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MINIMAX DESIGNS IN LINEAR REGRESSION MODELS

By H. DETTE,! B. HEILIGERS AND W. J. STUDDEN?

Universitdit Géttingen, Universitit Augsburg and Purdue University

In the usual linear regression model we investigate the geometric
structure of a class of minimax optimality criteria containing Elfving’s min-
imax and Kiefer’s ¢,-criteria as special cases. It is shown that the optimal
designs with respect to these criteria are also optimal for A’'6, where A is
any inball vector (in an appropriate norm) of a generalized Elfving set. The
results explain the particular role of the A- and E-optimality criterion and
are applied for determining the optimal design with respect to Elfving’s
minimax criterion in polynomial regression up to degree 9.

1. Introduction. For a compact metric space 2" which contains at least
k different points we consider the usual linear regression model y = f(x)'0,
x € . For each x € 2" a random variable Y (x) with mean f(x)'6 and vari-
ance o2 > 0 can be observed, where different observations are assumed to be
uncorrelated. The vector of continuous, real-valued and linearly independent
regression functions f(x) = (f1(x),..., fr(x)) is known, while § € R* is an
unknown parameter vector. A design ¢ is a probability measure on a sigma
field on 2" which contains all one-point sets. The performance of a given design
is evaluated by its information matrix

M(¢) = [Qﬂ £(x)f(x) dé(x) € RF<,

If £ is an exact design concentrating masses n;/n at the points x;,i =1,...,s,
the information matrix M (¢) is proportional to the inverse of the covariance
matrix of the least squares estimator calculated from » observations, n; at x;,
i=1,...,s.

Almost all optimality criteria which can be used to discriminate between
competing designs depend on the information matrix M (¢) or its inverse [see,
e.g., Silvey (1980) or Pukelsheim (1993)]. In this paper we will consider the
geometric structure of two generalizations of the E-optimality criterion which
minimizes the maximum eigenvalue of the inverse of the information matrix.
The first extension of this criterion is due to Kiefer [(1974), equation (4.18);
see also Kiefer (1975), page 337], who defines a design &, to be ¢p-optimal if
¢p minimizes
WD) by (M(E)) = {it;r(M(g)‘P))l/P, if M(¢) is positive definite,

otherwise.
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Here, 1 < p < 0o and the case p = oo gives the E-optimality criterion. Note
that we have omitted the factor 1/% in our definition and that Kiefer’s ¢,-
criteria can be also considered for the case —1 < p < 1 [see Pukelsheim
(1980)], but throughout this paper we will assume that p > 1. A generalization
of the E-optimality criterion in a different direction results from the Courant
Fischer characterization of the maximum eigenvalue of M~1(¢),

Amax(M71(£)) = max{c' M~} (&)c | c e R%, |c|p = 1}

(here | - |2 denotes the Euclidean norm on R¥). Replacing the Euclidean norm
|- |2 by an arbitrary norm | - | on R*, we will call a design ¢ minimax optimal
with respect to the | - |-norm if ¢ minimizes

(1.2) ¢ (M(€)) = max{c' M~ (¢)c| c € R, |e| =1}

We will omit the dependency on the norm in this definition whenever it is
clear from the context which norm is used in the minimax optimality criterion
(1.2).

In Section 2 we introduce a general minimax criterion which contains (1.1)
and (1.2) as special cases. It is shown that the minimax opt1ma1 design with
respect to this criterion is also optimal for A’6, where A € R**¥ is an inball
vector of a k3-dimensional Elfving set (in an appropriate norm). The criteria
(1.1) and (1.2) are discussed as special cases in Section 3. Finally, the results
are applied in Section 4 for the determination of the optimal design with re-
spect to Elfving’s minimax criterion [Elfving (1959)] in polynomial regression
models up to degree 9.

2. Optimal minimax designs. Let [ € N and let | - | denote an arbitrary
matrix norm on R**! with dual or conjugate norm | - |, that is,

(2.1) |D|,: = max{tr(D'C) | C € R* |C| =1}

[see, e.g., von Neumann (1937), Rockafellar (1970) or Zietak (1988)]. The unit
spheres of |- | and |- |, are denoted by ¢ and 2,, respectively, and we define
a minimax criterion ¢, and an information function jg4, by

be(M(£)) = max{tr(C'MY(£)C) | Ce €},  M(§) >0,

(2.2)
J2.(M(§)) = min{tr(D'M(§)D) | D€ 2.},  M(£)=0.

