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ON STRONG UNIFORM CONSISTENCY OF THE
LYNDEN-BELL ESTIMATOR FOR TRUNCATED DATA

By KaN1 CHEN,! MIN-TE CHA0? AND SHAw-Hwa Lo!

Columbia University, Academia Sinica and Columbia University

In this paper, we prove that the Lynden-Bell estimator of a distribu-
tion function in the random truncation model is uniformly strong consis-
tent over the whole half line, a problem left open by Woodroofe.

1. Introduction and main results. The purpose of the present article
is to study the consistency property of the maximum likelihood estimator
when data are randomly truncated. Let (X;,Y;), i = 1,..., N, be iid pairs of
nonnegative random variables, with X; and Y; independent for each i. Let F
and G denote the distribution functions of the X population and the Y
population, respectively. For simplicity of presentation, we shall assume the
continuity of F and G. In a truncation model, (X;,Y;) is observed only if
X; > Y,. Based on n observations {(x;, ;); 1 <i < n}, one attempts to esti-
mate F. This model has been considered by several authors [see Woodroofe
(1985), Bhattacharya (1983), Bhattacharya, Chernoff and Yang (1983) and
Chao and Lo (1988), among others]. The well known estimator of the survival
function F = 1 — F, due to Lynden-Bell (1971), can be expressed as follows:

(1) R -TI[1- 5o ).

where r; = #{j < n, x; = x;}, the product runs over all i such that x;, < x and
C(s)=QQ/n)#i<n;y, <s<ux)} .

The motivation in deriving the estimator F, by Lynden-Bell (1971) is
related to a model in astronomy which, as briefly explained in Woodroofe
(1985), can be described as follows. The absolute and apparent luminosities of
an astronomical object are defined to be its brightness at a fixed distance and
as observed on Earth, and magnitude is defined to be the negative logarithm
of luminosity. Since one can only observe those objects which are bright
enough as observed on Earth, it is equivalent to state that in order to observe
an astronomical object, the apparent magnitude must be small enough, say
less than or equal to some constant a. It is well accepted in cosmology that
apparent magnitude can be expressed as the sum of a function of redshift,
denoted by X', and absolute magnitude, denoted by Y’, and that the redshift
and the absolute magnitude are assumed independent. If we let X = — X'
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and Y=Y’ — a, the condition for the observability of a celestial object
becomes X > Y. This problem with observational selection falls into the
aforementioned framework of truncation model.

Another application arises from analysis of survival data of patients
infected by the AIDS virus from contaminated blood transfusions [Lagakos,
Barraj and De Gruttola (1988)]. An important feature of AIDS development is
the induction period between infection with the AIDS virus and the onset of
clinical AIDS. The data collected from persons infected from contaminated
blood transfusions provide a unique source of information for the induction
period. Of persons infected in this way, only those who have developed AIDS
can be identified. Let Y denote the chronological time of infection and X*
denote the induction period and assume they are independent. Suppose that
one can only observe a random sample of patients who are infected and
develop AIDS in some chronological time interval [0, «]. Let X = a — X*.
Then the pair (X,Y) is observable if and only if 0 <Y < X (< ), that is,
having left truncated observation of the reverse survival time X.

The large sample property of the product-limit estimator in the right
censorship model has drawn much attention in the literature. Proofs of
uniform consistency of the product-limit estimator on a compact interval or
on the whole line can be found in many articles [e.g., Gill (1983), Lo and
Singh (1986) and Wang (1987)]. In the truncation model, let us define
ap = inf{x; F(x) > 0} and a; = inf{x; G(x) > 0}. Woodroofe (1985) proved
the weak consistency of F, over [0, =), as well as asymptotic normality under
the additional condition that [7 dF /G < «. It should be noticed that the only
condition for the uniform weak consistency of F, over [a,®) to hold is that
ap > ag. As pointed out in Woodroofe (1985), this is the weakest condition
since there does not exist any consistent estimator of F if a; < ag. However
the question of strong uniform consistency remains open. The issue involves
the following three cases:

CASE 1. ap > ag. This is a relatively easy case. Both strong uniform
consistency and asymptotic normality hold. In fact, in Theorem 1(iii) of Chao
and Lo (1988), F, — F is represented as an average of the sum of iid random
variables with mean zero and finite variance, plus a negligible term. There-
fore the strong uniform consistency and the asymptotic normality may be
viewed as corollaries, The strong uniform consistency in this case has also
been proved, for example, by Wang, Jewell and Tsai (1986) and Wellek
(1990).

