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PROBABILITY INEQUALITIES FOR LIKELTHOOD RATIOS
AND CONVERGENCE RATES OF SIEVE MLES!

By WiNG HUNG WONG AND XIAOTONG SHEN

University of Chicago and Ohio State University

Let Y7,...,Y, be independent identically distributed with density p,
and let ¥ be a space of densities. We show that the supremum of the
likelihood ratios I ; p(Y;)/po(Y;), where the supremum is over p €5
with | p/2 — pl/2|l; > &, is exponentially small with probability exponen-
tially close to 1. The exponent is proportional to ns2. The only condition
required for this to hold is that & exceeds a value determined by the
bracketing Hellinger entropy of #. A similar inequality also holds if we
replace ¥ by &, and p, by gq,, where g, is an approximation to p, in a
suitable sense. These results are applied to establish rates of convergence
of sieve MLEs. Furthermore, weak conditions are given under which the
“optimal” rate &, defined by H(e,,¥) =ne2, where H(-, %) is the
Hellinger entropy of %, is nearly achievable by sieve estimators.

1. Introduction. Let (%,.%, u) be a measurable space and Y,,Y,,...,Y,
be independent identically distributed random variables with a common
density p,. It is known that p, € &, where  is a given family of densities on
Z. All densities are defined with respect to the dominating measure u. If the
densities in % are indexed by a finite-dimensional parameter 6, then
[T}, pe(Y;), considered as a function of 6, is referred to as the likelihood
function given Yi,...,Y,. A different version of the likelihood is obtained if
the dominating measure is changed from wu to another equivalent measure.
The two versions differ only by a multiplicative constant in 9. We will be
interested only in the properties of likelihood ratios, which have meaning
independent of the dominating measure. It is well known that the concepts of
likelihood and likelihood ratios are central to the classical theory of parame-
ter estimation and hypothesis testing.

In this paper, & is allowed to be arbitrary and is not assumed to be
indexed by a finite-dimensional parameter. We will simply take p itself as
the parameter and # as the parameter space. # will be endowed with the
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Hellinger metric d(:, - ) defined by

1/2
2
d(py, p2) = [f(Pi/z _P%/z) du = ||pi/2 —p%/znz,

that is, d(p,, p,) is the L, norm of the difference of the square root of the
densities.

We will develop some inequalities for the likelihood ratio surface
I, p(Y))/p(Y;) or T, p(Y;)/q,(Y;), where p € F and q, is an approxi-
mation to p,. These inequalities are obviously useful for many purposes, but
in this paper we will only examine their application to the study of the
convergence rates of the maximum likelihood estimator (MLE) and a variant
of it called the sieve MLE.

To motivate the inequalities, consider the following simple result.

LEMMA 1. Let p be a density, p, be the true density (i.e., all probability
calculations are done under p,) and & = || p'/? — pi/?|l2. Then

P(iﬁi((?) Ze"p(‘%gz)) = e"p(‘%sz)'

PrOOF. For any b > 0, we have

P(Dl(p( )

PO(E))
1/2
< exp(ﬁb) E(ﬁ)
2 Po
nb 1 e2\"
- ?) T2
nb ol 1 e?
= exp ?)exp nlog|l — -
: nb ne?
< exp 2 5 |-

The lemma follows if we set b = £2/2. This completes the proof. O

« This large deviation inequality says that the likelihood ratio is exponen-
tially small with probability exponentially close to 1. The exponents are
proportional to ne?, where & is the Hellinger distance between the two
densities. Our first major result, presented in Section 3, is an extension of
this inequality: the supremum of the likelihood ratio outside a Hellinger ball
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of radius ¢ satisfies a similar large deviation inequality, that is,

n
P sup [1p(Y:)/po(Y:) = exp(—cyne?)
(1.1) UIpY/2—pl/2lly> 5, pes} i=1

< Aexp(—cyne?),

for some positive constants A, ¢, and c,.

The condition needed for (1.1) to hold is that & is not smaller than a
threshold value determined by the bracketing Hellinger metric entropy of the
set . To define this quantity, for any u > 0, call a finite set (of pairs
of functions) {(f*,f"”), j=1,...,N} a (Hellinger) u-bracketing of & if
ICF2 — (ij)l/éllz <uforj=1,...,N,and for any p €, thereis a j such
that f;-l‘ < p < fU. The bracketing Hellinger metric entropy of %, denoted by
the function H (~,9’ ), is defined by H(u,%) = logarithm of the cardinality of
the u-bracketing (of &) of the smallest size. More precisely, in order for (1D
to be true, we need & to satisfy

(1.2) fZHl/Z(u,g) du < cn'/%?,

for some constant ¢ > 0.

This result is obtained by using the theory of empirical processes. The
major difficulty here is that in the usual theory of empirical processes, the
random variables are required to be bounded or have (absolute) moment
generating functions. However, log-likelihood ratios do not generally satisfy
such conditions. To handle this difficulty, we have to derive several basic
properties of lower truncated likelihood ratios. To our knowledge, these
properties are unknown in the literature. They are presented in Section 2.
With the help of these new results on lower truncated likelihood ratios, we
are able to obtained (1.1) under the sole condition of (1.2).

In the first part of Section 4, we apply the above result to study the
convergence rate of the maximum likelihood estimator. It is found that the
convergence rate is bounded above by &,, which is defined as the smallest &
satisfying (1.2). Some results on the convergence rate of the MLE using the
Hellinger distance had been obtained recently by van de Geer (1993), Shen
and Wong (1994) and Birgé and Massart (1993). However, the first work
requires special convexity conditions and the latter two (which deal with
general optimization criteria) impose extraneous conditions on the tails of the
log-likelihood ratios if the criterion function is the log likelihood. In contrast,
the present result requires only the minimal condition that & has finite
bracketing Hellinger metric entropy. We note that Wong and Severini (1991)
also contains results on the convergence rate of the MLE. However, they use
a stronger metric induced by the Fisher information and hence require
stronger conditions.