A design is called minimax optimal (with respect to the norm | - |) if it min-
imizes ¢o(M(£)). In the following we will need an equivalence theorem for
minimax optimal designs which can easily be obtained from general equiva-
lence theorems for optimal designs [see, e.g., Gaffke (1985, 1987), Pukelsheim
(1993), or Hoang and Seeger (1991)].

PROPOSITION 2.1. A design &y is minimax optimal with respect to the | - |-
norm if and only if there exist an integer 1 < ko < k, matrices D1,...,Dy, € 9,
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and positive numbers ay, .. ., ay, with Y©° | a; = 1 such that tr(D,M(éy)D;) =
Jo,(M(ém)), i =1,..., ko, and

ko
(2.3) Zai tr(D;f(x)f(x)D;) < jo,(M(éym)) forall x € 2.

i=1
Moreover, in that case the quantities tr(D;M(éy)D;) (i = 1,...,ko) and
Jo.(M(&x)) do not depend on the choice of the minimax design &yy.

LEMMA 2.2. Let M > 0. Then ¢po(M) = [jo.(M)] . Moreover Cy € €
maximizes tr(C'M~1C) over € ifand only if Do = jo (M)M~1Cy is an element
of 9, and minimizes tr(D'MD).

PROOF. The relation ¢ (M) = [ jg,(M)]~! follows from Cauchy’s inequal-
ity. If Cy € ¢ maximizes tr(C’M~1C), we have, for all C € ¢,

tr?(C'Dy) < (ja,(M))2tr(C'M1C) tr(CyM1Cy) < 1

(with equality for C = Cj), which shows that Dy € 2,. Conversely, if Dy € 9,
minimizes tr(D'MD) and Cy € ¢ satisfies tr(C{ Do) = | Dol = 1, then

1=tr*(CyDo) < tr(CoM~'Co) tr(DyMDy) < jo,(M)ps(M) =1,
which shows that Cy maximizes tr(C’M~1C) and Cy = [jg,(M)]'MD,. O

REMARK 2.3. By Proposition 2.1 the minimax optimal design problem is
related to the nonlinear approximation problem of Chebyshev-type

minimize max f'(x)Ef(x) over E € co{DD'||D € 2.}) (=&, say)

(co(o7) denotes the convex hull of a set .27), which is similar to that considered
in Heiligers (1994) (for weighted polynomial regression and ¢ given by (1.2)).
Due to the complicated structure of the feasibility set &, in general there is
only small hope to find explicit solutions. The problem, however, substantially
simplifies if [ = 1 and if the number % from Proposition 2.1 is known to be 1,
since then it is equivalent to the linear approximation problem of Chebyshev-

type
minimize max |D'f(x)| over D e 9,,
xeZ"

(see also Section 4).

We remark that for all E = }°; o; D; D), € & with a; > 0 for all i, and all pos-
itive definite matrices M such that tr(EM) = jo, (M), the matrix —¢,(M)E
is a subgradient of log(¢¢) at M [see Gaffke (1985), Lemma 3].

Throughout this paper we will use the following matrix norm on RExIm,
m € N, induced by a given vector norm | - | on R**!. For a given matrix A=
(A1,...,An) e RFIM A, e R¥! define

m 1/2
[|All = (Z |Ai|2) .

i=1



MINIMAX DESIGNS 33

It is easy to see that the dual norm of || - || is given by
- m 1/2
(2.4) DIl = (Z!Diﬁ) :
i=1
where |- |, is the dual of the given matrix norm |- | on R¥*! D=(Dy,..., D,,).

We consider a generalized Elfving set

20 = co({(f(x)a’l,...,ﬂx)a'm) xe@, o e R, Y 1ok = 1})
(2.5) j=1

C kalm.

Note that ,@f,ll) is convex, compact, symmetric with respect to the origin and
that for [ = m = 1 this definition gives the set introduced by Elfving (1952),
while for [ = 1 or m = 1 the definition (2.5) yields the generalized Elfving
set considered in Studden (1971). A more general version of this set and some
examples illustrating its geometric structure are discussed in the context of
model robust designs by Dette (1993). The minimum distance of all boundary

points of Qﬁé) to the origin
rY) = min{||A|| | A € 02V}

is called the inball radius of .@ﬁ,ll) , and every matrix A with |A|| = rﬁ,ll) is

called an inball vector of 2. The following theorem shows that inball radii
and vectors of the Elfving set in (2.5) are intimately related to the minimax
optimal design problem.

