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EFFICIENT ESTIMATION OF MONOTONE BOUNDARIES

By A. P. KOROSTELEV, L. SIMAR AND A. B. TsyBAKOV
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Academy of Sciences of Russia and Université Catholique de Louvain

Let g:[0,1] - [0, 1] be a monotone nondecreasing function and let G
be the closure of the set {(x,y) €[0,1] X [0,1]: 0 <y < g(x)}. We con-
sider the problem of estimating the set G from a sample of i.i.d. observa-
tions uniformly distributed in G. The estimation error is measured in the
Hausdorff metric. We propose the estimator which is asymptotically effi-
cient in the minimax sense.

1. Introduction. Consider the estimation of support G of an unknown
probability density based on a sample from this density. We assume that the
boundary of G is defined by a monotone function and we mainly study the
case where the underlying density is uniform in G.

Denote by K = [0, 1] X [0, 1] the unit square in the plane and let the points
of the square K be denoted by x = (x, x,). Let g(x;), 0 <x;, <1 be a
monotone nondecreasing function such that

(1) 0<g(x;) <1l
Consider the set
G ={x=(%;,%,):0<x,<1,0<x, <g(x,)}

Let G be the closure of G°. Briefly, we say that G is the set under g. Note
that G # G° if the corresponding function g(x,) is discontinuous. Let mes(G)
be the Lebesgue measure of G. Denote by & the class of all sets G, such that
mes(@) # 0 and G is under some monotone nondecreasing function g satisfy-
ing (1). We assume that the true density support G belongs to the class .

Let #=(X,,..., X,) be a sample of independent random variables uni-
formly distributed in G. We study the problem of estimation of G, given the
observations 2. By an estimator G, of G we mean an arbitrary closed set in
K measurable with respect to 2.

The problem of estimating a monotone boundary with possible nonconvex-
ity was first studied by Deprins, Simar and Tulkens (1984) in the context of
measuring the efficiency of enterprises. They introduced the free disposal
hull estimator of the set G, which is denoted F, and defined as

F, = | SE(X)).
i=1
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MONOTONE BOUNDARY ESTIMATION 477

Here and later SE(v) for a point v = (v,v,) € K denotes the set of “south-
eastern” points with respect to v:

SE(v) = {x = (%, x3) €K: x; > vy, x5 < V).

Graphically, the free disposal hull is the set under the “lowest” monotone
step function g covering all the sample points X;. In other words, the free
disposal hull F, has the minimal area among all the sets G € &, such that
G 2{X,,..., X,}. This shows that F, is also the maximum likelihood estima-
tor of G on the class Z,. In fact, the maximum likelihood estimator for the
uniform density on G is

GM® — argmax [[mes(G) 'I{X; € G} = argmin mes(G) =F,,
Geg, i=1 GeZo:

where I{-} is the indicator function.

In this paper we study the asymptotic behavior of the free disposal hull
and some other related estimators. As an error criterion we use the Hausdorff
distance between the estimator and the true set G. We show that a “blown-up”
version of the free disposal hull is an efficient estimator in the asymptotical
minimax sense. The main result of the paper is the exact asymptotics of
minimax risk in the Hausdorff metric.

It is not surprising that one needs to blow up the free disposal hull in order
to achieve efficiency: it is obviously downward biased since F, C G. The
asymptotics for F, show that it is 50% as efficient as the optimal estimator
(see Section 5 for the definition of efficiency).

In Section 2 we give some definitions and present the main result. Section
3 is devoted to the proof of the minimax lower bound. In Section 4 the optimal
estimator is studied, and it is shown that the risk of this estimator attains
asymptotically the lower bound. In Section 5 we discuss relative efficiencies of
different monotone boundary estimators. Section 6 is concerned with some
extensions. First, we give the extension of our main result to the multivariate
case. Second, we consider the problem with nonuniform distributions of
observations and show that the free disposal hull has the optimal rate of
convergence to G.

