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ADMISSIBILITY OF THE LIKELIHOOD RATIO TEST
WHEN A NUISANCE PARAMETER IS PRESENT
ONLY UNDER THE ALTERNATIVE

By DonaLD W. K. ANDREWS! AND WERNER PLOBERGERZ

Yale University and Technische Universitdt Wien

This paper establishes the asymptotic admissibility of the likelihood
ratio (LR) test for a general class of testing problems in which a nuisance
parameter is present only under the alternative hypothesis. The paper
also establishes the finite sample admissibility of the LR test for testing
problems of this sort that arise in Gaussian linear regression models with
known variance.

1. Introduction. This paper considers hypothesis tests when a nuisance
parameter is present only under the alternative hypothesis. Such tests are
nonstandard and the classical likelihood ratio (LR) test does not possess its
usual chi-square asymptotic null distribution in this context. It also does not
possess its usual asymptotic optimality properties [of the sort considered by
Wald (1943)].

Davies (1977, 1987) first provided a general asymptotic analysis of the
testing problems considered here. He established the asymptotic null distri-
bution of the LR test under a set of high-level assumptions. He also provided
approximations to the asymptotic critical values of the LR test.

Andrews and Ploberger (1994) (denoted AP) developed a class of tests,
called average exponential LR tests, that exhibit explicit asymptotic optimal-
ity properties in terms of weighted average power when a nuisance parame-
ter is present only under the alternative. The weight functions they consider
are particular multivariate normal densities. The class of tests that are
optimal with respect to these weight functions does not include the LR test.
These results, Davies’ adoption of the LR test and the omnibus use of the LR
test make the question of the asymptotic admissibility of the LR test one of
considerable interest (to some at least). It is this question that is addressed in
the present paper.

We show that the LR test and two asymptotically equivalent tests, namely,
the sup Wald and sup Lagrange multiplier (LM) tests, are asymptotically
admissible. In fact, we show that these tests are best tests, in a certain sense,
against alternatives that are sufficiently distant from the null hypothesis. We
establish these results first under a set of high-level assumptions. Then we
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provide primitive sufficient conditions for a number of examples. The exam-
ples considered include tests of (i) cross-sectional constancy in nonlinear
models, (ii) threshold effects in autoregressive models and (iii) variable
relevance in nonlinear models, such as Box-Cox transformed regressor mod-
els. Primitive sufficient conditions for tests of changepoints are given in AP.
Two examples that are covered by the high-level results, but for which
primitive conditions are not provided, are tests of (i) white noise versus
first-order autoregressive moving average structure and (ii) white noise
versus first-order generalized autoregressive conditional heteroskedasticity.

Next, we consider finite sample admissibility of the LR test for the Gauss-
ian linear regression model with known variance. Minor modifications to the
proof of the asymptotic admissibility result yield finite sample admissibility.
The types of hypotheses covered by this result include tests of (i) single and
multiple changepoints, (ii) variable relevance for Box—Cox transformed re-
gressors and (iii) cross-sectional constancy, among others. The admissibility
result for a single changepoint in the case of an iid univariate Gaussian
location model replicates a recent result of Chang and Hartigan (1993).

The remainder of this paper is organized as follows. Section 2 presents the
main asymptotic admissibility result under a set of high-level assumptions.
Section 3 presents examples and provides primitive sufficient conditions for
the high-level assumptions. Section 4 states the finite sample admissibility
results for tests concerning a Gaussian linear regression model. Section 5
gives proofs of the results stated in earlier sections.

2. Asymptotic admissibility. This section introduces notation and as-
sumptions and states the asymptotic admissibility result of the paper. The
notation and assumptions are very similar to those of AP.

2.1. Notation and definitions. Let Y, denote the data matrix when the
sample sizeis T for T' = 1,2,... . Consider a parametric family {f( Y1, 0, ).
00O, mell} of dens1t1es of YT with respect to some o-finite measure .,
where ® C R® and II is some metric space (usually a subset of Euclidean
space). The likelihood function of the data is given by f;(0, 7) = (Y, 6, 7).

The parameter 6 is taken to be of the form 6 = (B’, '), where B € R?,
6 € R? and s = p + q. For example, in one-time changepoint problems, the
parameter 7 € (0, 1) indicates the point of change as a fraction of the sample
size, § is of the form (87, 8;), 8, is a prechange parameter vector, 8, + B8 is a
postchange parameter vector and §, is a parameter vector that is constant
across regimes.

The null hypothesis of interest is

(2.1) H,: B =0.

In the changepoint problem, this is the hypothesis of no change. The alterna-
tive hypothesis is

(2.2) H:B+0
and the likelihood function depends on the parameter .
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We let 6, denote the true value of § under the null hypothesis. Under the
null hypothesis, the likelihood function f;(6,,7) does not depend on the
parameter 7 and is denoted f;(6,). Let I,(0, 7) = log fr(0, w). Let DI(0, 7)
denote the s-vector of partial derivatives of (6, w) with respect to 6. Let
D?1,(0, w) denote the s X s matrix of second partial derivatives of (6, 7)
with respect to 6. [Note that DI(6,,7) and D?1,(8,,7) depend on 7 in
general even though f;(6,, 7) and [;(6,, 7) do not.]

We consider the case where the appropriate norming factors for DI(6, 7)
and D?1,(6, ) [so that each is o, (1), but not o (1)] are nonrandom diagonal
s X s matrices B;' and Bj! X BT 1 respectlvely, where [Br'];; — 0 as
T —> oV j<s. For nontrendlng data, the matrix B is just VT TI.. For data
with deterministic time trends, B, is more comphcated see AP The local
alternatives to H, that we consider are of the form f;(6, + B;'h,w) for
h € R® and 7 € II.