CASE 2. ap = ag. To the best of our knowledge, under no further condi-
»tion the only result obtained so far is the weak uniform consistency proved in
Woodroofe (1985) and Kieding and Gill (1990). Under the condition [f G~ ! dF
< ®, Chao and Lo [(1988), Theorem 2(ii)] obtained an almost sure represen-
tation of F, in terms of the iid process with remainder term o(n~'/2).
In a recent paper, Stute (1993) further proved that the remainder term is
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O(n~'(log n)®) under a stronger condition [; G 2dF < ». (Note that
[e G2 dF < = implies [{ G~ dF < ».) The strong uniform consistency of F,
can then be easily derived from this representation under the condition
/& G~ 1 dF < = [see Chao and Lo (1988)]. The condition [§ G~ ! dF < o simply
guarantees that the asymptotic variance of F, stays bounded as n goes to .
It is unknown whether the stronger unlform consistency still holds without
this strong condition.

CaAsE 3. ap < ag- A consistent estimator of F does not exist. However, one
can use F'(x) = F, (x)/ F ' (ag) to estimate the conditional survival function of
X given X > ag; that is, Fy(x) = F(x)/F(ag) for x > a;. However, in this

case the property of strong uniform consistency can be easily reduced to
Case 2.

Therefore, to solve the general problem, it remains to deal with Case 2.
The purpose of this paper is to prove the strong uniform consistency for the
Case 2 without any additional condition and thus solve the problem com-
pletely. Since our theorem is proved under the weakest conditions required in
proving the weak consistency [see Woodroofe (1985)], the result contained in
the following theorem is the best possible.

THEOREM 1. Suppose F and G are continuous, ap = ag = 0. Then

(2) sup |F,(x) — F(x)| - 0

x>0

almost surely as n — «,

REMARK. The above result can be easily extended to the case of left
truncation and right censoring. The theorem still holds when the continuity
assumption on F and G is relaxed to the assumption that P(X = 0) =0

2. Proofs. We first introduce some notation to be used in our proofs.
Let p = [ GdF = P(x, > y,), where (x,, y,) is the first observation. Let

n . sdF, dF,

1 n It S %
Fi(s) = 5 Ll Au(s) = [(55 and A,(s) “he—om

(Notice that A, could be = instead.)
Let & be an arbitrary but fixed positive constant such that 0 < F(8) < 1.
Define the events

A, ={3i < n,suchthat x; < §, nC,(x;) <2}
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and the integer-valued random variable
1, onN;.; 4],

(3) T= n, on Anni2n+1A§’
o, elsewhere.

It is clear that T is the last time that A, occurs (T' = 1if none of A,, n > 1,
occurs).

LEMMA 1. Under the conditions given in Theorem 1, we have

(4) P(T<») =1
and
(5) EA;(8) < .

LEMMA 2. Under the conditions given in Theorem 1, we have Ag)—0
almost surely as n — » for any sequence of nonincreasing positive numbers
{&,, n > 1} converging to 0 as n — .

Next, we give the proof of Theorem 1, assuming the two lemmas stated
above.

PrOOF OF THEOREM 1. Let {¢,, n > 1} be as in Lemma 2. Then

—log F\(s,) = (~log F,(&,) — Au(&)) + Au(22)

1 1 A
= (‘1°g(1 ) ncn(xi)) re)

x;< €&,
-0
almost surely as n — » by Lemma 2 and the Taylor expansion. Therefore

(6) Fy(s,) ~ 1

almost surely as n — .
It is known that [cf. Woodroofe (1985)] for any b > 0,

F(x) F(x)
F(b) F(b)

almost surely. Therefore there exists a sequence of nonincreasing positive
numbers b, such that b, = 0 as n » «© and

F(x) F(x)
F(b,) F(b,)
almost surely. It follows from (6), with &, replaced by b, there, that FAn(bn)
— 1 almost surely and also clearly F(b,) — 1 as n — «. With the help of ),

sup -

x=>b

-0

(7) sup

x>b,
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it can be shown that

sup FAn(x) —F(x)' -0 as.asn—o>®

x<b,

and

sup FAn(x) —F(x)' -0 as.asn — ®,

x>b,

which imply (2). The proof is thus complete. O
Now we proceed to prove the lemmas.

