the sum of the square of the bias and variance. Such a decomposi-
tion does not in general hold for the other measures unless attention is
restricted to affine estimators. Then writing Var for the variance of an
estimator, the mean absolute error for affine procedures can schematically be
expressed as

(1.2) MAE = ®(Bias, Var) = E[Bias + vVar Z|
and likewise the coverage probability of a fixed length confidence interval as
(1.3) a = ®(Bias, Var) = P{[Bias + VVar Z| > C},

where in both cases Z is a standard normal distribution. When these perfor-
mance measures are increasing functions of both the absolute value of the
bias and the variance, minimax theorems given in Donoho and Liu (1991) and
Donoho (1994) can be exploited. These theorems break the study of estimat-
ing linear functions by affine procedures into two parts. For a linear func-
tional L, linear map K, parameter space & and a given performance mea-
sure, first find a hardest one-dimensional subfamily. Then find optimal affine
estimators over these subfamilies. The minimax theorems show that these
affine estimators are in fact optimal over the whole parameter space & within
the class of all affine estimators.

The subproblems can be identified by a modulus of continuity w(e, L, K, ).
Write || fllz for the L, norm of a function, || f II§ =/f 2 Then the modulus can
be written

(14) o(e,L,K,5)=sup{|L(f,) —L(f_,)|: |1Kf,— Kf_illz < &, ;€ 5.

For each & the affine family with endpoints f; and f_; attaining the
supremum in (1.4) is a subfamily of &. For each measure of loss, this
subfamily is hardest for some particular noise level o in the Gaussian model
(1.1). By a Rao—Blackwell sufficiency argument, optimal affine procedures
over these hardest subfamilies can be found by analyzing bounded normal
mean problems. As just mentioned, these optimal procedures are then mini-
max over the whole parameter space # within the class of all affine estima-
tors. Typically, however, they are not minimax within the class of all measur-
able estimators. See, for example, Sacks and Strawderman (1982).

In this paper we consider a new optimization problem where affine proce-
dures are in fact minimax within the class of all measurable procedures. Find
procedures which minimax the variance subject to a constraint on the bias.
Likewise find estimators which minimax the square of the bias among all
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estimators with a constraint on the variance. These optimization problems
can be written in terms of bias and variance as

. 00, when [Bias| > B,
1. =
(1.5) Vi(Bias, Var) {Var, when [Bias| < B,
and
. 0 when [Var| > V
1.6 B%(B A = ’ ’
(16) v(Bias, Var) {Biasz, when [Var| < V.

Just as for the other performance measures, the analysis can be broken
into two parts. In Section 2 we give a complete analysis of the possible
bias—variance tradeoffs possible in the one-dimensional normal problem. It
relies heavily on the use of the Cramér-Rao inequality to bound these
tradeoffs. See Hall (1989) and Brown and Farrell (1990) for similar argu-
ments used to bound the mean squared error. This analysis is carried over to
the infinite-dimensional setting in Section 3. It allows for a new optimality
interpretation of some well known linear estimators such as those of Sacks
and Ylvisaker (1981) and Epanechnikov (1969).

2. Bounded normal mean problem. As mentioned in the Introduc-
tion, the problem of estimating linear functionals based on the infinite-
dimensional Gaussian experiments (1.1) with a performance given by an
increasing function of the absolute bias and variance can be reduced to the
study of hardest one-dimensional subfamilies. By a Rao—Blackwell sufficiency
argument these one-dimensional subfamilies are equivalent to estimating the
mean 6 of a normal distribution when 6 is known to lie in some closed
interval. In this section we concentrate on the bias—variance tradeoff problem
for this one-dimensional Gaussian experiment. The connection to the
infinite-dimensional problem is made in the next section.