All limits below are taken “as T' — «” unless stated otherwise. We say that
a statement holds “under 6,” (i.e., under the null hypothesis) if it holds when
the true density of Y, is fp(6,) for T =1,2,.... Let A, ,(A) denote the
smallest eigenvalue of a matrix A. Let ||-|| denote the Euclidean norm. Let
wp — 1 abbreviate “with probability that goes to 1 as T — «.”

2.2. Assumptions. The likelihood function/parametric model is assumed
to satisfy the following assumption.

AssumPTION 1. (a) f;(6, 7) does not depend on 7 for all # in the null
hypothesis.

(b) 6, is an interior point of ©.

(c) fr(6, w) is twice continuously partially differentiable in 6 for all 6 € @,
and 7 € Il with probability 1 under 6,, where @, is some neighborhood
of 6,.

(@ sup,cy, geo,| — Br'D*1p(0, m)B;" — 10, m)| =, 0 under 6, for some
nonrandom s X s matrix function I(#, 7) and some sequence of nonrandom
diagonal s X s matrices {By: T > 1) that satisfies [B;];; > as T —»
Vj<s.

(e) I(0, 7) is continuous in (0, w) on O, X II.

(0 X(6,, m) is positive definite for all 7 € II.

The matrix function I(6, 7) introduced in Assumption 1 is the asymptotic
information matrix for 6 for given =, which depends on both 6 and 7. See AP
for comments on Assumption 1.

Let 6(m) [ = 6,()] be the (unrestricted) maximum likelihood (ML) estima-
tor of 6 for fixed 7 € II. That is, O(r) satisfies

(2.8) Up(6(w),7) = suplp(8,7) VYo eIl wp — 1under 6.
e ®
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Let 6 be the restricted maximum likelihood estimator of 6. That is, 0
satisfies

6c® ={0€0:0= (0,8 for some 5 € R},
9,

(2.4) lp(0,7) = suply(0,7) wp — 1lunder6,.

06
Note that 6 does not depend on 7 by Assumption 1(a).
We assume that the parametric model is sufficiently regular that the ML
estimators O(w) and 0 are consistent for 0, under the null hypothesis
uniformly over 7 € II.

ASSUMPTION 2. sup,, . [16(w) — 6l -, 0 under 6,.

ASSUMPTION 3. 6 — 6, —, 0 under 6.

The parameter space Il is assumed to satisfy the next assumption.
AssuMPTION 4. II is a compact metric space with metric p.

We now specify high-level conditions under which the asymptotic null
distribution of the sup LR, Wald and LM test statistics (defined below) can be
determined. Let —, denote convergence in distribution. Let = denote
weak convergence of stochastic processes indexed by 7 € II. Below we con-
sider weak convergence of the process B;'Dl;(6,,7) (€ R®) indexed by
am € I to a process G(6,, w). Note that the definition of weak convergence
requires the specification of a metric d on the space E of R*-valued functions
on I1. We assume d is chosen such that (i) the function

(2.5) G(-) - s:%(HG(w))'[HI‘l(OO,w)H’]_lHG(w)

is continuous at each function G € E that is continuous on II, where H =
[1,:0] € R?** and (ii)if g, € EV n > 0, g, is continuous on II and d(g,, g,)
— 0 as n - », then

(2.6) supllg,(7m) —go(7)Il > 0 asn — .
mell
These conditions hold, for example, if the uniform metric is used, as in
Pollard (1984), or if the Skorohod metric is used in the case when II c [0, 1]
or IT c [0,1]", as in Billingsley (1968).
We assume that the normalized score function satisfies the following
assumption.

ASSUMPTION 5. B7'Dl;(8,,-) = G(8,,-) under 6, (as processes indexed
by m 1II) for some mean zero RS-valued Gaussian stochastic process
{G(6,y, m): = € I} that has EG(6,, m)G(8,,7) = I(6,, ) V 7 Il and has
continuous sample paths (as functions of 7 for fixed 6,) with probability 1.
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In applications, Assumption 5 is verified by applying a functional CLT.
Assumptions 1-3 and 5 above are the same as in AP.

2.3. Specification of weight functions. The admissibility result given be-
low is stated in terms of weighted average power. That is, we show that for
certain weight functions the sup LR, Wald and LM tests have greater
weighted average power than any other asymptotically distinct test. To
achieve this, a weight function J(-) needs to be specified for the parameter
m € Il. Given 7, a weight function @, ,(-) needs to be specified for the
perturbation vector 4 that appears in the local alternative density f(6, +
Brlh,m).

Let S(ar, £) denote the open sphere in II centered at 7 with radius & > 0.
Of the weight function J(-), we only assume the following statement.

ASSUMPTION 6. J(-) is a probability measure on II for which
inf_ g J(S(m,6) >0V e>0.

If II is separable (and satisfies Assumption 4), then Assumption 6 holds
provided the support of ¢ is II.

The weight functions {Q, ,: 7 € II} for » > 0 are taken to be ellipses of
radius proportional to r. The ellipses are the same as those considered by
Wald (1943) for a single fixed .

ASSUMPTION 7. @, , is the distribution of rA (A, I, A, ) '/?X, where

X ~ U,, U, is the uniform distribution on the unit sphere in R?,I = I(§,, 7)

= [Ilw 12"] and AT" — [ Ip

Ty I, S ) (O B

2.4. Definition of the sup LR, Wald and LM test statistics. For known
7 € I, the standard LR, Wald and LM test statistics for testing H, against
H, [as defined in (2.1) and (2.2)] are given by

LRy (7) = =2(I7(8,m) = L (8(m), 7)),
(27)  Wp(w) = (HBpé(m))[HI;'(6(w), n)H'] " HBb(w),
LMy (7) = Bz 'Dig(6, m)| T} (8, m) By 'Din (8, 7),
where
H=[I,0] cR?** and I;(6,7)= —B;'D?L;(6,7)B;".

