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A NOTE ON THE RUN LENGTH TO FALSE ALARM OF A
CHANGE-POINT DETECTION POLICY'

By BENJAMIN YAKIR

University of Rochester

A new proof is given to a known result on the average run length to
false alarm of the Shiryayev—Roberts change-point detection policy when
the observations are nonlattice. Via the approach of this new proof, the
average run length to false alarm can be calculated in the lattice case and
for the mixed-type Shiryayev—Roberts scheme.

1. Introduction and notation. The Shiryayev-Roberts change-point
detection policy is an efficient process monitoring scheme. Many works have
been written during the last years about the optimality properties of this
policy and on how the scheme can be implemented in different settings. In
this work we consider the model of independent observations from a one-
parameter exponential family.

Specifically, let f,(x) be a density of some probability measure on a sample
space, and consider the family of probability measures with densities

fy(x) = explyx — ¥()]fo(x), yeEQ,
where () is an interval on which (:) is finite. Without loss of generality it
can be assumed that ¢'(0) = 0.
Let X, X,,... be a sequence of random variables. The log-likelihood ratio
of an observation X, is

Z} =yX;, — ¥(y).

I(y) =y¢'(y) = ¥(9)-
The Shiryayev—Roberts statistics are defined to be

R(n,y) = X eXp( ZZ?), n=12,...
k=1 i=k

Notice that the sequence of statistics satisfies the recursive relation
R(n,y) =[R(n—1,y) + 1]lexp(Z)), R(0,y) =1.
Given a probability measure F' on ), the mixed-type statistics are

R(n,F) = /kéexp(ézg) dF(y), n=12,....

Its P{-mean is
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The appropriate stopping rules are
N(A,y) =inf{n: R(n,y) = A},
N(A,F) =inf{n: R(n,F) > A},

respectively.

These statistics should represent, in a sense, the likelihood of a change
occurring in the past, given the information available at present. The
Shiryayev—-Roberts monitoring policy sets an alarm the first time that these
statistics are larger than some critical value A. The model used to design the
monitoring scheme assumes that the X’s are independent. The marginal
density of the random variables before the change is f,(x). After the change
the marginal density is f,(-). The simple Shiryayev—Roberts scheme fixes
some reference value y, while the mixed-type sets a prior distribution F on
the set of possible parameters after the change. The symbol P will be used
to represent the first distribution model with X, being the first observation
with marginal distribution £,(-), and P, will represent the model of no
change, that is, the observations are i.i.d. with density f,(-).

The objective is to set an alarm as soon as possible after the disruption in
the process occurred, subject to a constraint on the rate of false alarm—the
average run length (ARL) of the scheme under the regime P,. Therefore, one
must know the relation between the critical value A and the ARL to false
alarm. Asymptotic approximations to the average run length were developed
in Pollak (1987). He used the fact that R(n, y) — n is a P_-martingale for all
y € () to derive the relations

E.N(A,y) =E.R(N(A,y),y) and EN(A,F)=E.R(N(A,F),F).
From these relations it follows that the ARL to false alarm is at least A.
Pollak was able to get first-order approximations by investigating the asymp-
totic properties of the overshoot. This he did for the simple scheme, assuming
that the log-likelihood ratio is nonlattice, and for the mixed-type scheme,
assuming that the log-likelihood ratio is strongly nonlattice.

In this paper we propose a different approach to getting the first-order
approximations. Instead of investigating the distribution of the stopped pro-
cess, we approximate directly the distribution of the stopping time itself. Via
this approach we are able to give not only what we believe to be a simpler
proof of Pollak’s result, but also an approximation of the run length in the
simple lattice case and we extend his result in the mixed-type case by
dropping the assumption of the log-likelihood ratios being (strongly) nonlat-
tice. Moreover, it can be shown that the asymptotic distribution of the run
length is exponential in all the cases we discuss.

The backbone of our approached is summarized in Lemma 1 in the next
section. In that lemma the distribution of the Shiryayev—-Roberts stopping
rule is compared to the distribution of the power-1 SPRT stopping time.
Recall that the simple power-1 SPRT stopping time is

M(A,y) = inf{n:exp( iZjV) ZA}.

i=1
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Denote by H? the asymptotic distribution, under the regime P?, of the
overshoot LM 9ZY — log A, and let

y(y) = fowe‘x dH( x)

be the Laplace transform of H” at 1. The (approximate) significance level of
the test is y(y)/A. In the mixed-type case the stopping rule is

n
M(A,F) = inf{n: fexp( Zzg) dF(y) ZA},
: i=1
and the approximate significance level is y(F')/A, where

y(F) = [v(y) dF(y).