Suppose that X ~ N(6, o2). Write Bias_(8(X),0) = E8(X) — 0 for the
bias of an estimator §(X) when the noise level is o and the mean is 6.
Likewise write Var,(8(X), ) = E(8(X) — E58(X))? for the variance of the
estimator §(X) at the same noise level o and mean 6. For notational
convenience we shall also write Var, §(X) for sup,_, ., Var,(8(X), 6). Like-
wise write [Bias,(8(X))| for sup,,_, ., Bias,(8(X), 6)l. If it is known that
the mean 6 lies in an interval, say |6 — 6,| < 7, then the minimax mean
squared error procedure for estimating 6 is not an affine procedure. For small
values of 7/0, Casella and Strawderman (1981) in fact found the minimax
procedure. In general the minimax mean squared error over the class of all
affine procedures is only a small multiple of the minimax mean squared error
over the class of all measurable procedures. See, for example, Donoho and Liu
(1991) and Brown and Feldman (1989).

In this context the study of the possible bias—variance tradeoffs becomes
that of finding procedures which minimax the variance subject to a constraint
on the bias and likewise to find procedures which minimax the square of the
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bias subject to a constraint on the variance. These optimization problems can

be written as

2.1 2(v,0,7) = inf sup Bias?(§(X), 6
Gl e s Bias(3(X),0)

and

(2.2) v(B,o,7) = inf sup Var,(6(X),0).
[Bias, 8(X)|<B |g— Bol< 7

The following theorem then shows that from this point of view there are
affine estimators which are minimax over the class of all measurable proce-
dures. Moreover, such minimax estimators are essentially unique.

THEOREM 1. IfX ~ N(0, o?), then

(23) Bi(v,a,f)=((—‘/0£/\1) —1) 72

and the affine procedure

Vo
is essentially the unique procedure satisfying
(2.5) sup Var(§,(X),0) <v Ao?
|0—00|5T
and
(2.6) B%(v,o,7) = sup BiasZ(§,(X),0).
[6—6ol<7
Likewise
o\2 9
(2.7) U(,B,O',T)=(';) ([=-8B]+)

and the affine procedure

Vv(B,o,7)

(2.8) 5, (X)=——""""(X—-106,) + 6,
g
is essentially the unique procedure satisfying
(2.9) sup Bias?(5,(X),0) < B®A 72
[0—8ol<7
and
(2.10) v(B,o,7) = sup Var(5,(X),0).
[6—6ol<7

PrOOF. We shall only prove (2.3), (2.5) and (2.6) as the proof of (2.7), (2.9)
and (2.10) is essentially the same. Note that if v > o2, then the unbiased
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estimator 6(X) = X is essentially the unique unbiased estimator with vari-
ance Var, 8(X) < o? and the theorem trivially holds. So assume that v < o2
and note that Vi/o A 1 = Vu/o.

The Fisher information for 6§ based on X is given by I(8), where

1
(2.11) 1(0) = —5, 16— 6, <r.
g

For simplicity rewrite the bias of an estimator as

(2.12) b(e) =Es(X) — 6.

The Cramér-Rao inequality then yields
(1+20'(6))°

(2.13) v=>Varé > —170_2—,

|0_ 00|S T,

which can be rewritten as

(2.14) b'(8) < g -1, 6 — 0yl < 7.
Hence
(2.15) b(0y+7) —b(6,— 1) < (g - 1)21’

and it follows that
oo\
(2.16) max(b?(6, + 1), b%(6, — ) = (— - 1) 2
g

Equation (2.3) is then an immediate consequence of (2.16).

The proof of (2.5) and (2.6) is a straight calculation which we leave to the
reader. We now prove the essential uniqueness of §,(X) when v < ol
Suppose in this case that 8(X) and 5(X) satisfy (2. 5) and (2.6). It then
follows that (2.14)-(2.16) must hold with equality for both 8(X) and §(X).
In particular, the bias functions of these two estimators must be equal and
thus E,8(X) = E, 5(X) for all 6. It is then easy to check that ¢(X) =
L8(X) + 8(X)) also satisfies (2.5) and (2.6). By (2.7) it follows that

o\? Vo 2
(2.17) sup Var,(¢(X),0) > (:) (T— (1 - —)7) =v.