Alternatix)ely, one can define I,(6,7) to be of outer product, rather than
Hessian, form.
The sup LR, Wald and LM test statistics are now defined as

(2.8) sup LR, (7), sup Wy(7m) and supLM,(7).
mell

mell mell



1614 D. W. K. ANDREWS AND W. PLOBERGER

Note that the sup LR test statistic is the standard LR test statistic for the
case of unknown 7.

Let {k;,: T > 1} be a sequence of critical values (possibly random, but with
nonrandom probability limit in this case) such that the sup LR, Wald or LM
tests {£;: T > 1} have asymptotic significance level a. That is, (£ f7(0,) duyp
— « for all 6, that satisfy the null hypothesis, where

(2.9) £p = 1( sup LR, () > kTa)
well
or where ¢, is defined analogously with LR, (7) replaced by W;(7) or
LMT(7T ).
Under Assumptions 1-5, the asymptotic null distribution of
sup LRy(m), sup Wy(w) and sup LM;(w)
mell

mell mell

is that of
(2.10) sup (HG(0,,m)) (HI (6y, ) H') "HG(6,, ).
well

This is proved by an argument analogous to that used to prove Theorem 1 of
AP.

2.5. Asymptotic admissibility. Let ¢, denote a test of H,. That is, ¢p is
a [0, 1]-valued function that is determined by Y, (and perhaps some random-
ization scheme) that rejects H, with probability y when ¢ = y. The power
of ¢, against the local alternative f;(0, + B;'h, m) is denoted [ogfr (6, +
Bilh,m)duy.

DEFINITION. A sequence of tests {¢r: T > 1} is asymptotically distinct
from the sup LR, Wald or LM tests {£,: T > 1} if

(2.11) 6 = liminf [(1 - ¢r)&rfr(6o) dur > 0.

Note that [(1 — ¢7)&7fr(0y) duy is just the null probability that the test
¢r accepts H, and the sup test &, rejects H. If two tests are not equal
almost surely (under 6,) and are not nested, then this probability is positive.
Inequality (2.11) requires that this distinction between ¢; and &, does not
disappear as T' — oo, '

The sup LR, Wald and LM tests are asymptotically equivalent under the
null and local alternatives under Assumptions 1-5; see AP. In consequence, if
a sequence of tests is asymptotically distinct from any one of the three, it is
asymptotically distinet from all three.

The main result of this paper is the following admissibility result.

THEOREM 1. Suppose Assumptions 1-7 hold and {¢7: T = 1} is a sequence
of tests that is asymptotically distinct from a sequence of asymptotically level
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a supremum LR, Wald, or LM tests {&p: T > 1}. Then there exists an ry < ©
such that, forallr > rg,

liI;ISUPf[f@TfT(OO + BT_lh”’T) dMT] dQq, .(h)dJ(m)

< limi -1 .
1171&1£fj[ngfT(eo + By'h, ) d,LT] dQ, ,(h) dJ(m)
(In addition, the liminf, ., on the right-hand side equals limy _, ,.)

REMARKS.

1. The proof of Theorem 1 shows that the ratio of the asymptotic (as T — )
weighted average type II error of ¢; [with respect to (@, ,,J)] over that of
&r diverges to infinity as r — oo,

2. Theorem 1 holds for any weight functions J that satisfy Assumption 6.

3. Theorem 1 holds for any sequence of asymptotically distinct tests {¢@g:
T > 1}—it need not be a sequence of tests of asymptotic significance level
. Thus, for certain alternatives the only way to increase the asymptotic
power of a sequence of sup tests is to enlarge its critical regions.

4. Assumption 3 is not required in Theorem 1 for the case of the sup Wald
test.

3. Examples.

3.1. Empirical process examples. This section provides primitive suffi-
cient conditions for Assumptions 1-5 for empirical process examples.

ExaMPLE 1 (Cross-sectional constancy). In this example, the observations
are iid and the unknown parameter 7 partitions the sample space of some
observed variable(s) into m + 1 regions. In one region the model is indexed
by the parameter (87, 8;) and in other regions it is indexed by (8; + B/, 85
for j < m. In this case, 6 = (B', 8") for B =(B},..., B,,) and & = (81, 85). In
this model, a test of cross-sectional constancy of the parameters corresponds
to a test of the null hypothesis H,: 8 = 0.

To be concrete, consider the special case given by a linear regression model
with two regions:

31 - X6, + U, for Z, < m,
(3.1) t\X)(8,+B)+ U, forz >,
where {(Y}, X,,Z,,U,): t = 1,...,T} are iid, (X,, Z,) and U, are independent;
U, is an unobserved N(0, 8,) error, Y, is an observed scalar random variable;
X, is an observed random p-vector with EX, X, < «; Z, is an observed scalar

random variable that may be an element of X,; Z, has bounded density with
respect to Lebesgue measure on the intersection of its support and II;

, X1(Z,>m)\[X1Z,> 7))
Jof )‘mi“(E ( X, X, > 0;

fort=1,...,T,
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the parameter 0 = (8, 81, 8,) lies in a compact set ® c R2?*! that excludes
8, values less than or equal to 0; the parameter 7 lies in a compact set
IT C R; and the true parameter 6, lies in the interior of ® under H,,.

ExAMPLE 2 (Threshold autoregression). This example generalizes Exam-
ple 1 to time series contexts in which the variable (or vector) Z, is often given
by a lagged value(s) of a dependent variable. In particular, consider the
simple threshold autoregressive model defined by (3.1) with X, = (1,Y,_,),
Z,=Y,_, for some integer d > 0, {U,: ¢t = 1,...,T} are iid, (Y,,Y;_,) have
distributions that correspond to a stationary startup of the AR model when
B =0 and ® and II are as defined above with p = 2 and |§;| < 1. Models of
this sort have been applied in the physical and biological sciences [e.g., see
Tong (1990)], as well as in economics [e.g., see Potter (1995)]. Typically, it is
of interest with these models to test for the existence of a threshold effect,
which corresponds to testing the null H,: 8 = 0.