We are not aware of earlier statistical study of monotone boundary estima-
tors. However, there is some other work on density support estimation and on
estimation of monotone functions which seems to be related to ours. Concern-
ing the support estimation problem, we refer to the original papers of Geffroy
(1964) and Rényi and Sulanke (1963, 1964). Rényi and Sulanke (1963, 1964)
investigated the case of convex support G in two dimensions, and they
proposed a natural estimator which is a convex hull of sample points. Note
+ that the convex hull is also inward biased, as the free disposal hull. Ripley
and Rasson (1977) consider a certain blown-up version of the convex hull in
order to eliminate the bias. For further results on support estimation see, for
example, Chevalier (1976), Devroye and Wise (1980), Korostelev and Tsy-
bakov [(1993a, 1993b), Chap. 7] and Mammen and Tsybakov (1995).
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The related work in the theory of monotone estimation is that of Grenan-
der (1956), who showed that the maximum likelihood estimator for monotone
density is a step function with jumps at the order statistics, the study of
Grenander’s estimator by Groeneboom (1985) and the paper of Birgé (1987),
where explicit bounds are given on the minimax risks of monotone density
estimators.

2. Some definitions and the main result. We use the Hausdorff met-
ric to measure the difference between an estimator G, and the true set G.
Recall that the Hausdorff metric d(G,, G,) for two closed sets G, and G, is
defined by

1(Gy,G;) = max{ max p(x, Gp); max p(%,Gy)},
x 1 2

where p(x,G) = min, . ;|x — y| is the Euclidean distance between a point x
and a closed set G. We put by definition d(G,,G,) = 0 if either G, or G, is
empty.

Let w(t) be a loss function, that is, the function defined for nonnegative ¢
and having the following properties: w(#) is nonnegative, continuous, nonde-
creasing, w(0) = 0 and

w(t) <w(1l+t%), t>0,

for some positive constants a and w. For an arbitrary estimator én define
the risk function

(2) R(G,G,) = Eg|w(y;d(G,G,))].

Here E is the expectation with respect to the distribution P, of observations
and ¢, is a normalizing factor, that is, a sequence of positive numbers.

Let 0 < A < 1 be fixed. Define the rectangles K; = KN {x; >1— A}, K, =
K N {x; < A} and consider the following subset of Z,:

We study the asymptotics of the minimax risk

3 = inf sup R(G, G,
® Tl R(G.G)

as n — », In what follows we show that the correct normalizing factor is
¥, = ((log n)/n)'/2. Under this choice of ¢;, a finite nonzero limit exists for
the minimax risk (3):

r=limr,

n— o

and we find the exact value of r.

THEOREM 1. If ¢, = ((log n)/n)V?, then for any loss function w(t) the
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following equality holds:

(4) lim inf sup R(G,G,) = w(1/V2m).
n-e G geg

To prove this theorem it suffices to show that (i) for any estimator én

(5) lim inf sup Eg[w(y;'d(G,G,))] = w(1/v2m);
GeZ%

n—o
(ii) there exists an estimator G satisfying
(6) lim R(G,G¥) < w(1/V2m)
n— o

uniformly in G € Z.

The estimator G* satisfying (6) is called efficient. In Section 4 we show
that the y,/ V2 -neighbourhood of the free disposal hull, that is, Gi={xe
K: p(x,F,) < 4,/ V27} is an efficient estimator.

REMARK. 1. One may consider a more general case when K is not a
square but a rectangle [0,a] X [0,b], a,b > 0. The result of Theorem 1
extends to this case, with 1/ V27 replaced by Vab / V2.

REMARK. 2. The reason why we deal with the restriction £ of the class
%,, and not with &, itself, is to rule out the degenerate cases. For example,
consider the sequence of monotone functions g,(x,) = {0 <x, <1 —e™"}
+I{1 —e™ <x,; <1}. Clearly, the sets G, under the functions g,, n =
1,2,..., are in &, but not in & for n large enough. The probability that
there is at least one sample point in the slice {x = (%, x5): 1 —e ™™ <x; <1,
l1<x,<1) G, is O(e™) as n — . Thus, one cannot “feel” from the data
that g, has a jump at 1 — e”". However, the size of the jump is 3, and this
gives the main contribution to the Hausdorff distance between the set G, and
its estimator. This easily entails that the risks of F, and G; would explode as
n — . The class & depends on A, but we omit it in the notation, since, as we
show. the asymptotics of the minimax risk is independent of A.