16— 0ol<T o

Moreover, simple computations show that

Var ¢(X) = 3(Var 8(X) + Var §(X) + 2Cov(8(X), 5(X)))

(218 = H(Vara(X) + Var5(X) + 2[Vara(X)Var 5(x)] )

< i(v +uv+ 2(vv)1/2)

=0,
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where we have suppressed the dependence of Var ¢(X) on 0 and o. Hence it
follows from (2.17) and (2.18) that

(2.19) sup Vare(X) =v.

|0—00|ST
Since the set {6: |6 — 6,| < 7} is compact, there is a point 6, such that
|6, — 6|l < 7 and

(2.20) Var (¢(X),6,) =v

Hence at this point from (2.18) and (2.19), Cov(&(X), 5(X ) =
(Var 6(X)Var 6(X))'/? and since as mentioned earlier ES8(X) = E5(X), it
follows that § = 6 almost surely. O

3. Infinite-dimensional Gaussian models. We now return to the
infinite-dimensional Gaussian experiment given in (1.1). This experiment
contains a large variety of statistical models including nonparametric regres-
sion, semiparametric models, inverse problems and white noise models. In
these models consistent estimators of the linear functional L can only exist
as the noise level o — 0 if the modulus of continuity w(e, L, I,.#) - 0 as
& — 0, where the modulus  is defined by (1.4) and [ is the identity operator.
Following Donoho (1994) it is natural to call such functionals well defined
since it is possible to extend these functionals to the L, completion of ¥ in
the following way. Write F for the closure of % in the L, norm. Then for
feFlet f, €, n=12,..., be asequence such that lim, _, [If, — fll2 = 0.
Define Lf by Lf = lim, _,,, Lf,. It is easy to check that this limit exists and
hence Lf is well defined as long as w(e, L, I,#) - 0 when & — 0.

Similarly, it is natural to call the linear map K well defined whenever
lim, , ,suplllKf — Kglls: If —glla < &, f €F, g €F} = 0. Then the bias and
variance of any estimator are continuous in the L, topology of the parameter
space. If L and K are well defined, then for any estimator L the supremum of
the bias and variance over ¥ is equal to the supremum over the closure . of
. The results of Theorem 1 together with hardest one-dimensional subfamily
arguments can then yield the possible tradeoffs of bias and variance available
in these problems.

For any linear functional L, estimator L and parameter [ €., write
Bias (L L, f) for the bias EL — Lf when the noise level is o. Likewise write
Var, (L f) for the variance E(L — EL)? when f i is the true parameter and o
is the noise level. As in Section 2 write Var, (L) for sup,Var,(L, f) and
[Bias,, (L)| for sup, [Bias, (L, L, Al

Then the bias—variance optimization problem can be written

(3.1) B?(V,o,L,%) = inf supBias? (L L,f)
Var (L)<V F
and

(3.2) V(B,o,L,¥) = inf supVar,(L,f).
Bias,(£)I<B &
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When both K and L are well defined, we may by the remarks in the
previous paragraph restrict attention to parameter spaces which are closed.
The following theorem then gives affine estimators which achieve the optimal
trades of bias and variance.

THEOREM 2. Suppose that L and K are well defined, that w(e, L, K,) - 0
as € > 0 and that ¥ is closed and convex. Then the minimum square of the
bias over the class of estimators with variance bounded by V > 0 is given by

2
(88) B*(V,0,L,9)=4"'sup([o(s,L,K,5) - &/V/a], ).
>0
Likewise the minimum variance over the class of estimators with the absolute
value of the bias bounded by B > 0 is given by

(34)  V(B,o,L,9) = sup(o/¢)([w(s,L,K,5) — 2B]. )"
e>0

Affine estimators which yield this optimal tradeoff of bias and variance are
given as follows. Suppose that &, = argmax, . ((w(s, L, K,5) — VVe/01,)
exists such that 0 < gy, < . Then there are f_, € &, f; €, such that | Kf, —
Kf |l = ey and Lf, — Lf_, = w(ey, L, K,5). Write Kf, = +(Kf, + Kf_,) for
the center and Ku = (Kf, — Kf_,)/&y for the direction of the affine family
Jjoining Kf_, and Kf,. Then the estimator

. W
(3.5) Ly=Lf,+ —U—fKu(t)(Y(dt) — Kfy(t) dt)
has constant variance
(3.6) Var,(Ly,f)=V
and maximum bias
(3.7 s;pBiasf,(f,V,L,f) =B*V,o,L,9).