THEOREM 2.4. Let m > ko and let ay,...,ap, and Dy,..., Dy, € 9, denote
the quantities from Proposition 2.1.

(@) Let D = (jo.(M(ém))™ Y2, (Jar,D,. .., /@kDhy,0,...,0) € REM,
and define A=M (ém)D. Then A is a ||-||-inball vector of .@%) with supporting
hyperplane D. The || - ||-inball radius is given by ry) = (dpe(M(&y)))" V2

(b) The minimax optimal design &y (with respect to the |-|-norm) is optimal
for A’O, where A € R¥¥Im g any || - ||-inball vector of ,%5,?. If D e R¥m s q
supporting hyperplane to .@ﬁ,? at the ||-||-inball vector A, we have | D/ f(xi)zg=1
for all support points x; of £y.

PROOF. Let N = (Ny,...,N,,) € R¥*¥™ N, = 0. Then we have, for all
k x k matrices B > 0,

tr(N'BN)

ja.(B) = min[ TP | e vt 10y < tr(N;BN,)

IN;2
which implies [using (2.4)]
Y7, tr(N;N;B) tr(NN'B)

N2 < . =
VIl = =="B) 72.(B)
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Because j g, is an information function [see Pukelsheim (1980)] it thus follows,
for the polar function of jg,,

tr(NN'B)
J2.(B)
From the dgﬁnition of D and A we have tr(D'A) = 1, and Proposition 2.1 im-
plies that A € 92 with supporting hyperplane D. Moreover, Lemma 2.2,
(2.6) and Pukelsheim’s “mutual boundedness” Theorem 3 [see Pukelsheim
(1980)] yield that
[PDT < 11AIP = b (M(EWNT™ = jo.(M(£u)
2.7 - 1 - 1
T JS.(NN) TN’

26) 5. (M) =int] B0 =i

for all covering half-spaces N of %) [i.e., |Nf(x)|§ =Y f(x)N;Nf(x) <
1V x € 2°]. Thus, using the representation

(2.8) i =min{” ]\;” | N eRMIm N f(x)la <1, Vx € 92”}

the assertion (a) follows. Part (b) is proved by exactly the same arguments as -
in Dette and Studden (1993), and the proof is therefore omitted. O

REMARK 2.5. If D = (Dy,...,Dp) € R¥*m ig a covering half-space to Qﬁ,lt)
achieving the minimum in (2.8), then the matrix A = (|D1|,A1,...,|Dn|.An)/
[|D||? defines a || - ||-inball vector of the Elfving set Q%), where A; € R**! ig
any matrix satisfying

IAj|=1, tr(D}Aj)lejl*, j=1,...,m.
[The matrix A; is called dual of D; with respect to the | - |-norm; see Zietak
(1988).] Even if the optimal covering half-space cannot be determined, the
covering half-spaces of AP provide lower bounds for the minimax efficiency

b (M)
Bte(6) = 5" 31@)

of a given design ¢ when the optimal minimax design £;; with respect to the
| - [-norm is unknown.

COROLLARY 2.6. Let m > 1 and let D denote a supporting hyperplane to
RY. Then the minimax efficiency (with respect to the | - |-norm) of a given
design ¢ is bounded by

7%.(DD) ||D||?
Bife(€) 2 5200 = 3,048

If Disan optimal supporting hyperplane [i.e., D minimizes (2.8)], then the
equality jo, (DD') = ||D||? holds true.
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ProOF. This is an immediate consequence of (2.7) and (2.8). O

REMARK 2.7. The results of Theorem 2.4 can easily be generalized to min-
imax optimal design problems for parameter subsystems. For a given k& x s
matrix K of rank s a minimax optimal design for K'6 allows the estimability
of K'6 [i.e., range(K) < range(M(¢))] and minimizes de(K'M(£)"K)™).
According to Gaffke [(1987), Theorem 1] there exists a left inverse Lj € RE**
of K such that the minimax optimal design for K'6 is minimax optimal for
the full parameter vector in the “new” regression setup y = ' f(x), where
f(x) = Lyf(x). Thus we obtain from Theorem 2.4 that the minimax optimal
design for K'0 is optimal for A’6 for any || - ||-inball vector A € R*** of the
Elfving set égl), where .QS,ZL) is defined as

m
R = co({ DF(x)(Er, .. e |x e X, 5 eR, Y lgjl5 = 1}) C R¥™,
j=1

m = 1,...,s. The applicability of this result is limited (except in the case
s = k, where L, = K -1) because in general L is unknown and a || - ||-inball

O]
8

vector of #5’ cannot be found.

