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A unified approach to maximum likelihood inference for a broad,
new class of contingency table models is presented. The model class
comprises multinomial–Poisson homogeneous (MPH) models, which can be
characterized by an independent sampling plan and a system of homogeneous
constraints, h(m) = 0, where m is the vector of expected table counts.
Maximum likelihood (ML) fitting and large-sample inference for MPH
models are described. The MPH models are partitioned into well-defined
equivalence classes and explicit comparisons of the large-sample behaviors
of ML estimators of equivalent models are given. The equivalence theory not
only unifies a large collection of previously known results, it also leads to
useful generalizations and many new results. The practical, computational
implication is that ML fit results for any particular MPH model can be
obtained directly from the ML fit results for any conveniently chosen
equivalent model. Issues of hypothesis testability and parameter estimability
are also addressed. To illustrate, an example based on statistics journal
citation patterns is given for which the data can be used to test the hypothesis
that a certain model holds, but they cannot be used to estimate any of that
model’s parameters.

1. Introduction. We present a unified theory of maximum likelihood (ML)
inference for a broad, new class of contingency table models. This class comprises
multinomial–Poisson homogeneous (MPH) models, which can be characterized
by an independent sampling plan and a system of homogeneous constraints,
h(m) = 0, where m is the vector of expected table counts. This article considers
a wide variety of sampling plans that lead to sufficient counts composed
of independent blocks of Poisson and multinomial variables. The constraint
function h is sufficiently smooth and homogeneous, relative to the sampling
plan, in a sense akin to Euler’s homogeneous functions [see “Euler’s theorem
for homogeneous functions” as presented in Apostol (1974), pages 364 and 365].
Maximum likelihood fitting and large-sample inference for the broad class of MPH
models is described. The theoretical development is based largely on the approach
of Aitchison and Silvey (1958), who viewed a model as a system of constraints.

The current article shows that both ML estimation theory and ML fitting are
straightforward for a much broader class of models than previously assumed.
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The collection of models that are useful for analyzing contingency, or cross-
classification, tables is much richer than the class of log-linear/logit models,
a class that is most directly useful for describing the association among the
classification variables. Often questions of interest concern marginal distributions
or other many-to-one functions of the contingency table probabilities. As simple
examples, consider models of marginal homogeneity [see Kullback (1971), Agresti
(1990), page 390], mean and marginal mean response models [see Agresti (1990),
page 333] and linear predictor models such as those considered in Grizzle, Starmer
and Koch (1969), Lang and Agresti (1994) or Glonek and McCullagh (1995). In
general, these models are not members of the log-linear/logit family, but they are
members of the broader class of MPH models. Similarly, models for tables with
given marginal distributions [Ireland and Kullback (1968)], models of pairwise
independence [Haber (1986)] and models for tables based on both completely and
partially cross-classified responses [Chen and Fienberg (1974)] generally are not
members of the log-linear/logit family, but they are typically MPH models. This
article shows that ML estimation is straightforward and an attractive alternative
to weighted least squares for the aforementioned “nonstandard” (i.e., nonlog-
linear/logit) models.

In contingency table analyses, it is common practice to exploit equivalences
between certain models. As a simple example, when faced with fitting a product-
multinomial log-linear model, one might choose to fit the “equivalent” Poisson
log-linear model for convenience. The literature is full of examples where
the relationship, or “equivalence,” between multinomial and Poisson models is
exploited [e.g., Palmgren (1981), Lyons and Hutcheson (1986), Cormack and
Jupp (1991), Chambers and Welsh (1993), Baker (1994), Matthews and Morris
(1995), Lang (1996a), Lipsitz, Parzen and Molenberghs (1998), Fienberg (2000)
and Bergsma and Rudas (2002)]. This article extends and formalizes the notion
of model equivalence. We show that MPH models can be partitioned into well-
defined equivalence classes. We give explicit comparisons of the large-sample
behaviors of ML estimators of equivalent models. The practical implication is that
ML fit results for any particular MPH model can be directly obtained from the
ML fit results for any conveniently chosen equivalent model. This has obvious
computational utility.

We address questions as to whether collected data can be used to test a
hypothesis and/or estimate an estimand of interest. Section 10 gives a simple
example where the collected data can be used to test the hypothesis that a certain
model holds, but they cannot be used to estimate any of that model’s parameters.
By way of example, Section 10 also addresses estimability and testability for the
logit model under retrospective, or case-control, sampling.