Writing V for V(B, o, L, ) given in (3.4) and once again assuming that
ey = argmax, . ((w(e, L, K,5) — VVe/0), exists such that 0 < &, < o, then
the estimator ﬁv defined by (3.5) satisfies

(3.8) supBias?(Ly,L,f) = B%V,o,L,5)
g

and

(3.9) -~ Var,(Ly,f)=V.

PrOOF. The proof of (3.4), (3.8) and (3.9) is essentially the same as that of
(3.3), (3.6) and (3.7); hence, we shall only prove the latter. Moreover we shall
only prove (3.3) for the case when & exists, although we do not assume that
there is such an &, = argmax,. ((w(e, L, K,%) — VVe/c],) which is
strictly positive. The extension to the general case follows by the same
approximation arguments used to prove Theorem 2 of Donocho (1994).
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First assume that (3.3), (3.6) and (3.7) hold whenever there exits an
ey = argmax, . ((w(s, L, K,%) — VVe/a],) such that 0 < gy, < ». We shall
then show that (3.3) holds when sup,(w(e) — VVe/o) = 0 and there does not
exist an &, = argmax, , (( (s, L, K,%) — VVe/a],) such that &, > 0. In
that case, let

w(e,L,1,%)

(3.10) lim sup
£

e—-0
It then follows that V > a? and also that w(&) < VVe/o for all & > 0. Now let
v, > 0 be an increasing sequence where v, — a?. It is then easy to check that
foreachn g, = argmax,, ((w(e,L, K?) \/'_s/o-] ) exists with 0 < g, <
o, Moreover

(3.11) lim B*(v,,0,L,5) =0
n-—o
and
(3.12) lim Var IAJ,,n =a?<V.
n—ow

Hence (3.3) once again holds.

The proof will be complete if we show that (3.3), (3.6) and (3.7) hold
whenever there exists an &, = argmax, . o(w(s, L, K,%) — YV &/0), such
that 0 < &y, < ». For such an &, the existence of functions f; and f_1 with
IKf, — Kf_,lls = ey follows from the fact that the parameter space is closed.
It then follows that the estimator Ly given by (3.5) is well defined.

We now show that this L satisfies (3.6) and (3.7) and also that equa-
tion (3.3) holds. This follows essentially from Theorem 1 plus hardest one-
dimensional subfamily theorems of Donoho (1994) and Donoho and Liu
(1991). The hardest one-dimensional subfamily theorems show that the maxi-
mum absolute bias over & of the affine estimator LV is attained at the
endpoints f_, and f; of the affine family joining f_; and f;. This can also be
easily checked as follows. Let g be any other element of .#. The affine family
joining f; and g is given by (1 — 6)f; + 6,,0 < 6 < 1. Let

J(0) = |L((1 - 0)f, + 6g) - If-,

vV
__'”K((l - 0)f + 0g) —Kf 4]

(3.13)

Since f, and f_, are the extremal functions attaining the supremum on the
right-hand side of (3.3) and Lf, — Lf_, > 0, it follows that J'(0) <0 and
hence by a simple computation that

i%
(3.14) Lg — Lf, - g/Ku(t)(Kg(t) — Kfy(¢)) dt < 0.

Nowl

R W
(3.15) Bias,(Ly, L, f) = Lfy + — f Ku(t)Kf(t) — Kfy()) dt — Lf,
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and

(3.16) Bias,(Ly, L, g) = Lf, + if—fKu(t)(Kg(t) — Kf(t))dt — Lg.
It then follows from (3.14)—(3.16) that

(8.17) Bias,(Ly, L, f;) - Bias,(Ly,L,g) < 0.

Likewise it is easy to show that

(3.18) Bias,(Ly,L,f,) — Bias,(Ly,L,g) > 0.