ExaMmPLE 3 (Variable relevance). This example considers tests of variable
relevance in nonlinear models. For specificity, consider a nonlinear regression
model

(3.2) Y, -g(X,,8,) +Bh(Z,, m)+ U, fort=1,...,T,

where {(Y,, X,,Z,,U,): t = 1,...,T} are iid; (X,, Z,) and U, are independent;
U, is an unobserved N(O, §,) error; Y, is an observed scalar random variable;
X, and Z, are observed random vectors; g and A are known functions; B is a
scalar parameter; 7 is an R®-valued parameter; 6 = (3, 8}, 8,) and 7 lie in
compact sets ® and II, respectively; ® excludes 8, values less than or equal
to 0; the true parameter 6, lies in the interior of ® under H,; g(X,, 8,) is two
times continuously differentiable in 6§, V 8 € ®, with probability 1 under
6y, where ©, is some neighborhood of 6,; h(Z,, w) is differentiable in
m with probability 1 under 6, V =7 € II; E sup,.q8%(X,, 8;) < o;
Esup, . h%(Z,, mlog*(|h(Z,, w)]) < », where log*(x) = max{log(x),0} for
x>0

d
E sup _g(Xl? 81) < o3
€0, ‘961
9 2
E sup -g(X,, 8 < oo
b | 3o, 78 & (Koo 20
a r
E sup |—h(Z,, w)|| <o forsomer > 2;
well am

inf A E h(Zt77T) h(Zt77T) , >0
ren ™\ P\ (9/08))8(X,, 810) |\ (3/98,) &(X,, 810)

and E(g(X,, 8, — g(X,, 8,) + BA(Z,,7))* >0V 0 € O with 6 # 0,.
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For example, h(Z,, 7) might be of the Box—Cox form (Z7 — 1) /7. A test for
the relevance of the regressors Z, is a test of the null hypothesis H,: g = 0.

ExaMPLE 4 (Functional form). Example 3 covers tests of functional form.
For example, in (3.2), if Z, is taken to be a subvector of X,, a test of H:
B =0 is a test of functional form of the regression function. Neural network
tests of functional form and some consistent tests of model specification are of
this type.

We now introduce the requisite definitions and assumptions used for the
empirical process examples. The data are given by {(Y,, X,): t =1,...,T}
which are part of a strictly stationary, absolutely regular process {(Y;, X,):

t=...,0,1, ...}, where {Y,} is an mth order Markov sequence of random
variables and {X,} is a sequence of weakly exogeneous variables. By defini-
tion, {Y,: t = ...,0,1, ...} is mth order Markov if the conditional distribution

of Y, given F,_, = o(...,Y,,,Y,_;..., X,_;, X,) equals the conditional dis-
tribution of Y, given Y, , = (¥;_,,...,Y, ;) and X, , =(X,_,,,..., X)) for
all ¢. By definition, {X,} is weakly exogeneous if the conditional distribution of

X, givenY,,...,Y,_;,X,,..., X,_; does not depend on the unknown parame-
ters 0 and 7 V ¢ > 1.
By definition, a sequence {W,: ¢ = ...,0,1, ...} is absolutely regular (-

mixing) if B(s) — 0 as s - «©, where B(s) is defined as follows. For any two
o-fields A and B, define

(3.3) B(A,B) = isup Y. |P(A;NB;)—P(A;)P(B)),
(i,)elxd

where the supremum is taken over all finite partitions of the sample space
{A;: i €I} and {B;: j € J} that are A and B measurable, respectively. Let
F,=0(...,W,_,W)and F* = ¢(W,,W,, ., ...), where o(-) denotes a o-field.
Then

(34) B(s) = s1t1pB(Ft,Ft+s).

Absolute regularity is stronger than strong mixing (a-mixing), but weaker
than ¢-mixing. Examples of absolutely regular processes are given by Davy-
dov (1973), Mokkadem (1986, 1990) and Doukhan (1994). They include, under
suitable conditions, finite state space Harris recurrent Markov chains, vector
autoregressive moving average processes, bilinear processes and nonlinear
autoregressive processes, among others. In particular, the AR process of
Example 2 under H, is absolutely regular with B(s) = O(p*®) for 0 < p <1
by Mokkadem (1986).

Let W, = (Y ,,,...,Y,X!_,,..., X). Let

(3.5) gW,0,7)=g(YlY,_,.,....Y, 1, X, ,.,.... X,;0,7),

for 6 € ® and 7 € Il denote a parametric family of conditional densities (with
respect to some measure) of Y, given Y,,...,Y,_;, X;,..., X, evaluated at the
random variables Y7,...,Y,, X;,..., X,. The parameter space ® is a subset of
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R° and II also is a subset of Euclidean space. Let
(3.6) hy=h(XIY,,....Y, 1, Xy,..., X, )

denote the conditional density (with respect to some measure) of X, given
Y,....Y, 1, X;,..., X, , evaluated at the random variables Yi,...,Y,_,,
X,..., X,

The likelihood and log-likelihood functions of the sample are

T T
fr(0,7)=11g(W,,0,7)[ 1R, and
=1 =1
(3.7) - )
Ip(6,m) = Y logg(W,,0,7) + ¥ h,.

t=1 t=1
The information matrix for @ given 7 is defined to be

52
3.8 I(6 = -E——1 .
(38) (6,7) = ~E——=log g(W,, 0, 7)
Below, we use the concept of L'-continuity. Let f(W,, ) be a vector-valued
function of a vector r € T. We say that f is L’-continuous at 7, if

(3.9) E  sup |f(W,7) —f(W,7)Il" >0 as §— 0,

T€T: |IT—74lI< 8

where | - || is the Euclidean norm. We say that f is L'-continuous at 7, with
modulus of continuity c(8) if the left-hand side of (3.9) is less than or equal to
c(8) V & small and ¢(8) —» 0 as § — 0. Of course, L'-continuity is implied by
almost sure pointwise continuity [viz., f(W,,7) —> f(W,,7,) as 7> 7, a.s.]
plus a moment condition [viz., Esup, cq. j,— . < sl /(W;, ) = AW, 7" < o
for some & > 0] by the dominated convergence theorem.