If the space & is so large that [JH'/*(u,) du is infinite, then condition
(1.2) no longer provides the best possible rate of convergence in general, and
better rates can be obtained by suitable modifications of the MLE. One
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modification which has become popular is to restrict the maximization of the
likelihood to an approximating space %,. Specifically, let {#,, n = 1,2,...} be
a sequence of spaces (of densities) approximating & in a suitable sense to be
defined. Given a sequence 7, = 0 as n — », we call an estimator 5, a
7,-sieve MLE if

1z 1z

— Y log( $,)(Y;) = sup — ). log p — 7,.

n;_ peg, =1
In Section 4, we also study the convergence rates of sieve MLEs. The key to
this is a generalization of (1.1) of the form

n
(13) P( sup [1p(Y)/q.(Y) = exp(—cnSZ)) <,
(pV2-p¥/ 2z e, peF} =1
where ¢ > 0, 7, > 0 as n > © and g, € %,, where g, converges to p, in a
suitable sense.
Let A, ={p €%, |p¥/? — p’?llz > &}. Our approach is to consider the
factorization

n n n
sup [1p(4) /0,(¥) = (sgp qp<n)/po(n))(;nlpo(m/qnm).
, i= . i= i=
The bound for the first factor is obtained as above with condition (1.2) now
replaced by

(1.4) fZHl/Z(u,yn) du < cn'/%2.

The control of the second factor, on the other hand, depends crucially on the
approximation properties of &, to &. We introduce a continuous family of
indexes of discrepancy p,(p,q), which include as special cases squared
Hellinger distance (a = —1/2), Kullback-Leibler number (e« =0+) and
Pearson x2 (a = 1). Correspondingly, there is a family of approximation
rates of &, to & at p,, defined as §,(a) = inf_. 5 p,(Po, q). It is then shown
in Section 4 that a large deviation inequality analogous to (1.1) is available,
such that, for « € (0, 1], if (1.4) holds, then (1.3) holds with

T, = cexp(—c'ne?) + exp(—noz[c"e2 — pa(Po>70)])s

for some positive constants c, ¢’ and ¢”. A more involved inequality is also
available if we only have control on the Kullback—Leibler number p, . (py, g,)-
Thus, denoting by &, the smallest & satisfying (1.4), the convergence rate of
the sieve MLE (with n, suitably small) is bounded above by the slower one of
the two rates ¢, and 8/2(a), where a € [0+, 1]. In this theory, although 7,
is required to have finite bracketing Hellinger metric entropy H (u, ), it
may be the case that lim, _, ., H(u,%,) = «. In fact, the original space & is
allowed to have infinite metric entropy.

In Section 5, we apply the above results to determine the convergence
rates of specific sieve estimators in a number of examples.
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In Section 6, we present a new inequality for the Kullback—Leibler infor-
mation number. It is shown that under an integrability condition, the
Kullback-Leibler number [p log(p/q) between two densities is essentially
the same order of magnitude as the square of the Hellinger distance when the
latter is small. This result is useful for the control of the Kullback—-Leibler
approximation error, which is a condition needed in the theory in Section 4.
However, the inequality should also be of independent interest as it provides
a relation between two quantities of fundamental importance in asymptotic
theory. In fact, it plays an important role in the theory of upper and lower
bounds for convergence rates in Section 7.

In Section 7, we provide a theoretical upper bound for the rate (in Hellinger
distance) attainable by sieve estimation, and a lower bound for the local
minimax rate in Hellinger distance achievable by any method of estimation.
Let &, be defined by

(1.5) H(e,,7) <xne&?2,

where H(e,%) is now the Hellinger metric entropy of &, which is defined as
the logarithm of the minimum number of e-balls (in Hellinger distance)
needed to cover #. For simplicity, we will assume that the global entropy
H(e, %) is of the same order as the local entropy H(e, % N {p: [ p*% — pi/?llz
< 4¢)), which is the case in most intended applications where % is infinite
dimensional. Under a uniform integrability condition for local suprema of
densities, we show that there are sieve estimators converging at a rate
&,(log(1/£,))'/? and that no estimators can have a local minimax rate faster
than ¢,(log(1/¢,))"1/2. In this sense, sieve estimation can be regarded as
essentially optimal in terms of local minimax rate of convergence.

The rate &, given in (1.5) has a long history. Le Cam (1973, 1986) and
Birgé (1983) constructed estimators attaining this rate generally. Their con-
structions are rather involved and use pairwise testing between Hellinger
balls. Therefore, it is of interest to see that, under a mild condition, relatively
simple sieve estimators can attain essentially the same rate. In fact, it will be
shown that sieve estimation can achieve the rate &,(log(1/¢,))"/? in terms of
the square rooted Kullback—-Leibler number, which is a stronger mode of
convergence than Hellinger distance. The existing theory of &, as a lower
bound was less satisfactory than the corresponding upper bound theory.
Although there is a general belief that (1.5) should determine a lower bound
for the global minimax rate of estimation, such a result had been obtained
only under specialized conditions [Has’'minskii (1978), Ibragimov and
Has’minskii (1981), Lemma VII.1.1 and Birgé (1983)]. We consider the slightly
harder problem of lower bounds for the local minimax rate. It is hoped that
our lower bound of &,(log(1/&,)) /2, obtained under only a mild integrability
condition, will contribute to the understanding of this fundamental issue.

To conclude this introduction, we present a basic result for the control of
lower tail probabilities of a density ratio in terms of the squared Hellinger
distance. This result, crucial for the properties of lower truncated log-
likelihood ratios in Section 2, is also of independent interest.
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LEMMA 2. For any nonnegative integrable function f and any density
function p,, we have

k
where P is evaluated under the density p,, k € (1,%) and A = {f/p, < 1/k2).

1 -2
P(A) < [1 - —-] IF/2 - py/2li3,

ProoF. By the Cauchy—Schwarz inequality, we have

P(4) = [ f(x) du + [ (P¥*(x) + [*())(PV*(2) - f%(x)) dx

1/2
< Jfde UA(”‘I’”(’C) + 12 (x))° dx] 17172 = p¥/2la

< P(A)/k? + PY2(A)[1 + 1/k% + 2/k]" 2172 - py/2lla.

The result follows from simple calculations. O

2. Lower truncation of log-likelihood ratios. We are interested in
the global properties of the likelihood ratio surface I}, p(Y,)/po(Y)). Equiv-
alently, consider the log-likelihood ratio

@) Li(p.po) = £ 2%,

where Z,(Y)) = log p(Y;)/ po(Y;) is the log-likelihood ratio based on the obser-
vation Y,. Unfortunately, Z,(*) is not guaranteed to be a nice random vari-
able. If the density p, has nonzero probability in a region whose p-probabil-
ity is much smaller, then it can happen that E(Z, )2 = +o, Hence, it is
difficult to analyze the behavior of L,()) directly. Instead, we will study
lower-truncated versions of Z,(-). Let 7> 0 be a truncation constant (to be
chosen later). For any nonnegative integrable function p, define Z,(") as in
(2.1) and truncated versions of p and Z, as follows:

5= p, if p > exp(—7) Py,
exp(—T)py,  if p <exp(—7)po,
(2.2)
- . Z,, ifzZ,> —r,
7 =7 =
P -7, ifZ, < —r.