It then follows that the maximum absolute bias over & of the estimator L, is
attained at the parameter points f; and f_;.
Now a simple computation shows that

(3.19) Var(Ly,f) =V
and that
. W
(3.20) Biasi(LV,L,fl) =4"! sup [w(s,L,K,? A
+

>0 o

Hence to finish the proof we need only show that

| <

(321) B*V,o,L,9) >4 'sup||w(s,L,K,5) — —
g

>0
Now let ¢(68) = Lf, + 6(Lf, — Lf,) and f, = f, + 6(f, — f,). Over the family
{fs: =1 < 6 < 1}, the estimator L, defined by (3.5) is sufficient for ¢(6). Also
since {f,: —1 < 60 <1} €5,

+

(3.22) B*(V,o,L,9)2B*(V,0,L,{f;: -1 < 6<1}).
Now note that on the family {f,: —1 < 6 < 1},
(3.23) Ly ~N(¢(0) - 6/7,V),
where we have set

A% 2
(3.24) y=4"'sup||w(e,L,K,F) — .

- &e>0 g +
If we put
Lf, — L
(3.25) o= I ,
Lf, - Lfy -y

it follows tat
(3.26) (Ly — Lfy)e + Lfy ~ N(¢(6), Ve?).
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A simple computation using (2.3) then yields
(3.27) B%*(V,o,L,{f;: -1<6<1}) >y,

which by (3.20) and (3.24) yields (8.3) and hence also (3.7). This completes the
proof of the theorem. O

Theorem 2 can be used to provide a new interpretation of the optimality of
some well known linear estimators. For example, the following theorem of
Speckman (1979) is quoted in Donoho (1994).

THEOREM 3. Lety, = f(¢,) +2z;,,i=1,...,n, wheret; €[0,1], z; are i.i.d.
N(0, 02) and where the function f is known to satisfy [(f"(¢)?dt < C2. Let
&g, be the solution to

min 1 ((t) —3) uf (g"(0))" dt.

Then g, is a cubic spline. Let L be a linear functional with finite minimax
mean squared error. Then with u = o?/C?, the estimate

Lo(y1, Y255 ¥a) = L(&gw)
is the minimax linear estimator of L under squared error loss.

This theorem shows that over the ellipsoid [f”? < C?, minimax linear
estimators of a linear functional under squared error loss are given by
applying that linear functional to a cubic smoothing spline. Donoho (1994)
has shown that these minimax linear estimators are in fact also minimax
linear estimators under absolute error loss at another noise level and are also
the center of shortest fixed length affine confidence intervals at yet another
noise level. Theorem 2 of this paper shows that Speckman’s estimates are not
only minimax affine estimates, but also in fact minimax the variance among
all measurable estimators with a particular bound on the variance. This new
optimality property also holds for other well known estimators such as those
of Sacks and Ylvisaker (1981), Epanechnikov (1969) and Li (1982).

Theorem 2 also gives a precise quantification for the possible tradeoffs of
bias and variance. In the following discussion write w(¢) for w(e, L, K, F).
First note that if an estimator has maximum variance much smaller than
2(a), then the maximum squared bias must be much larger than w?(o).
Likewise an estimator with a small maximum squared bias compared to
w2(o) must have a large maximum variance compared to w?(o). This is
summarized in the following corollary which follows almost immediately from
Theorem 2. It also follows from results of Liu and Brown (1993).

COROLLARY 1. Suppose that L is well defined and that

o(Co
(3.28) lim sup lim inf (Co) =
Co o o—0 w(a')




834 M. G. LOW

It follows that if I:,, is a sequence of estimators such that

Var(,(f,(, , f)

(3.29) lillflliglf s;p 02(a) =0,
then
Bias?(L,,L, f)