To obtain the weak convergence property of Assumption 5, we use a
bracketing empirical process central limit theorem (CLT) of Doukhan, Mas-
sart and Rio (1995). The latter is a generalization to strictly stationary
absolutely regular processes of an empirical process CLT of Ossiander (1987)
for iid processes.

Throughout this section, we assume g(:, 0, 7),(d/90)log g(-, 0, 7) and
(82/36 96")log g(-, 8, m) are Borel measurable functions V9 € O, V 7 € 11, as
are their element by element suprema and infima over all balls in ® X IT of
small radius. All expectations E below are taken under 6,,.

The following Assumptions EP1-EP4 are sufficient for Assumptions 1-5 of
Section 2.

AssumprioN EP1. (a) Under 6,, {(Y,,X,): t = ...,0,1,...} is a strictly
stationary absolutely regular sequence of random variables with
Y5 182/ PB(s) < « for some constant r > 2, {Y,: t = ...,0,1,...} is mth
order Markov and {X,: t = ...,0,1,...} is weakly exogeneous.

(b) g(W,, 6, 7) does not depend on 7 for § in the null hypothesis.

(c) The true parameter 6, is in the interior of ©.
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(d) g(W,, 6, 7) is twice continuously partially differentiable in 6 for all
6 € O, and 7 € Il with probability 1 under 6,, where ®, is some neighbor-
hood of 6,.

© Esup, .o ,pllog g(W,, 0, <, Esup, 3/0)log g(W,, 8y, m)I
< =, for r as in part (a), and E supyc o, ,<l(3?/30 99" )og g(W,, 6, 7)|| < o.
If{(y,, X,): ¢ = ...,0,1, ...} is a sequence of independent or m-dependent
random variables for some m < «, then r can be taken to equal 2 here and in
Assumption EP4 below. If {(Y,, X,): ¢ = ...,0,1, ...} has geometrically de-
clining B-mixing numbers [ie., B(s) = O(p*) for some 0 < p < 1], then
E sup, . l(d/90)log g(W,, 6,, m)II" <  can be replaced by

E sup

2
log* (
aell

and r can be taken to be any number greater than 2 in Assumption EP4
below.)

(f) 1(0, 7) is continuous in (6, 7) on O, X II.

(g) I(6,, ) is positive definite for all 7 € II.

< oo

7 7
a—elogg(Wt,O,qr) %logg(Wt,Oo,qr)

AssumpTiON EP2. (a) O is compact.

(b) log g(W,, 0, 7) is L'-continuous in (8, 7) on ® X II under 6,.

() (92/96 96" )log g(W,, 6, 7) is L'-continuous in (6, 7) on O, X II un-
der 6,,.

AssumpTiON EP3. g(W,, 6, w) # g(W,, 6,, ) with positive probability un-
der 6, VO € ©® with 6 # 6, and V 7 € II.

AssumpTiON EP4. (a) II is compact.

(b) (9/90)log g(W,, 6,, ) is L'-continuous in 7 on II with modulus of
continuity C8Y for some positive constants C and ¢, where r is as in
Assumption EP1(a) and (e).

We note that Assumptions EP1-EP4 are satisfied in Examples 1-4 above.
Assumption EP3 can be verified in the examples by showing that
E(log g(W,, 0y, 7) — log g(W,, 6, 7)) >0V 0 ® with 9+ 6, V w1l In
Example 1, the assumption that Z, has a bounded Lebesgue density is used
to verify Assumption EP4 with ¢ = 1. In Example 3, the assumptions that
h(Z,, ) is differentiable in 7 and its derivative satisfies a moment condition
are used to verify Assumption EP4 with = 1.

The result referred to above is summarized as follows:

THEOREM 2. Assumptions EP1-EP4 imply Assumptions 1-5.

Note that under assumptions EP1-EP4, Assumption 5 holds with the
Gaussian process G(6,,-) having covariance function given by EG(6,,
7)G(8, 73 = E(3/30)log g(W,, 8y, m,X(d/30)log g(W,, 8, y) for 7, 7, €
I1. Continuity (in ) of the sample path of G(8,, 7) is with respect to the
L’-pseudometric, where r is as in Assumptions EP1(a), EP1(e) and EP4.
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3.2. Changepoint example. Sufficient conditions for Assumptions 1-3 and
5 for changepoint tests in stationary dynamic nonlinear models are given in
AP (Assumption SC). These assumptions are quite similar to standard as-
sumptions in the literature for the consistency and asymptotic normality of
ML estimators in stationary contexts. For brevity, these conditions are not
restated here.

4. Finite sample admissibility. In this section we show that the LR
test is finite sample admissible for a class of testing problems that arise in a
Gaussian linear model.

ASSUMPTION 8. The model is given by
Y,=X,(n)B+Z,6+U, fort=1,...,T,
where U, ~ iid N(0, '), 0 is known, X,(w) € R?, B€ R?, Z, € RY, 5 € RY,

{(X,(m),Z): t =1,...,T} are nonrandom, 7 € II, Z,T=1(X’éﬂ))(x’;)) is non-

singular for all 7 € IT and X,(#) is continuous on Il for all £ = 1,...,T.