3. Elfving’s minimax and Kiefer’s ¢,-criterion. In this section we will
return to the criteria defined in (1.1) and (1.2), which now emerge as special
cases from the general theory of Section 2, with the same Elfving set (2.5) for
both criteria.

First, let { = 1. Then criterion (2.2) reduces to the minimax criterion (1.2).
The geometric structure of the minimax problem is described in Theorem 2.4
(I = 1), where the generalized Elfving set in (2.5) reduces to the set

3.1) RBm=co({f(x)e |x€ X, ¢ eR",|g|g =1}),

which was first introduced by Studden (1971) when characterizing optimal de-
signs for A’0 (here A € R**™ is a given matrix). Theorem 2.4 now generalizes
the results of Dette and Studden (1993) (|- | = |- |2) to arbitrary criteria of the
form (1.2). The following important examples are mentioned as special cases.

1. Considering the l3-norm, we obtain the E-optimality criterion, while the
l1-norm yields to Elfving’s minimax criterion [Elfving (1959)], that is,

32 (M(£) =max{d M (¢)c | el =1} = I?ialx{M‘l(f)}ii.

2. If the regression norm [see Pukelsheim (1981)]
le|R =inf{a>0|ce a1}

on R” is used in definition (1.2), then it is straightforward to see that the
: optimality criterion (1.2) gives the well known G-optimality criterion, that
is,

br(M(£)) = max{c M (é)c|ce dR1} = max f(xY M~H(E)f(x)
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(note that |- |® characterizes the Elfving set #; as the unit ball). The dual
norm of | - | is given by |d|F = max,cq |d'f(x)| [see, e.g., Householder
(1965)].

Second, let = % and define a norm on R*** by
lAlly = o (A)ly = (tr(AA)P/HYP 1< pl < oo,
where 01(A) < --- < 0(A) denote the singular values of a given matrix
A e R¥** g(A)=(01(A),...,04(A)) and |- |, is the [,-norm on R*. Setting
p' =2p/(p — 1) we obtain, for the optimality criterion (2.2),
b+ (M(§)) = max{tr(C'M~'(£)C) | C e R***, ||C||y =1}
= max{tr(B'M~'(£)) | B= 0, ||Bllp/(p-1) = 1}

= [|M7Y(E)llp = dp(M(£)),

where the last line follows from Gaffke and Krafft [(1982), Theorem 5.10].
Using Pukelsheim [(1980), Lemma 3] we obtain that for 1 < p < oo the
quantities in Proposition 2.1 are given by

(83) ko=1 and D= (tr(M(&,)7P))~ 2P (£,)~(PHI2Q,

where @ denotes an arbitrary orthogonal % x %2 matrix and £, the ¢,-optimal
design. If p = oo, a possible choice for D; is the matrix

(3.4) D1 = (VBiz1,- v/ Bri2hi,0, ..., 0)Q € RP%
where k1 < &, B; > 0, Zf;l Bj=1and z,..., 2, are normalized eigenvectors

of M(£.) corresponding to its minimum eigenvalue which satisfy inequality
(2.3) in Proposition 2.1 for the E-optimality criterion [see also Pukelsheim
(1980), Corollary 8.1]. By an application of Theorem 2.4 we thus obtain the
following result.

COROLLARY 3.1. For 1 < p < oo let ¢, denote the ¢,-optimal design and
let D4 be defined by (3.3)if 1< p <ocoand by (3.4) if p = .

(a) The matrix A = ¢p(M(£p))Y2M(£,)D; defines a || - ||2q-inball vector of
the Elfving set R}, with supporting hyperplane ¢,(M(¢,))Y2Dy, 1/p+1/q = 1.
The || - |l2q-inball radius of Ry is given by (dp(M(£p))) V2

() If 1 < p < oo and A is any || - ||2g-inball vector of the Elfving set Ry,
then the ¢p-optimal design &, is also optimal for A’6.