(3.30) lim sup sup 5 — = o,

a—0 F @ (0')
Likewise if

. w(e)
(3.31) lim sup =
-0 €

and

. Bias?(L,,L, f)
(3.32) lim inf sup 5 =0,

a—0 F (0] (0')
then

(3.33) y VarU(I:U , f)
. imsup sup ————=+= = ®

o—-0 F w2 ( a )
It is also possible to give more precise results. In many problems the modulus
of continuity has an exact power law w(e, L, K,%) = Ae” with0 <r <1 at
least for & < £,. Many such examples are given in Donoho and Liu (1991),
Donoho and Low (1992) and Low (1992). Then if 0 < § < 1, where 6 can
depend on o,

(3.34) V(b0(0),0,L,5) = ?(0)(262)" (1 - r)2/'(1—i7) :

Since 1 — 1/r < 0 it follows that the term (82)'~!/" blows up as & — 0.
Likewise
B*(8*w*(0),0,L,5)

_ 4—1w2(0.)(62)(1_1/(1_r)){rr/(1—r) _ r1/(1—r)}2‘

In most other problems, even when an exact power law does not hold, the
modulus usually has an asymptotic relation of the form w(e, L, K,5) ~ A",
where 0 < r < 1 and once again it follows that

V(éw(o),o,L, %)

2 2y\1-1/7 o T
~w?(o)((28%) (1 —r)¥ (1_

(3.35)

(3.36)

2
), s 0,

and
B*(6*w*(0),0,L,5)

3.37
( ) ~ 4—1w2(0.)(82)(1_1/(1_’)){rr/(1—r) _ rl/(l—r)}z’ o — 0.



BIAS-VARIANCE TRADEOFFS 835

Acknowledgments. The author would like to thank David Donoho, Iain
Johnstone and Larry Brown for extremely useful communications. The final
manuscript also greatly benefitted from very helpful referee reports. A partic-
ularly detailed report formed the basis for the present Introduction and also
the notation used in this final manuscript.

REFERENCES

BrOWN, L. D. and FARRELL, R. H. (1990). A lower bound for the risk in estimating the value of a
probability density. J. Amer. Statist. Assoc. 85 1147-1153.

BRrOWN, L. D. and FELDMAN, I. (1989). The minimax risk for estimating a bounded normal mean.
Technical Report, Cornell Statistics Center.

CASELLA, G. and STRAWDERMAN, W. E. (1981). Estimating a bounded normal mean. Ann. Statist.
9 870-878.

DoNoHO, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238-270.

DonNoHO, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence, III. Ann. Statist. 19
668-701.

DonoHo, D. L. and Low, M. G. (1992). Renormalization exponents and optimal pointwise rates of
convergence. Ann. Statist. 20 944-970.

EPANECHNIKOV, V. (1969). Nonparametric estimates of a multivariate probability density. Theory
Probab. Appl. 14 153-158.

HaLL, P. (1989). On convergence rates in nonparametric problems Internat. Statist. Rev. 57
45-58.

IBrAGIMOV, I. A. and Hasminskil, R. Z. (1984). On nonparametric estimation of the value of a
linear functional in Gaussian white noise. Theory Probab. Appl. 29 18-32.

L1, K. C. (1982). Minimaxity of the method of regularization on stochastic processes Ann.
Statist. 10 937-942.

Liu, R. C. and Brown, L. D, (1993). Non-existence of informative unbiased estimators in singular
problems. Ann. Statist. 21 1-14.

Low, M. G. (1992). Renormalization and white noise approximation for nonparametric functional
estimation problems Ann. Statist. 20 545-554.

SACKS, J. and STRAWDERMAN, W. (1982). Improvements on linear minimax estimates. In Statisti-
cal Decision Theory and Related Topics 3 (S. S. Gupta and J. O. Berger, eds.) 2
287-304. Academic Press, New York.

SAckKs, J. and YLVISAKER, D. (1978). Linear estimation for approximately linear models. Ann.
Statist. 6 1122-1137.

SACKS, J. and YLVISAKER, D. (1981). Asymptotically optimum kernels for density estimation at a
point. Ann. Statist. 9 334—-346.

SPECKMAN, P. (1979). Minimax estimates of linear functionals in a Hilbert space. Unpublished
manuscript.

DEPARTMENT OF STATISTICS

THE WHARTON SCHOOL

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PENNSYLVANIA 19104-6302