In the following subsections we provide some properties of the truncated
log-likelihood ratios. These results are then applied in later sections to obtain
useful bounds on the likelihood ratio surface.

2.1. Bracketing L, metric entropy. Let Z, = {¢,: p € Z.} be the space of
truncated log-likelihood ratios (based on one observation). Define H (e,2,) to
be the bracketing L, metric entropy of Z,, where the L, norm is with
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respect to the dens1ty Py, that is, the metric used in calculating H' (e,2,)is
defined by p(Z, [E(Z Z J?1Y/2. Then we can state the followmg
lemma.

py Pz

LEMMA 3. We have
H(e, i’n) <H(s/(2exp(7/2)),%,)-
PrOOF. Let f; and f, be nonnegative integrable functions and let p, be

a density. Let A; ={x: f; <poexp(—7)} and A, = {x: f, < pyexp(—7)}
Define

. f1 on AfS,
fi= exp(—T7)Ppo, on A;.

Similarly, f, can be defined based on A,. Notice that
- - - 1/2 N 1/2
log f, — log f; = 2[10g( f1/po) " = log(f2/po) ]

and fl /P, and fz /P, are bounded below by exp(— 7). Applying the mean
value theorem, we have

E,(log f, — log f,) < 4exp(r)lIf1/2 - fi/2I3.
Notice that

[, (A7) = () de =

A

On ASNA,, fy <fo=poexp(—7) <f, = f,, and hence
Sy a (F172() = F372() ‘v < Sy a (A72() - f3/%(x))” d.
A similar bound holds for the integral over A1 N A$. Finally,
- ~ 2 2
[ @ - fr@Y = [ (PG - @)
Thus, [I£3/2 - 37215 < |If1/* - f3/*Il; and
E,(log f, — log f3) < 4exp(r)lIf}/2 - 3713,
This completes the proof. O
Recall that we are using the metric entropy H(¢,%,) as an index for the
size of the space of densities of #,. By Lemma 3, we see that this same index
also controls the size of the space 2‘ of the truncated log-likelihood ratios. In

contrast, the original log-likelihood ratlos themselves may not even be square
integrable with respect to p,.
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2.2. Expected values. If p is a density, the most useful property of the
log-likelihood ratio Z, = log(p/p,) is that it has negative expected value:

E,Z,= —p,g log(po/p) < 0, whenever p # p,. In fact, it is easily seen that
E,Z,< - pY? — pb/?|3, that is, the expected value of Z, is uniformly

bounded below zero for p outside a Hellinger ball around p,. Thus, a major
consideration in choosing the truncation constant 7 is the preservation of this
property. The following lemma is useful for this purpose.

LEMMA 4. Let p, p, be densities and 8 = 2exp(—7/2)/(1 — exp(—7/2))%.
Then

EZ, < —(1-8)llp¥? - p¥2ll3.

Proor. Let A ={log p(Y) —log p,(Y) < —7}. Applying log(1 + x) < x,
for x > —1, we have

EZ, = 2[polog(1 + ((5/p,)"* — 1))

< 2| [t () *(x) ds - 1

IA

—lp'% = pY2I + 2 [ (pol(x) (%)) dx

—Ip¥? — p¥/2l5 + 2exp( —7/2) P(A).

Bounding P(A) by using Lemma 2, we have the desired inequality. O

IA

2.3. Exponential inequality for bracketing functions. Let [ be a nonnega-
tive integrable function. For example, f may be one of the bracketing
functions for a density. We will show that Bernstein’s exponential inequality
is applicable to the sum Z, 1Zf(Y) Recall the statement of Bernstein’s
inequality: Let Z,, Z,, ... be i.i.d. random variables satisfying

E|ZV <jb/~2v/2 foranyj> 2.
Let Z = (1/n)L?_,Z; and ¢ > 0. Then
52
4(2v + bt/n'/?)

P(n'/*(Z - EZ) > t) < exp| -
To apply to Z = Zf, we need to bound EIZij for j > 2. This is done in the
following lemma.
LEMMA 5. There exists a constant ¢, > 0 such that

Elexp(Z;1/2) = 1 1Z,1/2] < coll /2 = p¥/?I3.
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A possible choice of ¢ is
co = (exp(7/2) —1-17/2) /(1 - exp(—1/2))".
PrOOF. Let w = (f/py)/? — 1. Then
Zf/z = (1/2)log l;/po =log(1 + w)
or w = exp(Zf/ 2) — 1. Notice that
exp(7/2) —1—1/2, ifZ,< -1,
exp(IZf|/2) -1- IZf|/2 = exp(IZfl/2) -1- IZf|/2, if —1<Z;<0,
exp(Zy/2) —1-Z,/2, ifZ;20,

and (exp(¢) — 1 — t)/(1 — exp(—t))? is increasing and (exp(t) — 1 — ¢)/(1 —
exp(¢))? is decreasing with respect to ¢. Hence,

Elexp(1Z,1/2) - 1 - 1Z/1/2
- E([exp(lzf|/2) -1- IZfI/2]/w2)w2

< sup [[exp(t) — 1 —¢t]/(1 - exp(—t)) ][ w*(2) dPy(2)
te(0,7/2)

+ t s:;p )[[exp(t) —1-¢t]/(1— exp(?)) ][ wz(z) dPy(z)

< ¢o [w?(2) dPy(2).
Since
[w?dPy(2) = [po((F/p0)"" ~ 1) <IF2 — Y2,
the result follows immediately. O
It follows from Lemma 5 that E|Z,|" < j!27¢,|lf1/2 — p¥/?ll3. Hence, we can
apply Bernstein’s inequality with & = 2, v = 8¢,/ f/2 — p¥/?|5 to obtain the

following exponential inequality.

LEMMA 6. We have

no . t?
P(n~1/2 Z.(Y,)) —EZ zt) <exp| —
| £, (2:x) ~ 52 P\ 8 (ecollF 2 PR R+ 2t/n ) )

for any t > 0. Here c, is the constant defined in Lemma 5.

2.4. Probability inequality for empirical process. Let v, (Z ) =
n 2L (Z(Y) — EZ,(Y)). Let & be a class of densities with bracketmg
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Hellinger entropy H(u, ). For ¢ > 0, consider the empirical process
{n(Z,):p ez, IpV2 - Pl < t)

induced by the truncated log-likelihood ratios for p € & inside a Hellinger
ball around p,. We have the following exponential inequality for this process.