REMARK 3.2. Let p = 2p/(p + 1), and let D € R¥* denote an “optimal”
covering half-space, that is, ||D||; = 1/r; with singular value decomposi-
tion D = U diag(o(D))V’ [where diag(x3,...,x:) means a diagonal matrix
with diagonal elements x1,...,x:]. Then a || - |[z4-inball vector can be ob-
tained as follows. Consider a dual vector o*(D) of o(D) € R* with respect
to the £y4-norm [that is, o*(D) o(D) = |o(D)ls, |0*(D)|2q = 1] and define
A = Udiag(o*(D))V'/||D||s. Thus we obtain tr(D'A) = |o(D)|5/I|D|ls = 1
and ||A[leq = 1/I|D||3, which shows that A defines an inball vector of #.
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For 1 < p < oo the strict convexity of the £2,-norm implies that A is the
unique || - ||24-inball vector corresponding to D [Zietak (1988), Theorem 3.1,
Corollary 4.2].

REMARK 3.3. Recalling the discussion in Remark 2.7, we see that Corol-
lary 3.1 gives new insight into the particular role of the ¢;-optimality criterion.
Here (¢ = o0) any s x s orthogonal matrix @ (appropriately scaled) defines a
[ - llso-Vector of 97(18) [this follows from Corollary 3.1(a)].

It should also be mentioned that the results of this section can easily be
generalized for unitarily invariant norms on R***. These norms are obtained
by replacing the £,-norm in (3.1) by a so-called symmetric gauge function
¥(-) on R* which satisfies, in addition to the norm properties, the symmetry
assumption

P((e104y,. .., €rai)) = ¢((@1,...,ar)"),

for all permutations a;,,...,a;, of a1,...,a; and for all &£; = F1 [see von
Neumann (1937), Mudholkar (1966), or Zietak (1988) for more details].

4. Elfving’s minimax criterion for polynomial regression. Let/ =1,
2 =[-1,1], f(x) = (1,x,...,x%) and 1 < p < co. Thus we are faced with the
minimax criterion (1.2) with respect to the £,-norm defined in (3.2). Contrary
to an example for spring balance weighing designs (p = 2) discussed in Dette
and Studden (1993), the situation here is more complicated because we are
not able to find the || - || ,-inball radius of the Elfving set # 4.1 defined in (3.1).
However, if the (unknown) number %( in Proposition 2.1 is 1, Theorem 2.4(b)
shows that the minimax design £, is already optimal for any || - ||p-inball
vector ¢ of the first Elfving set #;. This fact was used by Pukelsheim and
Studden (1993) to show that the E-optimal design (minimax with respect to
the ¢3-norm) is supported at the Chebyshev points s; = cos([(d — j)/d]7),
J =0,...,d. Observing these results and Corollary 2.6 it will therefore be
useful to find (at least) the || - ||p-inball vectors of #; and the corresponding
optimal designs. The optimal designs for these inball vectors seem to be good
candidates for minimax optimality. Throughout this example let ¢ denote the
optimal design minimizing the variance of the least squares estimator for the
individual coefficient 6; in the polynomial regression y = 6y + 61 + -+ +
04x% [see Studden (1968)] and define ¢t = (to,...,%q3)") as the vector of the
coefficients of the Chebyshev polynomial of the first kind, that is, ¢'f(x) =
Ty(x) = cos(d arccos x).

THEOREM 4.1.
(@ If 1< p<oo,the || -|lp-inball vector ¢ = (co,...,cq) of #1 has coordi-
nates

_ sign(s)t:] 9}

i s 1=0,...,d.
114 ’
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The c-optimal design for this inball vector is given by &, = Zdzo 1219/181d - &;
and the || - ||p-inball radius is 1/|t|,.

(b) If p=1, the || - ||1-inball vector has coordinates
{sign(ti)—gi if 1] = [tloc,

P =

ltloo”
0, if 1til < |tloo,

where g; > 0 and % g; = 1. The c-optimal design is given by ¢é. = 3_; g;é; and
the || - ||1-inball radius is 1/|¢|s.