PrOOF OF LEMMA 1. Notice that for fixed &, nC,(x,) is a nondecreasing
function of n. Therefore,

(T=o0)} ={A,i0} ={A5_ NA,io}U

Un An)
k=1n=k
(8) ={x, < 8,nC,(x,) <2i0.}

U( U {nC.(x,) <2, x, < 8,forall n > k})
k=1

Some easy calculations give
P(x, <6,nC,(x,) <2)

- ]08(1 — pIFG)" ' plGdF + (n - 1)[08(1 — p IFG)" " p 2FG? dF
for any & < n. Now observe
(9) i foani(l - ,;—117'G)"Gi+1 dF <
for any i > 0; hence,
(10) i P(x, <8,nC,(x,) <2) <.
n=1

It then follows from the Borel-Cantelli lemma that
(11) P({nC,(x,) <2, x, <81i0})=0.

Because P(nC,(x;) <2, x, < 8) = P(nC,(x,) <2, x, <8) for £ <n, (10)
also implies for fixed k, P(nC,(x;) <2, x, < 8) > 0 as n — ». Hence for
each & > 1, P({nC,(x,) < 2, x, < & forall n > k}) = 0. Now (4) follows from
(8) and (11).
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To show (5), first define the events
B,-’} = {xi <4, Vi <%, <X;, Y1 <% S X4y q, RCL(x;) = 2},
B* = {Vi<Fk,if x; < §, then kCy(x;) > 2.
Clearly, AS, , c B*. Write

Ay NA,, ={3i<k,x <8,kC,(x;) <2}
NV i<k+1,if x; < 8, then (k + 1)Cy, (x;) > 3}

k
c U B}
1<i,j<k
i#j

N B*.

Because {T' < k} C A, , c B*, A, is finite for any % > 1 and hence Arys
is well defined in view of (4). It follows that

8

EAT(S) > Ak(a)l(T=k) +EAT(6)1(TSZ)

k=3

IA
Ms

-&k(s)lAk s perds T2

k=3

8 |

IA

EA #(8)1a, has,, T2

IA

>
k=3
EA,(8)1,,, i i<k ky~pk + 2.
k (U '=hItBl)nE
k=3 i+

For all £ > 3, we have
Eﬂk(é)l(u 1si,jskphy gk
i) u
<k(k- 1)Eka(3)1szan

(x <8} Bf,n B* {x < 8}n Bfn B

1 *___ el At A R

<k(k- )}jEka( ) +k(k - I)E:Eka(x)—l
{x3<8}ﬂB{’2r\Bk

< 2k(k — 1)P(Bf,) + k(k — 1)(k — 2)E kCy(%3) — 1

lx <y3<x3=<
< 2k°P(Bfy) + 2k°P({x3 <x, < 8} N BY) + 2k°E {lee ys{ 8 5)03)12
yJ<x3<x

=1, +1I, + III, (say).

Again by some calculations and using (9), we have
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Y 1,<2Y k*P(Bf,)
k=3 k=3

=2 ¥ k*[(p 'FG)'(1 - p'FG)" " piGaF
k=3 0

A

[0}
b
-5}

II, =2 Y k*P({x3 <x, < 8} N Bfy)
k=3 k=3

N ;3 f (p—lF(S)G(s)) p_1

8

x( sGdF)(l — p IF(s)G(s))' " 1G(s) dF(s)

0

-5}

<2 ¥ & ['(1-p'FG)" *p *FFG* dF
k=3 "0

<°°,

f I, = 3 2ktgimsrs s an
- k=3 Yi-s 1y cay<xp

u[\’]8

k3/ (p"'F(1)G(1)) p™'G(2)

l(tsyasxas 8" 1_[j=3 (1(xj< t} + 1(3’,'2 t))

X | E

dF(t)

k
Zj=3 l(y'< x3 < xj}

- ¥ 26 [Lo F6)] e
-3

k

(ft s TN LOCORON
x[1 - p 'F(t)G(t) — F(s)(G(s) — G(t))]

kE-3-j

X (G(s) — G(t)) dF(s)) dF(t)

=]

2k s — 2 _ -
- ¥ o [l Foel T - Foso]’

Xp’lG(t)j;SF’l(s)(l - [1 — (p-F()G(2)) 'F(s)

k-2
x(G(s) — G(t))] )dF(s)] dF(t)
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< ¥ 6k%F 1(5) [p PG} (1 - p 'FG)" " aF
k=3 n
< oo,

By combining the above arguments, it follows that EX;(8) < . The proof
of Lemma 1 is complete. O

To prove Lemma 2 we need to introduce some notation for various o-
algebras.