LEMMA 7. Foranyt>0,0<k <1and M >0, let
W(M,t%, n) = M?/8(8c,t? + M/n'/?),

where c, is defined as in Lemma 5. Assume that

(2.3) M < kn'/2¢%2/4
and
e [ HY2(u /(2 exp(t/2)), &) du < ME3/2 /(21%(c, + 1/8)).
kM /(32n1/%)
Then
P*( sup vn(Zp) zM) < 3exp(—(1 — k)¢y(M,t?,n)),
{lp/2-p§/l2<t, peZ}

where P* is understood to be the outer probability measure corresponding to
PO.

PrROOF. Based on the results of Sections 2.1 and 2.3, the lemma is estab-
lished using a chaining argument similar to that in Ossiander (1987). Specif-
ically, the result follows from the same arguments as in the proof of Theorem
3 in Shen and Wong (1994), with the following simple modifications: The
results in Section 2.1 are used to control the bracketing L, metric entropy of
7 and the inequality in Section 2.3 is used (instead of the Bernstein’s
inequality for upper-bounded functions) to provide exponential bounds for the
quantity P, in that proof. Note also that (4.6) and (4.7) in Theorem 3 of Shen
and Wong (1994) imply (4.5) in this case. O

3. A probability inequality for the likelihood ratio surface. We
now state and prove the first main result of this paper, which gives a uniform
exponential bound for likelihood ratios with probability exponentially close
to 1.

_THEOREM 1. There exist positive constants c;, i=1,...,4, such that, for
any € > 0, if

(3.1) ‘f;Hl/z(u/cs,,Zl) du < c,n'/%?,
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then

n
P* sup T1p(Y;)/po(Y;) = exp(—c,ne?)| <4exp(—cyne?).
(1p*/2-p¥/?lle> &, pe;} i1
For example, we may use ¢, =(2/3 —8), ¢y =4/27(612¢, + 11), ¢; =
2 exp(r/2) and ¢, = (2/3)%/? /512, where & and c, are functions of T defined
in Lemmas 4 and 5.

REMARK. The inequality in Theorem 1 still holds if the “global” metric
entropy condition (3.1) is replaced by a corresponding “local” version:

;EssHl/z(u/cs,Z, N {Ilp2 - p¥213 < 232}) du < c,n'/%s%, foralls > &.
s%/2

The proof requires only a trivial modification of the proof of Theorem 1. When

& is finite dimensional, the use of this, which is a slightly weaker condition

than (3.1), would allow us to avoid a loss of a log(n) factor from the usual
n~1/2 rate of the MLE. See the remark after Theorem 2.

PRrROOF OF THEOREM 1. For any s > ¢ and 1/2 < k < 1, we apply Lemma 7
with ¢ = V2s. Condition (2.3) in Lemma 7 is satisfied if we choose M =
(k/2)n'/?s? and condition (2.4) is satisfied if

(3:2) j;f;Hl/z(u/(z exp(7/2)),7,) du < (k¥/2/2°)n"/2s>.

Using the fact that H(u,.,) is nonincreasing in u, it is easily seen that 3.1
actually holds with & replaced by any s > . Hence, if s > ¢, then (3.2) [and
hence (2.4)] follows from (3.1) if we choose ¢z = 2 exp(r/2) and ¢, = k%2 /2°.
It follows from Lemma 7 that, if s > &, then

- k
P*( sup vn(Zp) > —nl/zsz)
(3.3) (1Y%= pl/ <252, pe;) 2
' 3 (1 — k)k2ns?
< | ——————————————————
= S OXP| T s, + 16k

Let A={p € %,:s2 <l|p/? — p¥/2ll5 < 25?). Then by Lemma 4, sup, E(Zp) <
—(1 — 8)s2. It follows that if s > ¢, then

su > exp| —ns?[1 - 86— =||} c {supy,(Z,] = =n'/2s?}.
{ Api=l_[1Po(Yi) P 2 A ( p) 2
Applying (3.3), we obtain, for any s > ¢,
k
> exp(—(l - 86— E)nsz))

r(Y;
sup 11 1;)
(peg,: s?<|p¥2-py/?I3<2s2} =1 po(Y3)

(1 — k)k*ns®
2%¢, + 16k

P*

< 3exp(—
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Let L be the smallest integer such that 2Z¢2 > 4 and suppose that (3.2) is
satisfied for all s > . Then

sup I p(¥,) > exp(—(l -8— f)naz))

{lpY/2—p}/2lyz e, peg) i=1 po(Y))

L
=Zp*

P*

s
T
—~

sup
@ls?<lp /2= pl1F<2iv e, pegyy i=1 Pol

)
> exp(—(l - 8—2 nez))

2i(1 —k)kznaz)

L
<3 Zexp(—

7=0 2%, + 16k

( (1—k)k2n82)
<4dexp| —-—7—

2%, + 16k

Hence, to obtain the result, we may set ¢; =(1 —-8—-%/2) and c, =
[(1 — k)E%/(512¢, + 16k)]. Choosing % = 2/3 to maximize the factor (1 —
k)k?%, we obtain ¢; = (2/3 — 8) and c, > 4/(27(512¢,, + 11)). This completes
the proof. O

REMARK. Recall from Lemmas 4 and 5 that 8 =2exp(—71/2)/(1 —
exp(—7/2))? and ¢, = (exp(r/2) — 1 — 7/2)/(1 — exp(—7/2)?. We may
choose 7 to minimize ¢, subject to the restriction that ¢, is not smaller than
c,. A reasonable choice is to set exp(—7/2) = 1/5. Then we have ¢; = 1/24,
co = 3.74, ¢, = (4/27X(1,/1926) and c; = 10.

4. Convergence rates of MLE and sieve estimates. Let 7, be a
sequence of positive numbers converging to zero. We call an estimator p:
7™ - F a n,-MLE if

S| =

n 1 n
Y log p(Y;) = sup — ). log p(Y;) — m,.
i=1 - peF -1

When & has finite bracketing metric entropy with respect to the Hellinger

distance, the convergence rate of such an estimator follows directly from
Theorem 1.