Proor. Using (2.8) (for m = [ = 1), we have to maximize |a|, subject to
the restriction |@'f(x)| <1 for all x € [—-1,1], a = (ao,...,aq) € R Using
a result of Cantor (1977), we obtain, for the coefficients of the vector a,

d-1

Iad—2m| + |ad—2m—1| =< |td—2m|, m = 05 ey [TJ$
with equality if and only if @ = F¢. This implies |a|, < |¢|;, and (2.8) shows
that the || - ||p-inball radius of % is given by |t|;1. By the discussion in Re-
mark 2.5 we have to find a dual vector of ¢ (with respect to the £,-norm) which
can easily be obtained considering equality in the Holder inequality [see, e.g.,
Zietak (1988), page 60]. Thus the assertion about the inball vectors follows
directly from Remark 2.5. Let L,(x) = £y0 + £y1% + - - - + £,qx% denote the v-
th Lagrange interpolation polynomial at the points sy, ..., ss. Then it follows
from the results of Studden (1968) that the optimal design &,_2; for estimating
04-2; puts masses |£,4_2;|/It4—2;| at the points s,, v =0,...,d, and Elfving’s
theorem [Elfving (1952)] yields

1 a i 1€vd—2;] . d—1
e o= -1 d—v+j!mva—2j1 Sy), =0,,[—J
|td—2j| d-2j l;)( ) |td—2j| f( v) J 2

Expressing the inball vector ¢ as a linear combination of the unit vectors
eq—2j, the assertion now follows directly by a further application of Elfving’s
theorem. O

To be more explicit, consider the case d = 2. Then it is straightforward to
show that the ¢,-optimal design ¢, puts masses 2972/(1+29) at the points —1
and 1 and mass (142971)/(14-29) at the point 0. Using Lagrangian multipliers
and Proposition 2.1 it can be shown by tedious computations that £, is in fact
the minimax design with respect to the £,-norm for all 1 < p < co.

Recently Pukelsheim and Studden (1993) showed that &, is E-optimal for
all d € N (i.e., minimax with respect to the £3-norm). We will conclude with an
example demonstrating that this might not be true for arbitrary p > 1. To this
end consider Elfving’s minimax criterion (i.e., p = 1, ¢ = 00). Using a table of
Chebyshev polynomials of the first kind [see, e.g., Davis (1963), page 369] and
Theorem 4.1(b), we see that for d = 1, 2, 3 the design &, = &4 can be considered
as a candidate for minimax optimality. For d = 5,6,7,8,9 we get £4_2 as a
minimax candidate while in the case d = 4 [note that T'4(x) = 8x* — 8x2 + 1]
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every convex combination aéz+(1—a)és, a € [0, 1], seems to be a good choice.
Tedious algebra and Proposition 2.1 show that for d = 1,2,3 the design &4
is in fact minimax optimal with respect to Elfving’s criterion. In the case
d =5,6,7,8,9 the design £;_s can be shown to be minimax, while for d = 4
every convex combination of &3 and &4 fails to be minimax (with respect to
Elfving’s criterion). In this case the number k¢ in Proposition 2.1 is 2; the
|| - |l1-inball radius of %2 can only be determined numerically and is smaller
than 1/|¢|e = %. However, we can use Corollary 2.6 to obtain a lower bound
for the minimax efficiency, that is,

Effy,(6) = I - [mix(el M~ (£)en)]

The average of the optimal designs for the coefficients 62 and 04, £* = -21-(§2+§4)
puts masses 3%, %, 1%, % and % and the points —1, —1/4/2, 0, 1/+/2 and 1 and
has at least minimax efficiency Eff| (£*) > % ~ 0.9677, which shows that
&* is a good choice with respect to Elfving’s minimax criterion. Numerical
calculations yield that for d = 4 the minimax design is not supported at the
Chebyshev points and puts masses 0.0958, 0.246, 0.3164, 0.246 and 0.0958 at
the points —1, —0.7086, 0, 0.7086 and 1. Thus the exact minimax efficiency of
the design &* is 0.9997.

The results of the last paragraph suggest that for polynomial regression
of degree d on the interval [—1,1] the minimax optimal design with respect
to Elfving’s minimax criterion is specified by the optimal design for the |- |1-
inball vector of the first Elfving set #; provided that #{j | |¢j| = |tl} = 1. A
partial proof of this conjecture and a more complete discussion of the problem
including minimax optimal designs for parameter subsystems, different design
spaces is given in a recent paper of Dette and Studden (1994).
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