[See Woodroofe (1982) and Pollak (1986) for details.]

In the next section we demonstrate the implementation of the basic
approach in the simple nonlattice scheme. In Section 3 we discuss the
adjustments needed to handle the simple lattice case and the mixed-type
scheme.

2. The nonlattice case. In this section we consider the simplest setting.
Calculating the average run length in the more complex situations requires
only minor modifications of the arguments used in the proof of the result for
this case.

THEOREM 1 [Pollak (1987)]. Ify € Q, I(y) < » and the P}-distribution of
Z? is nonlattice, then

A
EwN(A,y) = W(l + 0(1)),

where o(1) > 0 as A — .

Before proving the theorem, let us prove a lemma that relates the distribu-
tion of the Shiryayev—Roberts stopping time to the distribution of the power-1
SPRT.

LEMMA 1. Let m = m(A) be a sequence that satisfies
A log A

— > o and -0,
m m

as A - ». Under the assumptions of Theorem 1, it is true that

P(N(A,y) <m)

(1) PAM(Ajm,y) <m) A=t
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ProoF. From the basic definitions it follows that for any stopping time

m

P(N<m)=Y [ 4P,
j=1"{N=j}
m J dpPy
(2) =L X[ ==
j=1k=1"{N=j} (J,¥)
m dpPy}

,El '/;kstm)m'
Let a = log A and r(n, y) = log R(n, y). Now
dpP}
'/;ksN(A,y)sm}R(N(A, y)’y)
_ f{ng(A,y)sm)eXp[_(r(N(A’y)’y) - a)] dpP}
y .

The denominator in (1) is [y(y)m /AX1 + o(1)), since m grows faster than
log A. It will be enough, therefore, to show that, for most of the %’s, the value
of the integral in the right-hand side of (3) is approximately y(y).

In order to evaluate this integral, let us investigate the properties of the

(3)

process r(k — 1,y),r(k,y),...,r(k —1+n,y),..., under the distribution
P}, given the value of r(k — 1, y). Easy calculations show that
k—1+n
r(k—1+n,y)— Y Z}
i=k
(4) k-1+n J-1
=log|R(E—1,y)+1+ ) exp{— ZZiy} )
j=k+1 i=k

Under the regime P}, the right-hand side of equation (4) is bounded by the
random variable log(R(k — 1, y) + 1 + Wi(k, y)), where

Y Jj-1

Wik = % ew|- )
j=k+1 i=k

This random variable is finite with probability 1 [Pollak (1985), Lemma 3]. As

a result we get that the difference in (4) satisfies the first condition of

Theorem A.7 in Siegmund (1986), provided that R(k — 1, y) = o(A).

From the relation
llog(r + 1+ w;) — log(r + 1 + w,)| <|log(1 + w;) — log(1 + w,)|,

r>0,w, >0, w, > 0 and from the a.s.-convergence of the sequence
k—1+n Jj-1
W(k,n,y) = X exp{— ZZ,-y}
Jj=k+1 i=k

to Wk, y) we get that the second condition of Theorem A.7 [Siegmund
(1986)] holds as well, uniformly in % and in the value of R(k — 1, y).
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Given ¢ > 0, consider the k’s that are smaller than (1 — ¢)m. Let m’ =
m'(A) be a sequence such that m’ = 0(A) and m = o(m'). Define

B(k,m') = { sup R(j,y) < m} c {k <N(A4,y))}.
1<j<k-1
By Doob’s inequality it follows that the P/-probability of the event B(k, m’)
is at least 1 — m/m’. From nonlinear renewal theory we get that the over-
shoot r(N(A, y), ¥) — a, given the value of R(k — 1, y), has the same asymp-
totic distribution as the overshoot of the random walk. By integrating on the
event B(k, m'), we find that the value of the integral, on the right-hand side
of (3), is in the interval (1 + £)y(y), when a is big, uniformly in %. This is
true since (1 — £)m /a goes to infinity. Hence

exp| —(r(N A, ) —a)| dP?
[(ksN(A,y)sm} p[—(r(N(A,y),y) - a)] dP;