This article highlights the fact that the choice of model constraints need
not dictate the choice of inferential distribution. For example, logit models
typically have been used in conjunction with a product-multinomial inferential
distribution, even when full-multinomial or full-Poisson sampling was actually
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used. Unfortunately, this conditional-inference approach precludes estimation
of the expected counts or the underlying joint distribution subject to the logit
constraints on the conditional distributions. This article shows that this problem
can be avoided. For example, the ML fit results for the actual (full-multinomial
or full-Poisson) data model with constraints specified in terms of logit constraints
on the conditional distributions can be obtained directly from the fit results of the
artificial, but equivalent, product-multinomial logit model.

The theory herein serves not only to formally unify a large collection of well-
established contingency table model results, it also generalizes these results and
presents many new ones. As examples of existing results, Birch (1963) gave
general conditions under which two contingency table models give numerically
the same expected count estimates. Haberman (1974) presented a rich collection
of related numerical and asymptotic results in the special log-linear model setting.
Using different approaches, Andersen (1974), Palmgren (1981) and Christensen
[(1990), Chapter XV] also gave related log-linear model results. Baker (1994)
compared inferences for Poisson and product-multinomial models that lend
themselves to the multinomial-to-Poisson transformation. Bergsma (1997) used
homogeneity properties of a special class of multinomial and Poisson marginal
models to derive certain numerical and approximation results. Lang, McDonald
and Smith (1999) gave related results for a special class of generalized log-linear
models. With the exception of Haberman’s results for certain conditional-Poisson
(e.g., hypergeometric) log-linear models, all of these results are obtained as special
cases of the general theory outlined herein.

This article is organized as follows. Section 2 introduces notation and gives
preliminary definitions. Section 3 describes the sampling plans and multinomial–
Poisson data models. Section 4 gives an example, using statistics journal citation
data, that serves to illustrate the notation of the first three sections and provides
motivation for the subsequent sections. Homogeneous constraint functions are
described and their properties are explored in Section 5. Multinomial–Poisson
homogeneous models are introduced in Section 6. Section 7 gives numerical,
asymptotic and approximation maximum likelihood results for MPH models.
Section 8 introduces a formal definition of model equivalence and explicitly
compares maximum likelihood fit results for equivalent models. The useful class
of Z-homogeneous statistics is introduced in Section 9. Section 10 addresses issues
of estimability and testability. Using the journal citation data of Section 4 as
an example, Section 11 describes the numerical computation of ML fit results.
Section 12 gives a brief discussion. Selected proofs are given in the Appendix.

2. Introductory notation and definitions. Conventional notation will be
used. The symbol Dα(m) (or diagα{mi, i = 1, . . . , c}) represents the αth power,
where α is any real number, of the diagonal matrix with the components in m
on the diagonal. Functions that typically operate on scalars, like powers and
logarithms, act on vectors in a componentwise fashion. For example, log m is
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defined as (log m1, . . . , logmc)
T , where the T represents the transpose. With this

componentwise convention, the representation Dα(m) = D(mα) is well defined.
Componentwise multiplication and division of two compatible vectors δ and γ
will be denoted δ · γ and δ/γ .

Projection notation will be used; it is simplest to define this notation via an
example. Let x = (x1, x2, x3, x4)

T and let φ = (1,3,4) be an ordered subset of
{1,2,3,4}. Then the subvector xφ = (x1, x3, x4)

T . Moreover, the value xφ,j is the
j th component in the vector xφ . For example, xφ,2 = x3.

To denote a sum over a certain dimension of an array, a + sign will be used.
For example, a matrix Z with components Zik has kth column sum equal to Z+k .
The direct sum of matrices B1, . . . ,Bb will be denoted by

⊕b
i=1 Bi . The symbol

A ⊗ B will represent the Kronecker (right direct) product of matrices A and B .
Note that B ⊕ B = I2 ⊗ B , where I2 is the 2 × 2 identity matrix. Finally, the
indicator functional I (·) is defined as I (E) = 1 or 0 as the condition E is true or
false.

The general results in this article are most conveniently stated using a
coordinate-free representation of the categorical variables and distributions of
interest. For example, a coordinate-based description of the joint distribution
of the bivariate categorical random vector (A,B) might be expressed as Pij =
P (A = i,B = j), i = 1, . . . , I, j = 1, . . . , J . Using the coordinate-free approach,
we would identify C with (A,B) and the events (C = 1), (C = 2), . . . , (C =
c ≡ IJ ) with (A = 1,B = 1), (A = 1,B = 2), . . . , (A = I,B = J ). The proba-
bilities P (C = 1) = P1,P (C = 2) = P2, . . . ,P (C = c) = Pc are identified with
P11,P12, . . . ,PIJ .