THEOREM 2. Let C1,...,C4 be the same as in Theorem 1 and let &, be the
smallest ¢ satisfying (3.1) with &, = F. If p is a 1,-MLE with m, < c,&?, then,

P(lp'? = py/?llz = &,) < 5exp(—cynel).
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REMARKS. (i) If (3.1) holds for & = ¢, then it also holds for any & > &,,.
Hence, typically, the rate ¢, in Theorem 2 is determined by the equation

f‘/ga”Hl/z(u/c3,,7) du = c,n'/%}.
£2/28

(i1) In most finite-dimensional parametric problems, H(u, %) < c log(1/u)
and Theorem 2 gives c'n"!/2 log n as an upper bound for the rate of conver-
gence of the MLE. To get rid of the log n factor, note that Theorem 2 is still
valid if we replace (8.1) by its “local” version as in the remark following
Theorem 1. Since typically H(u,# N {|p/? — pd/2l15 < 252)) < clog(s/u),
Theorem 2 will then produce the usual rate of n~!/2. In most infinite-dimen-
sional problems, however, the use of the local version of the entropy condition
will not lead to an improvement in rate.

PRrROOF OF THEOREM 2. From the definition of p, we have
{18Y2 = p/%llz > &,}

i :

= { sup  [1p(Y)/po(Y;) = exp(—nn,) .
(Ip2-pl/?ls> s,, peF} i=1

The result then follows from Theorem 1 with &, =% and the fact that

nm, < c;ne&l. This completes the proof. O

Next, we discuss sieve maximum likelihood estimation, that is, when the
maximization of the likelihood is over an approximating space %, instead of
the original space &. The motivation for the use of sieve MLE was given in
the Introduction. Let {#,, n = 1,...} be a sequence of approximating spaces
(i.e., a sieve) and let p(-,-) be a index of discrepancy on densities, that is,
p(p,q) > 0 for all ¢ # p with equality holding only if ¢ =p a.e. p. The
quantity 8, = 8,(py,,) = inf,c 5 p(py, ) is called the p-approximation er-
ror of Z, at p,.

It is clear that some control of the approximation error of %, at p, is
necessary for any result on the convergence rate of a sieve MLE. In general, it
is not enough to control only the Hellinger approximation error of Z,. We now
introduce a family of indexes of discrepancy which will then be used to
formulate the condition on the approximation error of %,.

Let '

(1/a)[x*—1], if-1<a<0or0<acx<l,

£(%) = 1 10g(x), if a=0+.

Set x = p/q and define p,(p,q) = E,g,(X) = [pg,(p/q). This family in-
cludes some notable special cases. If o« = —1/2, then p,(p, q) =
—2/pl(q/p)"/? — 1] = [(p'/% — q1/?)? is the squared Hellinger distance. If
a =0+, then p,(p,q) = [plog(p/q) is the Kullback-Leibler number. If
a= +1, then p,(p,q)=[(p?/q—1) = [(p—q)?/q is the Pearson x2
number. Note that p,, < p, for a > 0.
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LEMMA 8. p,(:,*) > 0 with equality holding only of q = p almost every-
where.

ProOF. For a > —1. Let y = 1/x = q/p. Then g, (x) = h,(y) =
(1/a) y~« — 1]. Since H,(y) > 0 for all y > 0, h,() is a convex function. By
Jensen’s inequality p,(p,q) = E,g,(X) = E,h(Y) = h(E)Y)=h,(1)=0
with equality attained only if ¥ = 1 a.e. This completes the proof. O

The next result is an extension of Theorem 2. It gives a probability
inequality for likelihood ratios where the true density p, is replaced by its
“best approximation” within .7,.

THEOREM 3. Letc,,...,c, be the same as in Theorem 1,e>0andD = 1.
Suppose that (3.1) holds. Set

n p(Y; 1
P, = inf P* sup IT (Y3) > exp(——clnD232) )
qEZ, 1 p/2 - p}/2ll2= D&, peF,} i=1 Q(Y:) v 2

() For any a € (0,1], if 8,(a) = inf .5 p,(Po, q) <1/a, then
c
P, < 5exp(—cynD%?) + exp(—na[EIng2 - 6n(a)]).

(i) Let 6,(0+) =inf, . [Po log(p,/q) and T, =lim, ,.[p,(log Po/q1)?
for some sequence {q;, k = 1,2,...} C%, such that lim, /P, log(po/q:) =
5,(0+). Suppose 8,(0+) < 3¢,D%?*. Then

Tn

1
P, < 5exp(—cynD%?%) + — .
(menD%?) + 2 [(1/2)e,D%? - 8,(0+)]”

Proor. (i) Letq€ %, and A ={p €Z,, | p¥/2 — p¥/?|l2 = De}. Then
n n 0

n p(Y;) ( 1 2))
P*| su > exp| — —c,;n(De <P, + Py,
(pe§i=1_[1 2(Y) P 94 ( ) 1 2
where
] P(Yz) 2 )
P, = P*| sup > exp( —c;n(De ,
1 (,,eAiUlpo(Y,-) (=eun(DeY)
n po(Y;) (1 2))
P,=P > exp| —c¢;n(De .

To bound P;, note that if (3.1) is satisfied by ¢, it is also satisfied with ¢
replaced by De, where D > 1. Hence by Theorem 1, we have P; <
5 exp(—cynD%?).

To bound P,, first consider the case 0+ < a < 1. Then, by the Markov
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inequality,
» [po(¥) |° (a 2)
> exp| —c,;n(De
l:[ q(Y)] p g €1 (De)
id po(Y)
< ex —c nD% 2)
i=n1 q(Y;) / p '
= (1 + ap.(Po,9))" exp(gclnDz 2)
@ 2.2
< exp(—EclnD e? + nlog(1l + apa(po,Q)))~
Hence,

a
inf P, < exp(— —c,nD%?% + nlog(1 + a6n))
qEZ, 2

a
< exp(— EclnDzes'2 + naﬁn).

(ii) The only difference from part (i) is in the bound for P,. Write

(Zlog( )(Y) —cln(Da))

=P(i[log(q)(Y) Elog( (Y)] —cln(Da) —n[polog( ))

i=1
Hence, if [p, log(p,/q) < 3¢,nD%?, then

pu=n o 2] [0 ool 2] |

Tn

Finally,

£P .
025 = (U DemD% — 500"

This completes the proof. O
We are now ready to give the convergence rate of sieve MLEs.

THEOREM 4. Let cq,...,c, be the same as in Theorem 1, {(7,,n=12,..}
be a sequence of approximating spaces, p be the corresponding m,-sieve MLE
and 8,(«) and 7, be as defined in Theorem 3. Let &, be the smallest value of &
satisfying (8.1). Define, for any 0+ < a <1,

En>s lf&n(a) < %Clé’f,

(48,( a)/c1)1/2, otherwise.