Note that Theorem 1 gives exact asymptotics of the minimax risk: not only
the rate of convergence to 0, but also the asymptotic constant. Results of this
kind were obtained recently in some other nonparametric function estimation
problems—estimation of functions in L,-norm with quadratic loss w on the
classes of ellipsoids [Pinsker (1980), Efroimovich and Pinsker (1981, 1982),
Golubev (1982) and Nussbaum (1985)], density estimation in L, with’
quadratic loss w on a class of entire functions [Ibragimov and Khas’'minskii
(1982)] and estimation of regression curves in L,-norm [Korostelev (1992)
" and Donoho (1992)].

Theorem 1 deals with the minimax risk in Hausdorff metric, which is
closer to the L_-norm results. An advantage of Theorem 1 is that it is not
restricted to the quadratic loss function, unlike the L,-norm results of
Pinsker’s type. Another important feature is due to the marvelous properties
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of the class of monotone functions: the asymptotic constant in (4) is an
absolute one. It can be calculated once and forever, without any additional
knowledge of a priori constants, such as smoothness characteristics of func-
tions. Finally, we note that Theorem 1 is the first exact asymptotical minimax
result concerning nonparametric estimation of boundaries [see Korostelev
and Tsybakov (1992, 1993b) for other problems of this kind].

3. The lower bound. Let us prove the lower bound (5). Choose an
arbitrary small £ (0 < & < min(1/3,(1 — A)/2)) and put 8, = (0.5 — £)/?%y,,
M =M, =[¢5;'/2]. Assume that there are some monotone functions
80,81, &y (possibly depending on n) such that

gi(x;) <go(xy), O0<x,<1,foralll=1,..., M.

Denote by G,,...,Gy the sets under the monotone functions g,..., gu-
Assume that
1 2
(7) [O(go—g,)dx1=an mes(G,), I=1,...,M,
(8) d(G,,G;) = 2d,y,, i#J, 1,j=0,...,M,

for some positive d, and all n large enough. An example of such a sequence
of sets is given in Lemma 2.
In the following we write for brevity P, instead of P, 1=0,...,M.

LEMMA 1. Let some monotone functions g, and the corresponding sets G,
1=0,...,M, satisfy (7) and (8). Then for any estimator G, the following
equality holds:

i 3 -1 gl =
hr?llorolfozag}ﬁlpl{(/,n d(Gl,Gn) > do} =1.

Proor. It suffices to verify that for an arbitrarily small p, € (0,1) one
has

-1 A
(9) Jmax P{y;d(G,,G,) = do) > 1 py

if n is large enough. Assume that inequality (9) does not hold. Then there
exist p, and an estimator G, satisfying

(10) Po{0;'d(Gy,G,) = do) <1 - py,
(11) lg}isnMPl{l//,;ld(Gl,GAn) < do> > Po

for all n large enough.

The following remark is crucial for the proof: Under the assumption
G, cG,, I =1,..., M, the joint P-distribution of observations X,..., X,
(i.e., with each X; uniformly distributed in G,) coincides with P,-conditional
distribution of these observations given 2’€ G}, where G} = G, X -+ X G, is
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the direct n-product of G,’s. It means that for any Borel set # in K",

Pz & n G}

(12) P{ze¥) =Plxrecelze G} = XE

It follows from the definition and assumption (7) that

(13) Py{Z € G} = (mes(G,) /mes(G,))" = (1 - 82)".
Thus, we have from (12) and (13) that for any & € K",

(14) PyzeenGy) =(1-82)Plzrees), I1=1,.., M.

Due to assumption (8) and the triangle inequality, the following inclusion
takes place:

M
(15) lL_Jl{tlf;ld(G,,én) <do} € {47'd(Gy,G,) = do}-

The same argument yields that the random events in the left-hand side of
(15) are disjoint for different /. Hence

Pq{l/';ld(GOyén) 2 } = Po{ G {'/fn 'd(G,, G ) < do}}

=1
M
= IZ Po{ll/n ld(Gl, )<d0}
=1
M
2 ZPO{'//nld(Gl’ )<do:2’e Gl}
=1

Applying (14) and assumption (11), we get
Py{y;1d(Go, G,) = do)

M
> (1- 53)"Z§IPZ{¢;1d(Gl,én) <do) >poM(1-82)
£ logn\ 2 . logn\"
(05— 0 =2) 05 02)

poe( nt \V?
0
> — : >1-
2 (logn) Po

=Po

for n large enough. The last inequality contradicts (10). This proves the
lemma. O
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LEMMA 2. Forany 0 < & < min{1/3,(1 — A)/2} there exist the sets G, € Z,
1=0,..., M, satisfying the assumptions of Lemma 1 with

1-3g\"2
1
(16) dz (5]

whenever n > n,, where n, depends only on .