Below, the parameter space II is assumed to satisfy Assumption 4 and the
weight functions J(-) and @, () are assumed to satisfy Assumptions 6 and
7, respectively, with I equal to

i X, (m) [ X:()
t=1 Z t Z t
in Assumption 7.
The hypotheses of interest are the same as in Section 2 and are specified

by (2.1) and (2.2). By varying the definition of X,(7), we obtain hypotheses of
different types. For example, if

X,(7) = X,1(t < Tnr),

(4.1) X,
Z,= |y« | and Tc{1/T,2/T,.. (T -1)/T},

then a test of H;: B = 0 is a test for a single changepoint in a subvector of the
regressor vector. This example can be extended straightforwardly to allow for
arbitrarily many changepoints.

Another example is a test of relevance of Box—Cox transformed regressors.
In this case,

(42) X(m)=((X5-1)/m,...,(X;,—1)/x) and Hc [0,o).

Under the null Hj: B8 = 0, the Box—Cox transformed regressors do not belong
in the regression model. This example can be extended to allow the Box—Cox
parameter to differ across regressors.

A third example is a test of cross-sectional constancy. In this case,

X
(4.3) X,(7) = X,1(X,, < ), zt=(X;) and T CR,
t

where X, is an element of the regressor X,. In this example, one is testing
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for constancy of the parameters across two (unknown) regions. Multiple
regions could be considered.

For known =, the standard LR, Wald and LM test statistics for testing H,
against H; are given by (2.7) with By = I, 6(w) equal to the unrestricted
least square (LS) estimator of 6 = ( 8/, §'),

L D[ X(m) | (X ()
I,(6,m) 02t§1( Z, )( Z,
6 equal to the restricted LS estimator of  and lp(6, ) and DI;(0, 7) equal
to the Gaussian regression log-likelihood and its vector of derivatives with
respect to 6, respectively. As is well known, LR (), Wy(7) and LM, (#) are
monotone transformations of each other. In consequence, the test statistics
sup, < g Wp(m), sup, . y LMy (7) and sup,, c ; LR;(7) yield equivalent tests.

We say that a test ¢; is distinct from the significance level a LR test

ép = W(sup, c g Wyp(m) > k,), where k, is a positive constant, if

(44) 8= [(1 = er)érfr(6o) dur >0,

where f;(6,) is the null Gaussian density and u, is Lebesgue measure on
RT. That is, ¢ is distinct from &, if there is positive probability under H,
that ¢, accepts when ¢, rejects.

Minor alterations of the proof of asymptotic admissibility of the LR test in
Theorem 1 yield finite sample admissibility of the LR test for the Gaussian
linear regression model.

) Vo€ ®=RPH,

THEOREM 3. Suppose Assumptions 4 and 6-8 hold with I, =
/oI (X,(m), ZY(X (7Y, Z}) in Assumption 1. Let ¢p be a test that is
distinct from the level a LR test ¢r. Then there exists an r, < « such that, for
all r > ry,

[|fertrton + b m) due | d@, () drm)

< J|ente(on + bom) dur| 4@, () dI ().

REMARKS.

1. Remarks 1-3 following Theorem 1 all apply to Theorem 3 (with the
references to asymptotics deleted).

2. See Andrews, Lee and Ploberger (1996) for an alternative set of finite
sample optimality properties for some changepoint tests.

5. Proofs. First we prove Theorem 1. Let F,(7) denote LR, (1), Wip(7)
or LMy (7). For notational simplicity, let sup denote “sup,, c ;.” For r > 0, let
P, and E, denote probabilities and expectations with respect to-the density
/fr(6y + Bp'h, m) dQ,, ,(h) dJ(w). The case r = 0 corresponds to the null
density f(6,). The likelihood ratio of P, to P, is denoted

(5.1) LRy, = [fr(8, + Br'h, w)dQ, ,(h) dJ(m)/fr(6,)-
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For A > 0 and arbitrary u € R? with || ull = 1, let

(52) U, (A) = [exp(Ax) dU,(x),

where U,(-) denotes the uniform distribution on the unit sphere in R?.

Define 6(7) and an approximate Wald statistic W,(m) by
o(m) =1"%(8,,m) By 'Dip(8y, ),
Wy () = (Ho(m)Y[HI Y(0,, m)H'] ' Ho(m).

The proof of Theorem 1 uses the following lemmas.

(5.3)

LEMMA 1. Under Assumptions 1, 2, 5 and 7,

exp(—r2/2) [u,(rW#/* (7)) dJ(7) /LRy, , =, 1

under P,.

LEMMA 2. For some constants C;, Cy and C; in (0, ©):

(@ ¢,(M) <C; + Cyexp(A) VA= 0.
(®) ¢,(A) = Cgexp(MDA~P~D/2 Y ) > 1,

LEMMA 3. Under Assumptions 1-5, sup|Wy(m) — Fp(m)| -, 0 and
sup Fp(7) -, sup F(w) = sup(HG(8,, w)Y[HI *(8,, m)H']"*HG(6,, w) un-
der P, and sup F(m) has absolutely continuous distribution.

LEMMA 4. Under Assumptions 1, 2,5 and 7,{P,: T = 1} are contiguous to
P, forallr > 0.

Proor oF THEOREM 1. For simplicity we consider the case where kg,
equals a constant £, V T > 1. For the case of random k;,, we must have
kr, —, k, for some constant k, by Lemma 3 and the corresponding adjust-
ments to the proof are minor.

To prove Theorem 1, it suffices to show that
(54) liqlpinfEr(l — ¢@p) [limsup P,(sup Fp(7) < k,) > asr — o,

T— o
Below we show that
lim sup P,(sup Fr(7) < k,)
(5.5) Toe
< 2exp(—-r?/2)[C; + Cyexp(rkY/?)]  Vr>o.
We also show that, for some y > 0 and 0 < C, < o,
li;ninfEr(l - @r)

(6.6) 1/2 1/2
> C, exp(—r?/2)exp(r(k, + v)"/ )[r(ka + )Y

]—(p—l)/2
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for r sufficiently large. Equation (5.4) follows immediately from (5.5) and
(5.6).
We now establish (5.5). Define the event D7 . by

(5.7) D}, = {exp(—rz/z)f¢p(rWTl/2(w)) dJ(m)/LR; , € [1/2,2]}.