&n (@) =
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() For any a € (0,1], if 6,(a) < 1/a and 1, < 3c(&f(a))?, then
P(I15"2 - p¥2lly = & (@)) < 5exp(—cyn(ef(@))’)

+ exp(—inacl(a,’f(a))z).
Gi) If m, < 3c.(&F(0+))?, then

P(IIpY* — py/?llz = 5(0+)) < 5exp(—cyn(ef (0+)))
4T

n

—
cin( ey (0+))

‘Proor. For any q € &,, we have
P(Il5/2 - p}/*lls > De)

sP( sup np(Y)/q(Y) > exp(—nm,) |-

(lpY2-p¥/ 222 Ds, pegy} i=1

The result follows by applying Theorem 3 with ¢ = ¢, and
1, if §,(a) < fc,€2,
- (48,( ) /c,87 )1/2 , otherwise. |

5. Some examples.

ExaMpPLE 1 (Density estimation). Let Y;,...,Y, be independently identi-
cally distributed according to a density p,. We want to determine the rate of
convergence of the MLE in estimating the unknown density function p € %,
where ¥ is the parameter space.

Takes = {f=g%g € C"[0,1],§ 2 0, [g% = 1and |gVllsp < L;,1g"(x;) —
gM(x )l <L, %, — x5/, j=0,1,...,7}, where r>1, 0<m <1 and L;
(j=1,...,r) are fixed constants. For the regular MLE, we only have to
calculate the corresponding bracketing L, entropy of the space of square root
densities in order to apply Theorem 2. Following a result by Kolmogorov
and Tihomirov (1959), we know that H(u,%) <cqu™'/"*™ for some

positive constant cg; depending on L; for j=0,...,r + 1. It follows
from some calculations that the smallest & satisfying (3.1) is
&, — kcg+m)/(2(r+m)+ 1) n—-(r+m)/(2(r+m)+1) where k — [(2(,. + m) _

l)c cg V/ArTm]=2(r+m)/Gr+m)+ 1) Applying Theorem 2, we have the following
1nequahty for the MLE p:

P(I5Y2 ~ p¥la = 5,) < Bexp(—con(5,)°),

where c,,...,c, are constants specified in Theorem 2.

ExaMPLE 2 (Nonparametric regression with mixture of normal error). Let
Y, = :U‘( x;) + &,
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where ¢; is distributed as a mixture of two normal distributions. The condi-
tional density function is

1 (v — u(x))”
f(y)=(1—B)(2ﬂ_)1/2eXp(_ ) )

1 (_ (v - N«(zxi))2 )

+ B——5—ex
B(27'r)1/20 P 20

where B is a known mixing coefficient between 0 and 1, but both u(:) and o
are unknown.

Let us consider the problem of estimating the unknown regression function
wx) € U= {peC’0,1: |pPllep <L;, j=0,1,...,p} and o €(0,),
where L;, j =1,..., p, are fixed constants. This is the well known example
often cited [see Kiefer and Wolfowitz (1956)], in which the regular MLE is not
consistent. We will choose a sieve which leads to an estimate not only
consistent but also that converges at the best rate. Consider the sieve
&, ={(pn,0), p€U,a, < o< x}, where a, is a sequence of positive numbers
converging to zero at a certain rate.

In order to apply Theorem 4, we need to calculate the bracketing Hellinger
metric entropy. To do this, we apply a lemma in Ossiander (1987) or Proposi-
tion 1 of Shen and Wong (1994). Let B;(s) be {t = (8,, 0p) € U X [a,,):
10y — 01llsup + |0y — 04|l < 8} and s = (6,, o). After some calculations, we
have

fSI:p)[fl/z(t, y) = %(s,»)]" dy
Bs(s

skf sup (f(¢,y) —f(S,y))z/(fl/z(t,y) "‘fl/z(s,.')’))2 dy

Bs(s)
<k8%/a2,

for some & > 0. Following a result by Kolmogorov and Tihomirov (1959), we
know that H(u,%,) < H(a,u, ®) + H(a,u, (0,), || - llswp) < cya,/P*™
Xu~1/P*™ for some positive constant ¢, depending on L; for j =0,..., p.
Furthermore, since a, — 0, the approximation error §, is zero if n is large
enough. Hence, by Theorem 4, the convergence rate of the MLE is || p1/2 —
Py %lly = O (n=(prm)/@p+m+thg ~1/@(p+m* D) After some calculations, it can
be shown that [1/6 — 1/0,| < cll p'/% — p{/?|l3 for some constant ¢ > 0 and
a > 0. From this, we see that |G — 0y = 0,(1). Now, applying Theorem 4
using the restricted parameter space {(u, o) € 0,: |0 — o,| < ¢} for some
small 0 < ¢ < 0,/2, we obtain || p/2 — p{/2|l, = Op(n_(‘””‘)/@("*”‘)“)).

ExaMPLE 3 (Projection pursuit). Let

Y, =g(d"X;) + &,
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for i =1,...,n, where a = (a,,...,a,) is an unit vector and X; are iid.
p- dlmensmnal unit vectors with den51ty supported in the unit ball of %P. The
joint density of (X,Y) is denoted by p,(x, y), where 6 is (g, a). We estimate
the unknown function g and the projection index a using the method of
sieves. Let ® = A X B, where A = C™[—1,1] and B is the unit sphere in
#P. Consider a B-spline approximation. Let A, = {Z/»?*!b;¢(x): x €
[-1,1, max;_; _, .ps1lbil <I,}and ©, = A, ><B where(¢1, o b s (p+1)
are B-splines of order p + 1 on [—1,1] w1th ¢; supported on [x;, x;, .5l
and (-1 =xy,...,%, ., = 1 is the uniform partition of [-1, 1] support-
ing the basis functlons see Schumaker [(1981), page 224]. The approximation
error of A, under sup-norm is inf E(.,nllg &ollsup = O(r;™) [Corollary 6.21
of Schumaker (1981)].

Assume that the density of & is Cauchy, that is, f(x) = 1/(z(1 + x?)).
Then after some calculations, we have &(0+)=K(p, p,) = [log(1l +
1(g(aTx) — go(aox))z)l(x) dx, where K(p, p,) is the Kullback-Leibler num-
ber and I(x) is the density of X. Note that the approximation error for the
projection index a is zero. Hence, 8(0+) < O(nf, c ¢ llg — gollsup) = OCr;™).
Let B;(68) be {(g, a): llg — gyllsup < 8/2, lla — a,,IIsup < 8/2}. Then,

[ sup (p/?-pi?) <k%?,
0’ €Bs(6)

where k is a certain positive constant. Let %, = {p,: 6 € 0,}. Hence, H(u, %,)
< (r, log(I%r,/u) + k' log 1/u) for some constant &’ > 0, and by Theorem 4
| p pl/2 _ p1/2||2 =0, (max(n~1/2r1/%(log 12r,)*2, r,™)). Consequently, the
best possible rate for the sieve MLE is O (n""/ @m+(Jog n)m/@m+D) by
choosing r, = n¥/@™*D(log n)/@m*D, To gam an understanding of the
strength of thls convergence, it is useful to know that

[(8:(a3X) — gx(al X)) P(dx) < cllpi/* - pilI}.