A random variable is called n-symmetric if it is a function of
{(x;, ¥1),(x3, ¥5), ...} and is unchanged under any permutations of the first n
observations [cf. Hall and Heyde (1980), page 202]. Let .7, denote the o-alge-
bra generated by the n-symmetric random variables and note that %, , ; C &,.
Let & be the o-algebra generated by &, and (x;, y,) [i.e., % = 0(F,, (x;, y)].
Then clearly, &, C ;.

PrROOF OF LEMMA 2. Let &, be an arbitrary but fixed sequence of nonin-
creasing positive numbers converging to 0 as n — «. First notice that for
l<i<n+1l1l<k<n+1l1<j<n+landk#i+],

Py, <x; <24 | F11) =P(yj <x; <% 1 F 1)

hence,
) 1 n+1 1
P(yk <Xx; <% |~97:+1) = n Z l(yk<x,~sxk) = ;((n + 1)C, (%) — 1)-
k=1
kE#i

Therefore, for any i < n,

1| . 1 n .
E Cn(xi)_; n+1 =;E kz l{yk<xisxk) n+1
1
k#i

n-—1
n?
where the last inequality is due to the fact that C,,(x;) > 1/(n + 1) for
i <n. :

Without loss of generality, we can assume &, < 8 for all n > 1. Because
A, €, cearly {T = n} € #,. Therefore, (T >n + 1} €, (T<nles, .,
and Ap, ,(&,) €Z,.

Now for n > 1, we have

" E(]\TVn(gn) |‘9;+1)
ZE(ATVn(8n+1) |9;+1)
= E(]\n(an+1)1{Tsn} |5§+1) + E(ATV(n+1)(8n+1)1(T2n+1) |'7n+1)

((n+ DCur(%) = 1) = Coa(®) = 77
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12 1
(x;< e )N (T <) %
= ; .ZIE C (x‘)l_ 1/n 5‘;+1) + ATV(n+1)(8n+1)1(T2n+1)
1= n 13
_ 12 E l(xi5€n+1)ﬂ(TSn) i It
_;'21 E C (x) —1/n Fni1||Fn+1 +ATv(n+1)(8n+1)1(Tzn+1)
1= n 12
12 1
{(x; < e 3N {T <N} z
>— Y E| =2 — Y £,.1)1
n = E(Cn(xl) _ l/n Ig;:_*,l) n+1) TV(n+1)( n+1) {T>2n+1}
12 1
{x;< e, 3N{T <1} X
= ;iglE Cn+1(xi) — 1/(n + 1) 'zwl + ATv(n+1)(‘9n+1)1{Tzn+1)
1 n+1 1
(xiﬁsn+) A
= Z - 1(T§n) + AT\/(n+1)(8n+l)1{Tzn+1)

n+1/2 Chia(x)—1/(n+ 1)
=A,, (&) lpem T+ Ar v+ )(Ens) gz nsy

= ATV(n+1)(3n+1)-

Combining with (5), we have shown {Apy &), Fy n =1} is an L! reversed
nonnegative submartingale. By the reverse submartingale convergence theo-
rem [cf. Hall and Heyde (1980)], there exists some random variable ¢, such
that Ay, ,(&,) converges to ¢ almost surely and in mean. Because on the set
(T < n}, we have nC,(x;) > 2 and hence nC,(x;) — 1 < nC (x;) < 2(nC,(x,)
— 1) for all i < n such that x; < 8. Therefore,

(12) %AT\/n(an) = AT\/n(‘en) =< AT\/n(an)'
With some easy calculations [cf. Woodroofe (1985)], we have

EAy(s,) = ~log F(s,) — [ (1~ p7'FG) F ' dF < —log F(s,) > 0
0

as n — %, whence A ,(&,) converges to 0 in probability. Since 7' is almost
surely finite in view of (4), we know that A, (&,) also converges to 0 in
probability. So it follows from (12) that & < 0, but clearly £ is nonnegative;
therefore, &= 0. Now again by (12) and the almost sure convergence of
Az o(&,), we know that Ay ,(&,) converges to 0 almost surely as n — .
Therefore, A,(¢,) converges to 0 almost surely by finiteness of T. The proof is
thus complete. O
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