(%)

v

(1- 8)(1 - %)v(y)

IA

(6) mi +(1+&)y(y).
Plugging (6), (5) and (3) into (2) gives
PAN(A,9) <m) = |- o)1= o )v(n)] 5
“ A - m' A

[ +(1 Z b (1+e) ] e

< — — —
slevA-e) 2+ @A +e)v(¥)| 4>
and the proof is complete, since m/m’ goes to zero and ¢ is arbitrary. O

PROOF OF THEOREM 1. Fix 0 < & < 1(small) and 0 < b < » (large). Choose
the sequence m = m(A) so that m is an integer. Given an integer j, define

gj,m={ijN(A’y)}a Sj,m_S \Sj+lm

Consider two auxiliary processes and stopping times:

n n
Zexp(ZZy) n<jm-1,
14

k=1 =k
R”(n,y) _ jm ) .
( Y zy ) n > jm,
i=k
0, n<jm-1,
R _ n n
(n,y) = Yy exp(ZZiy), n >jm,
h=jm i=k

and,
N"(A,y) =inf{n > jm: R"(n,y) > A},

N'(A,y) =inf{n: R'(n,y) > A}.
Notice that R(n, y) = R"(n,y) + R'(n, y).
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Let 7 = /2. It is easy to check that
(7) P(S; ) = PAS; n; N'(A,y) < (j+ 1)m)
and

) PAS; ) <P(S; i N'(1 - m)A,y) < (j+ 1)m)
+ P(5; ; N"(n4,y) < (j + 1)m).

Consider the last term in (8). Using the same techniques as in the proof of
Lemma 1 we get

P(S; s N"(nA,y) < (j+ )m) <

j,m?

1P (S )
nA
9) - TP 'PY(N(A,y) =mj—k+ 1)
< -
_ EI(M(A, )
7 S

Hence, the last term in (8) is of order (log A)/A. _

Let us use induction to show that the probability of the event S, ,, is
bounded from below for 1 < j < bA/m (and for large A). It is enough to prove
that

— 2ym \’

(10) P(S; ) = (1 - —A—) , 1<j<bA/m.

The claim in (10) for j = 1 follows from Lemma 1. Assume that the claim
holds for j < ¢t (< bA/m). For all these j’s it follows that the right-hand side
of (10) is bounded away from zero by a constant that does not depend on A or
on t. (The constant does depend on b.) The stopping time N'(A,y) is
independent of the event S ; m- From the induction assumption, equation (8)
and Lemma 1 we get, for large enough A, that

P(S;i1m) = 1j) [1 - Pw(sj,mlgj,m)]

¢ m( 1+e log A
> 1-— +C ,
JIJ(:)[ A{‘yl_"’ }]

m

where C < » does not depend on ¢ or on A, and the proof of (10) is complete.
From (7)-(10) and Lemma 1 it follows that, when A is big,

1) (-G <BS,5,.) < 1+ v

for all 0 <j < bA/m.
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Straightforward calculations show that
1—-¢
1-2b exp| — b|).
(1)@ - 2er(eml -8

Using the fact that E,N(A, y) > EAN(A, y) — kIN(A, y) > k), for all k, and
the bound

(12)  E.N(A,y) >

P51 ) < exp[—y(y)(1 - ¢)b]
o\MIbA/ m|,m ] =

1-y(y)ym/A
we get
exp[—¥(y)(1 - £)]
(13) (l_ 1-y(y)m/A )EwN(A,y)
< A 1+ ¢ 'Y(y)bexp[_y(y)(l_a)b]
RS 1-y(y)m/A

Finally, combine (13) and (12), and send ¢ - 0 and b — ». O

3. The lattice case and the mixture-type case. In this section we
extend the method of the proof of Theorem 1 to the case when the P}-distri-
bution of Z} is on a lattice, and we handle the calculation of E,N(A, F).

Let us start with the lattice case. Assume that the distribution of Z?,
under the regime Py, is arithmetic with span d. Let H? be the asymptotic

distribution of
M(A,y)

Z Zzy -a,
i=1

as a > «, a/d an integer. Let G be the distribution of log(Wy(y) + 1 +
Wi(y)), where W,(y) = Wy(1, y) and W,(y) is independent of W,(y) with the
same distribution as the P,-distribution of

o0 J
T exp| £ 1)
j=1 i=1
Determine a distribution K? by the condition
K’(jd +B) =H?((j+ 1)d) ). G?(id + B)
i=0
for j > 0 and Borel sets B c [0, d). Define

Y'(y) = [e*K?(dx).