ProoF. Consider the straight line segment with the endpoints a, = (0,1
— ¢) and a,; = (&, 1). Assume w.lo.g. that M = (V25/(2V28,)) = (¢/2)5; " is
an integer and divide the segment into equal subsegments of length 2v2§,.
Denote the endpoints of the subsegments by U, = ay,Uy,...,Uy_1, Uy = a;.
Define the set G, = UM ,D,, where D, = SE(U)) and note that

mes(Gy) =1 — £2/2 — M82/2 =1 — £2/2
for n large enough. For each I, = 1,..., M, define W, as the quarter of the
circle of radius p = (4 mes(G,)/7)Y/?5, with the center at Uj:
Wl = B(l]l’ p) N Dl'
Here B(u, p) denotes the Euclidean ball in R? with center u and radius p.
The choice of radius p entails mes(W,) = mp2/4 = mes(G,)8? and p < 23,.
Define G, = G, \ W,. Since & < (1 — A)/2, the sets G, ..., Gy belong to Z. It

is easy to see that for the sets G;, conditions (7) and (8) are satisfied with
2d0 = p(l/;l. Thus

1 (4mes(G,) \"? 1-3g\2

STELECON N
2 T 2w

for £ < min{1/3,(1 — A)/2} and n > n,, where n, depends on ¢. O

PROOF OF THE LOWER BOUND (5). Lemmas 1 and 2 and the definition of
the loss function imply

liﬂio?fg:l;EG[w('/’Jld(G’én))]

> liminf maxMw(dO)Pl{aﬁ;ld(Gl,én) > dy)

n-oo 0<l<

— w(d,) > w(( 1 ;7738)1/2)'

since ¢ arbitrarily small, inequality (5) follows. O

4. Efficient estimator. Define the estimator Gy as the ¢,/ V2rn-
‘neighbourhood of the free disposal hull, that is, G; = {x € K: o(x,F,) <
,/ V27}. Clearly, Gf 2 F,.

We prove that G* is an efficient estimator. First, we need some definitions.
Let G be the set under the monotone function g. Define the edge of G as the
graph of g considered as a monotone set-valued function. Denote the edge of
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G by 9G. Let u € 3G be an arbitrary point at the edge of G. For any radius
h > 0 denote by W(u, h) the intersection

W(u,h) =B(u,h) NnG.
Fix some small ¢ > 0 and define the radii p, = p,(«) such that
mes(W(u, p,)) = mes(G)(0.5 + ke)y?, k=12,... Vn

(Vn is assumed to be a large integer). Since the edge of G is defined by a
monotone function, it is easy to see that mp?/4 < mes(W(u, p,)) < 3mp7/4,
whenever u € dG. This entails

py < VAmes(W(u, p,))/7 < 2¢,//(1 + 2ke)/(2m), k= 1,2,...,Vn.

Let the set of points {u,,...,uy} be a minimal -ey,-net on JG w.rt. the
Euclidean distance in R?. Thus, p(u;_,,u;) < &y,, I =2,..., N. Since the
length of 9G is bounded from above by 2, we have N = N, < (2/&)¢;," <
2Vn /& uniformly in G € £. Introduce the random events

N
= N {atleast one of X;,..., X, belongs to W(u,, pe(u))},

kE=1,2,...,Vn.
LEMMA 3. For any G € £ and for all n large enough,
(17) Pe{A, ) =1-(2/e)n™", k=12,..,Vn.