By Lemmas 1 and 4, limy . P(D% ,) = 1V r > 0. In addition, sup Fy(7) —
sup Wr(7) —, 0 under P, by Lemmas 3 and 4.
Using these results, we obtain, V r > 0,

lim sup P,(sup Fr(7) <k,)
T—-x

lim sup P, (sup Wy (7) < k,, D} )

T

lim sup EoLRy , - 1(sup Wp(7) < k,, D} )
T— o
< 2exp(—r?/2)
(5.8) _ _
X lim supEoftpp(rW}ﬂ(fr)) dJ(m) - 1(supWp(7) <k,)

T— o
< 2exp(—r2/2)limsupEof[C1 + C, exp(rW%/z(w))] dJ(m)
T — x

X 1(sup Wp(7) < k,)
< 2exp(—r2/2)[C; + C, exp(rkl/?)],

where the second inequality uses Lemma 2. Note that the first equality of
(5.8) actually relies on the results above plus the convergence in distribution,
absolute continuity and contiguity results of Lemmas 3 and 4.

Next, we establish (5.6). The fact that ¢, and ¢, are asymptotically
distinct implies that 3 y > 0 such that

(5.9) lim infEo(1 — @r)1(sup Fp(m) >k, + 27) = §/2,

where & is as in the definition of asymptotically distinct. This follows because

lim sup Py(sup Fp(7) € (k,, k. + 2v])
(5.10) Tow
= Py(sup F(7). € (k,, k, + 2v]) < 8/2,
where the inequality holds for some small y > 0 by Lemma 3.

Let K be a compact subset (under the metric d) of the space of continuous
R*-valued functions on II. For é as above, K can be chosen such that

(5.11) Po(I71(8,,°)G(8,,) €K) = 1 — 8/4

using Assumptions 1 and 5. For ¢ > 0, Let K(¢) = {g € E: sup, . llg(#) —
I(m)]| < & for some I € K}. Note that K(s) is a neighborhood of K in (E, d) by
the condition (2.6) on the metric d. By Assumption 5, 6(:) = I71(8,, )G(8,, -).
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In consequence,

(5.12) 1171}11an0(5(~) €K(e))21-8/4 Ve>0.
Under the assumptions, given y > 0, 3 &, > 0 and £ > 0 such that
(5.13) sup [Wp(m) = Wp(a)I<y VOeK(s).
plar, )< ¢

For &, as in (5.13), define the event Dy , by
(5.14) Dy, ={1- ¢y > 8/8,supWy(7) >k, + 2y,6 € K(¢,), D} ).

Let 7 be a random element of Il that satisfies sup,c g ¢ Wp(m) =
sup, g Wr(m).
Using Lemma 1, we now have

0 0
Er(l_(pT) = gPr(l —¢r> g)

= gPr(DT,r) = SEOLRT,r’l(DT,r)

(5.15) = l—ab.exp _2r2 E\Y(Dr,,) [, (rW4/2(m)) dd ()
> x| | B1(Dr ) [ € () (AT () ()
2 Syon| | BDy) int () ind IS ).

Note that Dy , has been defined such that, for w € Dy , and 7€ S(#, &),
we have

_ _ 1/2
(516) W (m), > r(sup Wr(m)y = v) 2 r(k,+ )"
well
Let b = inf__ J(S(7, £¢)). By Assumption 6, b > 0.
For r such that r(k_, + y)/2 > 1, Lemma 2, (5.15) and (5.16) combine to
yield

bé —r? .
Er(l - ¢T) = Eexp(_z——)Eol(DT,r)
X inf [C3exp(rVV'Tl/2(7r))(rV_VT1/2(7T))_(p_l.)/2]
(5.17) eSO
bé —r?
> CBEeXp(_z—')PO(DT,r)

XeXP(r(ka + 7)1/2)[7‘(ka + 7)1/2]—(p—1)/2‘
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The desired result follows if liminfy ., Py(Dy ) = /8 V r = 0. Inequali-
ties (5.9) and (5.12) yield

(5.18) 5 ) 5
> i lqu{lfgpPo(BeK(al)) =7

This result, Lemma 1, and Lemma 3 give

8/4 < li;ninfEO(l — @r)1(sup Wp(7) > &, + 27,0 € K(&,))

< lijrpianO(l — o7 > 8/8,sup Wy(m) >k, + 27,0 € K(&,))
5.19 o
(5.19) +limsupEy(1 — ¢7)1(1 — ¢ < 6/8)
T—
<

liqlwnianO(DT’,) + &/8. |

PrOOF OF LEMMA 1. Let Gj = B;'Dip(8y,m),1; =1(6y,7) and I=
1(6,, 7). Define

(5:20) wp(r) = sup (6o + ABp'h,m) — Ip(6y, ).
#Eﬂbh<:Ah’<I{15r2,

Then, for A such that A'IA < r?, a two-term Taylor expansion yields
Ip(60+Br'h, m)—1p(0)) =FGp—HWIph/2+ Ry,
(5.21) where |[R;| < wp(r)lA|?
< wp(r)r?/ im;l Amin(I(89, 7)) = C,0p(r)
for some constant C, < .
By Assumption 1(d) and (e), wr(r) —>,0 ¥V r>0 [by adding in and

subtracting out both I(6, + AB;'h, ) and I(6,, ) and then applyihg the
triangle inequality]. Hence, V 7 € I and V A with A'IA < r2, we have