Hence the L, norm of the estimated conditional mean function converges to
the true conditional mean function at this rate.

ExaMpLE 4 (Finite sieves). In this example we suppose that & has finite
bracketing Hellinger entropy H(e) and consider the construction of finite
sieves that will lead to estimates with optimal convergence rate. Let 7, be a
sequence of positive constants and let

G = {(pJUn, ijn)’j = 1,-~,~,Nn = exp(H(Tn))}

be a 7,-bracketing of &. Let &Z, = { pJ v p] o J = , N} be the finite sieve
obtained by normalizing the upper bracketing functlons from Z,. We now
apply Theorem 4 to determine the convergence rate of the correspondmg
sieve estimate p and to determine the optimal choice for 7,.
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Let (pU, p%) € £, be the pair that brackets p,, that is, p” < p, < p" and
I(pU)Y2 — (p™)'/2|ly < 7,. Define g, = p’//p”. Then q, € ¥, and
(po/q)"? < (JpY)V? < (1 + 27,)"/?. Hence,

2
[(po—a0)"* /a0 = [(1+ (Po/0)"*) (PY/* = a5*) < 107,

that is, the y? approximation rate §,(1) for this sieve is O(72). Using the fact
that H(e, Z,) = H(z,) for & <im,, it is easy to verify that ¢, =
O(max(n~1/2HY%(r, /c,), 7,)), where ¢, is the smallest value of & satisfying
(3.1). It then follows from Theorem 4 that

P(Ilp% - p¥2llz = &,) < c'exp(—c"ne;)

for some c¢’,c” > 0. Finally, choosing 7, to optimize the rate &,, we obtain
that the optimal choice of 7, is determined by the relation

H(r,) < nt2.
This is the same as the relation (1.5) mentioned in the Introduction, except
that the bracketing Hellinger entropy is used there. The construction of sieve

estimates to attain or nearly attain the rate given by (1.5) with Hellinger
entropy is more complicated and will be taken up in the next two sections.

REMARK. It is clear from Example 4 that it is very useful for a sieve &, to
have an “upper approximation property,” that is, the ratio of any p € F toits
best approximation in %, is bounded by some absolute constant. In this case
the x2 approximation rate is the same as the Kullback-Leibler or the
squared Hellinger approximation rate.

6. An inequality for the Kullback-Leibler number. It is well known
that the squared Hellinger distance is bounded by the Kullback-Leibler
number: [(p'/% — ¢*/?)? < [plog(p/q), where p,q are densities. In this
section, we show that, under an integrability condition, the reverse inequality
is almost true in the sense that [p log(p/q) = O(s? log(1/¢)), where et =
[(pY/% — q'/?). Since it is often easier to bound the Hellinger distance than
the Kullback—Leibler number, this inequality is useful for the control of the
Kullback-Leibler approximation error in the application of Theorem 4. Fur-
thermore, as will be described in Section 7, the inequality plays an important
role in the construction of optimal sieve estimates.

THEOREM 5. Let p, q be two densities, [(p*/? — q'/*)* < &*. Suppose that
MZ2 = [{p/qzel/s)p(p/q)‘s < for some &< (0,1]. Then for all & < 11 -
e 1?2, we have

2log 2 8 M
fp log(g) < |6+ ———g——z + —max(l,log(———s)) &2,
q (1-e1) 6 &

o) <5 o 2]
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Proor. To prove the first inequality, let y = (p/q)*/? — 1 and write
a=(p¥? — q'/*? = qy* and b = p log(p/q) + g loglq/p) = 2qy(y +
2log(1 + y). Since log(1 + y)/y < 1,when0 <y < land (y + 2)/y < 3, when
y > 1, we have

b/a =2[(y + 2)1 +1)]/y < 6, ifo<y <1,
/a=2{(y Jlog(y )N/ < 6log(y +1), ify=>1.
Hence, for any K > 1, we have
b= b < 6max(1,log K)&2.
";1<p/qu2) '[(0<ysK—1) ( g K)
Similarly, ;; <, /<. < 622 On the other hand, for K* > ¢'/°, we have

p
b= p—q log(—)
'l;p/quZ) ‘/;p/quz)( ) q

(p)6 log(p/q)

sf pl=| |——=

(p/a=K% \q (p/9)
log(K?)

< —I{W—Mg

The last inequality holds because the function log(x)/x° is decreasing for
x> e/ Let B={p/q > e 2}. Then

foreel ) < [l )
- fp- [ 3)
q/Q(B)]

_ _ q

= Jb Q(B)fB( Q(B) )1°g[p/P(B)
~ Q(B)log Q(B) + Q(B)log P(B)

< [ b= Q(B)log Q(B).

By Lemma 2, Q(B°) = Q(p/q < 1/e?) <(1/(1 — e 1)) e?. Hence, if £° <
1(1 - e 1)?, we have log Q(B) = log(1 — Q(B)) = —(2log 2)@(B°), and
—Q(B)log Q(B) < (2log2/(1 — e 1)?)¢?. Notice that [zb can be decomposed
into three integrals, and each of them has already been bounded in the above.
Then, finally,

log K 2log 2

M2+ ——
Kz.s 8 (l—e_l)

' fp log(g) < 6max(1,log K)&? + 6% +

provided K2 > e'/2. The result follows if we choose K = max(e’/?,(M,/&)"/?).
The proof of the second result is simple and will not be presented here. O
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7. Upper and lower bounds for rates of sieve estimation. In this
section, we assume that # has finite Hellinger metric entropy H(-) and study
the question of whether there are sieves which are “optimal” in the sense that
the associated sieve MLEs attain essentially the same order as the rate ¢,
defined by the relation

(7.1) H(e,) =nel.

We will show that if local suprema (over small Hellinger balls) of densities
are uniformly integrable, then there exists a sieve MLE which attains the
rate £, up to a multiplicative factor of (log(1/¢,))*/%. This result follows
immediately from Theorem 6 below. The reason why we are interested in the
rate defined by (7.1) follows from Theorem 7 which implies that under such a
condition, the rate &, is essentially the best rate attainable by any estimate.