THEOREM 2. Ify € Q, I(y) < » and the P}-distribution of Z? is arith-
metic with span d, then
A

EN(A.Y) =705

(1+0(1)),

where o(1) - 0 as A — o,
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Proor. Consider (4) as a process in n. Under the regime P} it converges
to the random variable
(14) log(R(k —1,y) + 1+ Wy(k,y)).
Let us show that the distribution of this random variable is continuous.

It is enough to prove that the distribution of W;(y) is continuous. Assume
that it is not. Let A be the support of Z?, and let

w = argmax P{(W,(y) = x).
From the relation
PY(Wy(y) =w) = X PY(Wy(y) = e*w — 1)P{(2)
z€EA
we get that PY(W,(y) = w) = P{(W(y) = e*w — 1), and hence, in particular,
that
Py(Wy(y) =w) = PY(Wy(y) = e™w — "™ D? — - —e? — 1),

for all n > 1 and z € A. The cardinality of this set is not finite, therefore,
Py(W(y) = w) = 0, and the distribution of W(y) is indeed continuous.

Using the same arguments as in the proof of Lemma 1 and nonlinear

renewal theory for arithmetic random variables [Woodroofe (1982), Theorem
4.3], it can be shown that

exp[—(r(N(A4,y),y) —a)] dP}

{k<N(A, y)<m}
1 (1 m )
> —_ —_ !
>(1-¢) — 7' (),

provided that % is big enough. Consider only the k’s that are between em
and (1 — &)m, conclude a version of Lemma 1 and the theorem follows. O

(15)

THEOREM 3. IfF has a positive continuous density with respect to Lebesgue
measure on (), then
A

E.N(AF) = 5

(1+0(1)),

where o(1) > 0 as A — .

ProOF. Use the same arguments as in the proof of relation (2) to get

m dP;}
1 P < = ———dF .
( 6) M(N<m) kgl‘l;)‘l;kstm}R(N,F) (y)
Let r(n, F) = log R(n, F), and fix o € O\ {0}.
dPy?

[{ksN(A,F)sm}R(N(A, F),F)

_ fks(N(A,F)sm}eXp[_(r(N(A’F)’F) - a)] dapy
A .
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In order to show that the integral on the right-hand side of the above
equation converges to y(w), we need to demonstrate that the process
k—1+n

r(k—1+n,F)—- Y Z¢
i=k

17 k—1+n
a7) =logfexp{ .;k (Z;V—Zi‘")}

X[R(k—-1,y) +1+ W(k,n,y)] dF(y),

given the o-algebra generated by the first 2 — 1 observations, is slowly
changing under the regime P;°. The approximation of the integral should
hold uniformly in &, for most of the &’s. This can be proved via the approach
of the proof of Theorem 4 in Pollak (1987).

The rest of the proof of Theorem 3 is similar to the proof of Theorem 1. O

REMARKS.

(1) The difference between the approach presented in this paper, for the
calculation of the average run length to false alarm of the Shiryayev—Roberts
procedure, and the approach of Pollak (1987) is that he evaluated the
distribution of the normalized overshoot R(N(A, y), y)/A, while we consider
directly the limiting distribution of the normalized run length N(A, y)/A.

(ii) It follows immediately from the proofs of Theorems 1-3 that the
normalized run lengths converge to exponential distributions under the
regime P,. The expectation of these distributions are 1/y(y), 1/y'(y) and
1/y(F), respectively.

(iii) Theorem 1 was proved in Pollak (1987). Notice, though, that the proof
there is not complete. In order to prove his Lemma 1, one needs to show, in
effect, that condition 1(c) of Gordon and Pollak [(1993), Theorem 1] holds. The
lemma does not follow from the fact that P, {Q(j, L;) > A/ VC'} is arbitrarily
small, independently of A.

(iv) Theorem 3 is not identical to Theorem 2 in Pollak (1987). He assumed
that the Py-distribution of X is strongly nonlattice for all y € Q, and in our
version this assumption is dropped. The price we pay, however, is that we
assume that the mixing distribution F' has a continuous positive density.

(v) Theorem 2 is, to the best of our knowledge, a new result.
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