KIT = exp(—C,wT(r))
(5.22) < exp(W Gy — WIph/2) /[ fr(80 + Br'h, 7)/fr(6,)]
< exp(C, wT(r)) = KZT’

where K;p —, 1 and K,p —, 1. In turn, this yields

(523) Ky < [exp(h'Gp — 1ph/2) dQ,, () dJ(m) /LRy, < Ky
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By Assumption 1(d), exp(h'Iph/2)exp(—A'1h/2) —, 1 uniformly over h

with #'Ih <r? and over 7 € II. In consequence, there exist sequences of
constants Ky, and K,7, such that K7, >, 1, Ky, —, 1 and

(5.24) Ky, < [exp(K Gy — K'1h/2) dQ, (k) dJ(7) /LRy, < K,

For h in the support of @, ., we have h'Ih =r? and h = A_ A for some
A € R?. For such A, h"'I(I, — A, H) = 0, since straightforward algebra shows
that A I(I, — A, H) = 0. Thus,

[exp(K Gy — K1h/2) dQ, (k) dd ()
= exp(—r2/2) [exp(W' 1A, Ho()
+h (1, - A, H)6(m))dQ, (k) dJ ()

(5.25) = exp(~r’/2) [exp(W1A,Hb(m))dQ, ,(h)dJ(m)

= exp(—r2/2) [exp(rx'(A,1A,) > Ho(7)) dU,(x) dJ ()

= exp(—r2/2) [exp(rW}/*(7) xn) dU,(x) dJ ()

= exp(=r?/2) [y, (rW/2(m)) dJ (),
where the third equality uses Assumption 7,

p=(ATA,)Ho(m)/I(A,T1A,) "> Ho(m)
and
Wr(m) = (A, 1A,)"*Ho(m)|?

since A, TA, = (HI'H')"! by straightforward algebra.
Equations (5.24) and (5.25) combine to give the desired result. O

Proor oF LEMMA 2. This lemma follows straightforwardly from results in
the literature. For example, it follows from (15.3.7), (15.3.9), and the last
equation on page 431 of Mardia, Kent and Bibby (1979). Note that their
equation (15.3.7) contains a typo. The expression (p — 1)/2 should be (p/2)
— 1 in the two places it appears. [
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ProOF OF LEMMA 3. Under Assumptions 1, 2, 4 and 5,
(5.26) suplWy(m) — Fp(m)ll =, 0 under P,

by the proof of Theorem A-1 parts (¢c)—(e) of AP. By Assumptions 1, 4 and 5,
the continuous mapping theorem [e.g., see Pollard (1984), page 70], (2.5) and
(5.26), the second result of the lemma holds. Absolute continuity of sup F(ar)
follows from a result of Lifshits (1982). O

ProOF OF LEMMA 4. We make use of the following result, which follows,
for example, from Theorems 16.8 and 18.11 of Strasser (1985): If (i) LR, , —,
X* under P, and (i) E X} = 1, then {P,: T > 1} are contiguous to P,.
Condition (i) holds with X* = exp(—r?/2)[y;,(rF'/?*(w)) dJ(w), where F(m)
is as in Lemma 3, by Lemma 1, Assumptions 1 and 5 and the continuous
mapping theorem.

Condition (ii) is obtained as follows. Let Z(m) ~ N(0, I). Then F(w) and
Z(wYZ(w) have the same distribution by Assumption 5. We now obtain

E, X} = exp(—r2/2)E0f[fexp(rFl/z(a'r)x’M) dUp(x)] dJ ()

(5.27) = exp(—r2/2)[[[E0 exp(rx'Z(m)) dUp(x)] dJ ()
= exp(—r2/2)f[fexp(r2x’x) dUp(x)] dJ(m) =1,

where the second equality holds by taking the arbitrary unit vector u to be
Z(m) /|| Z(w)|| and applying Fubini’s theorem and the third equality uses the
standard formula for the moment generating function of a standard normal
random vector. O

PROOF OF THEOREM 2. Assumptions 1(a), (b), (¢), (e) and (f) follow immedi-
ately from EP1(b), (c), (d), (f) and (g), respectively; 1(d) follows with B, = VT'I,
from EP1(a), EP1(e), EP2(a), EP2(c) and EP4(a) using the uniform weak law
of large numbers (WLLN) given in the theorem in Andrews (1987). In
particular, pointwise WLLN’s hold for the infs and sups of g(W,, 6, =) over
small balls in ®, X II by the ergodic theorem, because such random variables
are strictly stationary and absolutely regular and, hence, ergodic.

Assumptions 2 and 3 can be verified using Lemma A-1 of Andrews (1993).
We verify its conditions (a) and (b) for Q(0,7) = —(1/T) T log g(W,, 6, 7)
and Q(0,7) = —E log g(W,, 6, 7). For Assumption 2, the parameter space
for 0 is @; for 3, the parameter space for 6 is ® = ® N V, the null hypothesis
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parameter space. Condition (a) of Lemma A-1 requires that @,(8, 7) satisfies
a uniform WLLN over ©® X II. This follows by the same uniform WLLN as
used above by EP1(a), EP1(e), EP2(a), EP2(b) and EP4(a). Condition (b) of
Lemma A-1 holds for Assumptions 2 (with parameter space ®) and 3 (with
parameter space ) by EP2(a), EP3 and EP4(a).

Assumption 5 holds with By = VT I, by Theorem 1 of Doukhan, Massart
and Rio (1995) using EP1(a), EP1(e) and EP4. More specifically, the key
condition (2.10) of Theorem 1 of Doukhan, Massart and Rio is implied by
their equation (S.1) and (2.11) by their Lemma 2. Equations (S.1) and (2.11)
hold with ¢(x) = x"/? by EP1(a) and EP4, respectively, since |- |42 equals
the L™-norm |||, in this case, using Theorem 5 of Andrews (1994). The latter
follows because M is a type IV class of functions, as defined in Andrews
(1994), and by Theorem 5 satisfies Ossiander’s L" entropy condition, which is
equivalent to equation (2.11) of Doukhan, Massart and Rio. O
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