THEOREM 6. Let &, be defined by the relation H(e,) = ne?, where H(") is
the Hellinger entropy of . Suppose there exists a constant K >0 and an

g,-net {s;,..., sy}, where N = e"») with the following properties:
SUp,c 5, p(x) < mj(x), where B; = {p € 7 | pl/2 — sl/2ll2 < &,)} and m; are
integrable functzons with [m; (x)d w < K2. Then, there exist a sieve MLE p
such that

P(15'/2 = /2l > a,5,[log(1/¢,)]""*) < a, exp

&n
" log(1/,) |’
where a;, i = 1,...,3, are positive constants depending only on K.

Proor. Define g; by g;/% = (s> + g,m}’?)/c;, where ¢ = [(s}/? +
e,m¥?)? < (1 + £,K)*. Then g; is a density and, for all p € B;, we have:

(@ (p/q)V* <K+ 1/s,.
® ligj’? = p'?lls < 1 + 2K)e,.
© M7= [p,q>0P(p/0) <1/Q - e D2XK + 1/¢,)%2.

Note that Lemma 2 was used in establishing (¢). Let &, = {q;,..., gy} and
q, be the element in &, that is closest to p,. To prove the theorem, write

n Y. 1
P(e)=P sup ]—[ p( ) 2 exp(— anz))
(ped,: I p/2~p¥/2la= s} i=1 qo(

<P, +P,,

where P; = P(sup,c 5. 1pi/2-py2y, = oyl 1i=1P(Y))/Po(Y;) = exp(— ine?)) and
P, = P(TT~ , po(Y))/qo(Y;) > exp(3n£?)). Using Lemma 1, we have P; <
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exp(H(g,) — 3ne?). By Bernstein’s inequality for upper bounded variables,
we have

16% — [p, log( PO/QO)]2
< exp| —ny SR ; 0
[8fpo(log(po/qo)) + 2log(K +1/¢) (3 — [po log( po/‘lo))]

Using Theorem 5 and properties (a) and (c) above for gy, we have for some
constant Cg,

fpo log( po/q0) < Cxel(1 + log(2(K + 1/¢,)))s

fpo(IOg( Po/%))2 < 2log(K + 1/8n)fpo log( Po/90)-

The result follows if we choose &2 = max(8/p, log(p,/q),8¢2). O

COROLLARY 1. Under the same conditions and notations as Theorem 6, we
have
2

p 1/2 1 &
P fp log(—o) >a,e, log— | < a,exp| —a n—-——|.
0 b T e 2 ®" log(1/¢,)

n

PrOOF. This follows from Theorem 5, Theorem 6 and the fact that
(po/D)Y?* <K+ 1/¢, O

According to Theorem 6, there exist sieve estimates converging at the rate
e,(log(1/¢,))/2, where &, is defined in (7.1). We now show that, under the
conditions used in Theorem 6, no estimator can converge at a rate faster than
e,(log(1/¢,)) "'/ Hence, under this integrability condition, the sieve estima-
tor can achieve essentially the best possible rate of convergence. First we
define some notations: Let & be a class of nonnegative integrable functions. A
finite subset S C & is said to be e-distinguishable if

inf{lls¥? = s}/2la: 5,85, € T s £ 5} 2 6

Let D(e, £) be the cardinality of the maximal e-distinguishable subset G.e.,
such a subset with the largest possible number of elements). For any density
g, we denote by Q™ the n-fold product measure induced by g. For any é > 0,
let

B;={p e7:1Ip"? — p§*llz < 8}.
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THEOREM 7. Suppose that for some &, > 0, there is an integrable function
m such that Sup,cp p(x) < m(x). Denote [m(x)du(x) by M. Then, there
exists a constant ¢ > 0 such that for any d > 1 and any estimator T(y, ..., y,)
taking values in &, we have

sup P(")(IITI/2 -pYy = %e) > 1 - 212Mnt/%d
p€B4€

provided:

@ D(e,B,,) > 1.
(i) cdn £ log(1/¢) < D(e, B,,).

ProoF. Let{p,,...,p,}, r = eP(*Bs) be a maximal e-distinguishable sub-
set of B,, and write g}/% = (pl/%2 + £?m'/?) /c;, ¢ = [(p}/? + £?m'/?)? du.
Then g; is a density and it is easy to verify that:

(@ 1l<c; <1+ Ms

M) llg}’? — p}/2ll, < 2V2M &4,

© llg}? —p}?lly < (4 + 22°M)e.

D M} = [g,/4,>99:(2:/) < (1 + Ms?)/2%1(4 + 22°M)? /(1 — e"1)?] 2.
Lemma 2 was used in the derivation of (d). It follows from (d) and Theorem 5
that:

(e fq;loglq;/q;) < c'de? log(1/¢) for some constant ¢’ which depends

only on M.
According to Fano’s lemma [Has’mjnskii (1978); Ibragimov and Has’'minskii
(1981)], for any mapping ¢(Y,,...,Y,) taking value in {1,...,7}, we have

rIS_ QEN(Y,,...,Y,) # i) > 1/2 provided SUP; <<, nfq, log(g;/q;) <
—log(r -1 — log2. By usmg (e) and condltlon (1), the condition in Fano’s
lemma can be verified if ¢’ de? log(1/¢) < % log r. Hence the condition of the
theorem implies that

r
Qg #i) 2 b
i=1
By (b), the variational distance between P{™ and @Q{™ is bounded by
2Y2Mne?. Hence we also have

rot 2 P("(¢ #1i) = 3 — 2"/°Mns?.
i=1
The theorem follows by defining ¢ =i if p, is the element in S closest to
T(yq,---,3,)- O

Condition (i) of Theorem 7 will be satisfied for all small £ unless ¥ is finite
in a Hellinger neighborhood of p,. To understand the relationship between
condition (ii) and the rate ¢, defined by (7.1), it is useful to note that
D(e, By,) < H(e/2, B,,), where H(-, B,,) is the entropy function (in Hellinger
distance) of B,,. Now, in most cases when % is infinite dimensional, the local
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entropy H(e, B,,) and the global entropy H(e,¥) are of the same order. In
such cases it is easy to see that, with suitably chosen constant c¢” > 0,
e=c"¢g,(log(1/¢,))"1/? satisfies condition (ii). Hence, if £? <n~" for some
constants d > 0 and 7 > 1/2, then we have

1 1\
sup PM||TY2 — p'/2|l; > —c¢” sn(log———) > — — 2V2Mn - 1/D),
pGBAts 2 en 2
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