Proor. For n large,
N
Py{A,.,} =1 — Pg{ U (no observations in W(xu,, pr(uy)))
1=1

>1-N(1-(05+ke)y?) =1—(2/n/e)n "%7*e
=1-(2/&)n"*e. |

PRrROOF OF INEQUALITY (6). We have

max p(x,G) < ¢,/V2m

x€GI\G

since F, ¢ G almost surely and G} is the ¢,/ V27 -neighbourhood of F,.
Now, if A, , holds,

Jhax p(u;, G N G) < [max, pe(u;) — Y /V27
<I<N
< (2V1+ 2ke — 1)y, /Y271 < (1 + 2ke&) iy, /V2m.

Since the set {u;, ..., uy}is an e,-net on JG, the last inequality implies that

ma(:}cp(x,G,”l< NG)<(1+ 2k8)l[!n/1/2—'77 +eyp, <(1+ 5ka)¢n/\/2_7r
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when A, , holds. Hence
A, ,c{d(G,G) < (1 +5ke)y,/V2m), k=1,2,..,Vn.

Using the obvious property d(G,G*) < V2 for any G,G* c K, and applying
Lemma 3, we have

Eq[w(¥;'d(G,G¥))]

1+ 5¢ 1+ 5¢
< w|—=—|Ps{¢;, 'd(G,GF) <

vemr Vem
+ﬁ2:.1 1+5(k+1)e
e 7
y 1+ 5ke - 1+5(k+1)e
—————— < = < ———————————————te——
G ‘/2_77_ l/’n ( ’ n) = ‘/2_7';
1+5/ne
w(ﬁ%_l)Pa{—W < lﬂ;ld(G,Gif)}
1+ 5¢ +~"7'1 1+5(k+1)8px
< —_—
sw ‘/2—77_ = w ‘/2—#- G{ k,n}
+w(\/27)PG{A_n n}
1+ 5¢ 2 ﬁzl 1+5(k+1)¢e)\”
< — . d—
I W= R V2r
xXn~ke + (1 + (2n)a/2)n'ﬁ”]
1+ 5¢ i
< C ke —k£+ —(fne—a) ,
<w o l[kgl n n ]

where C; is a positive constant. A routine analysis shows that the last
expression in square brackets vanishes as n — o, Thus, uniformly in G € 2,

1+58)

for an arbitrarily small £ > 0. This proves (6). O

5. Relative efficiency of boundary estimators. As we mentioned al-
ready, the free disposal hull is a- downward biased estimator of G. The
following theorem shows that the free disposal hull itself gives the constant

2/ V2 instead of 1/ V2.
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THEOREM 2. Under the assumptions of Theorem 1, we have

lim sup R(G, F,) = w(2/V2m).
n-® Ggey

Proor. Note that
d(G’Fn) = maxp(x’Fn) < max pk(ul) + ellln
xe@G 1<I<N

< (2V1 + 2ke) Y,/ V27 + &y,

when A, , holds. Hence, the inequality lim,,  .sup; . - R(G, F,) < w(2/ V27)
for any loss function w(t) is proved by the method of Section 4. To verify the
inverse inequality, let us return to the construction used in Lemma 2. Let,
again, W; be the quarters of circles with the centers at U;, [ = 1,..., M and
of the radius

p = (4mes(Gy)/m)"?8, = 2((1 — 26)mes(G,)/(2m))"* .
Introduce the random events
B, = {there are no observations in W,}, l=1,...,M.

Note that the mean number of observations X;, i = 1,..., n, belonging to at
least one of W, is equal to

nM mes(G,) 82 = (0.5 — e)M(logn) = (1 — 2¢ + o(1)) M(log M),
where o(1) - 0 as n — «, and due to the law of large numbers,
,}I_I,Iolo P [number of observations belonging to
at least one of W, > (1 — &)M(log M)} = 0.

Using the asymptotics for urn models [Johnson and Kotz (1977), page 318]
we find that if one throws (1 — £)M(log M) balls independently in M urns,
then there is at least one empty urn with probability close to 1 as M tends to
infinity. Thus,

n—o

M
].im PGO{ U Bl} = 1.
=1

This equality shows that the free disposal hull does not cover at least one of
W, and, consequently,

U'd(G, F,) = p > 2((1 - 88) /(2m))

with the probability tending to 1 as n — «. Since ¢ is arbitrarily small and
w(t) is continuous, this implies

lim R(G,, F,) > w(2/V27). O
n-— o

1/2

Other improvements of F, (besides G}) are also possible. For example,
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consider the parallel shift of F, in the “northwestern” direction:

n
G* = | SE(X, + v),

i=1

where v = (— V2 ¢, /4,V2 5, /4). Following the lines of Section 4 and Theo-
rem 2 [but with the sets W(u, p) chosen as intersections of G with small
squares rather than circles], one can prove that

lim sup Eg[w(y;'d(G,G:*))] = w(1/2).
Now, suppose that some estimator Gn satisfies
lim sup EG[w(dtn'ld(G,én))] =w(y)
with a constant y = y(én) > 0. Define the relative efficiency of én by the
formula

(18) Eff(G,) = (V27 v(G,)) -

It follows from (5) that EfG,) < 1 for any G,. The relative efficiencies of the
estimators F,, G¥* and G} are

Eff(F,) = 0.5, Eff(G:*) =2/V27 =0.7979, Eff(G;) = 1.

Note that the efficiencies calculated by means of (18) are independent of the
loss function w. Since the normalizing factor has the form ¢, = ((log n)/ n)t/?,
we easily see that for any loss function the precision of G is the same as
that of Gy, where N(n) =n /(Eff(G,))~2. The number N(n) may be there-
fore called “equivalent number of observations for G,.”

6. Extensions.
Multidimensional case. Let g(x,,..., x,) be a monotone function in each

of 'the arguments x,,...,x, and let 0 < g(xy,...,x,) <1, s > 1. Define G,
the set under g, as the closure of the (s + 1)-dimensional set

G ={x=(%1,..0s X, Xgpq):
0<x,,1<8(x1,--, %), (%1,..., %) € [0,1]°}.
Let £, be the class of sets G under the monotone functions g(xy,..., x,) such

that G 2 K; U --- U K, ,, where
K= {x= (%10, %) €[0,1] a2 1 - ), J=1,..8

J
K. .= {x = (Xqy---»%g41) € [0,1]s+1: g1 < A}.

The problem of estimating G from independent uniformly distributed in G
observations X,..., X, has the same solution as above. However, now the
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correct normalizing factor is

l,/n — ((log n)/n)l/(s-i-l).
The constant 1/v27 in (4) must be replaced in the solution d, of the
equation
27C¢*Dmes(B,,,(2d,)) =s/(s + 1).

Here B, ,(p) is Euclidean ball of radius p in R**'. Solving this equation,
one gets the following result.

THEOREM 3. For any s > 1 and any loss function w(t) the following
equality holds:

Jim inf sup Eo[w((n/(og m)/*" (G, 6,))] = w(d),

where

d, = (s(s + 1) "(mes(B,,,(1))) )"

(s(s + 1)‘1r(s ; 5 ))Mm),

1

WV

Nonuniform distributions. Consider again the two-dimensional case (s =
1). An important question is whether one can drop the assumption of uni-
formity. Let @(x) be a continuous strictly positive function on K = [0, 1] X

[0,1]. Assume that the Pg-distribution of each independent observation X,
i=1,...,n, has density

(19) 96(%) = Q(x)I{x € G}/fGQ(x) dx.

It is difficult to find the exact minimax constant in this model because the
lower and upper bounds are expressed in terms of minimal and maximal
values of gg(x) over the edge of G. These values do not coincide, except for
some special examples of @. However, it can be proved that the free disposal
hull F, has the optimal rate of convergence i, = ((log n)/n)/2.

THEOREM 4. Let X;, i =1,...,n, be independent observations having
density (19). Then for any loss function w(t) there exists a constant C such
that

lim sup EG[w((n/(log n))?d(G, Fn))] <C.

n—o Gegs

Proor. Use the notation of Section 4. Let the radii p, be such that
mes(W (2, 74)) = (Qmax/Qmin)mes(G)(05 + k&) iy,

where Q,., and @, are the maximal and minimal values of Q(x) in K.
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Note that

Py(X; € W(u,, Pr)) = fw( qc(x) dx

U, ﬁk)

= f )(Qmin/(Qmax meS(G))) dx > (05 + ké‘)lp,f

W(ul’ ﬁk

Since Lemma 3 remains unchanged, the rest of proof is the same as that in
Section 4. O

Acknowledgment. We would like to thank Mats Rudemo for the remark
concerning the definition of £.
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