Let C represent the (composite) categorical variable of interest. The unrestricted
model for C can be written as

C ∼ P where 1T
c P = 1,P > 0.

The probability vector P = (P1, . . . ,Pc)
T has components defined as Pi =

P (C = i). Herein, we also consider restricted models for C of the form C ∼
P ∈ �, where � = {P : 1T

c P = 1,P > 0,h(P) = 0}. Because we can define the
model C ∼ P ∈ � before data are collected or a sampling plan conceived, we call
it a predata model. One of the primary objectives is to conduct inferences about
the predata probabilities in P. For example, we may wish to test the hypothesis
that h(P) = 0 or we may wish to estimate the function S(P).

3. Sampling plans and multinomial–Poisson data models. Inferences about
predata probabilities P are to be based on data obtained from K ≥ 1 independent
random samples from conditional distributions of P. The independent sampling
plans considered in this article can be characterized by so-called population
matrices and sampling constraints. Because of their importance, we carefully
define both population and sampling constraint matrices, and give several useful
properties.
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3.1. Population and sampling constraint matrices.

DEFINITION 1. The matrix Z, with components Zik , is a population matrix
if (i) Zik ∈ {0,1}, (ii) Zi+ = 1 and (iii) Z+k ≥ 1. Let P be the collection of
population matrices.

For example, consider

Z1 =


1
1
1
1

 , Z2 =


1 0
1 0
0 1
0 1

 , Z3 =


1 0
0 1
1 0
0 1

 ,

Z4 =


1 0
1 1
0 1
0 1

 , Z5 =


1 0
0 0
0 1
1 0

 .

(3.1)

The matrices Z1, Z2 and Z3 are all in P ; the matrices Z4 and Z5 are not.

DEFINITION 2. The matrix ZF is a sampling constraint matrix with respect
to population matrix Z if ZF = ZQF , where QF ∈ � ≡ {Q :Qij ∈ {0,1},
Q+j = 1,Qi+ ≤ 1} ∪ {0}. Let S(Z) be the collection of sampling constraint
matrices with respect to Z.

The requirement that QF fall in � implies that ZF ∈ S(Z) comprises a subset
of columns of Z or it is the zero matrix. Note that Z ∈ S(Z).

It will be convenient to define the complement of ZF = ZQF as ZR = ZQR ,
where QR ∈ � is the orthogonal complement of QF . This implies that (i) ZR is
the collection of columns of Z not included in ZF (or it is the zero matrix), (ii) the
range space of [QF ,QR] is RK , (iii) QF QT

F + QRQT
R = I, (iv) QxQT

x is diagonal,
x = F,R, and (v) provided Qx is not a zero matrix, QT

x Qx = I, x = F,R.

As an example, consider the population matrix Z2 of (3.1). The matrix Z2F =
[1,1,0,0]T is a member of S(Z2), because Z2F = ZQF where QF = [1,0]T ∈ �.
Here, the complement of Z2F is Z2R = ZQR = Z[0,1]T = [0,0,1,1]T .

The balance of the article makes use of the following useful properties of
population and sampling constraint matrices. The proofs are straightforward and
are omitted. The arbitrary vectors of positive numbers, δ, γ and m, are assumed to
be of compatible dimension for matrix multiplication. Let Z ∈ P , let ZF = ZQF ∈
S(Z) and let ZR = ZQR ∈ S(Z) be the complement of ZF .

S1. D(Zδ)ZF = ZD(δ)QF .
S2. ZF ZT

F D(Zδ) = D(Zδ)ZF ZT
F .

S3. Dα(ZF δ) = D(ZF δα).
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S4. ZT
F D(m)ZF = D(ZT

F m).
S5. log(Zδ) = Z log δ.
S6. D(ZF δ)D(ZFγ ) = D(ZF (δ · γ )).
S7. ZF ZT

F = ZZT − ZRZT
R .

S8. ZT
F D(m)ZR = 0.

S9. ZF 1 + ZR1 = 1.
S10. The set of all population matrices, P , is closed under the operation of

compatible multiplication. That is, if Z1 and Z2 are population matrices
of compatible dimensions, the product Z1Z2 is also a population matrix.

3.2. The sampling plan triple and data model parameters. Let Z ∈ P be
a c × K population matrix and let ZF = ZQF be a sampling constraint matrix
in S(Z). A sampling plan is characterized by the triple (Z,ZF ,n) in the following
sense. Let φk = (i :Zik = 1), k = 1, . . . ,K . Consider K independent random
samples

Ch(k) indep ∼ C|C ∈ φk, h = 1, . . . ,Nk, k = 1, . . .K.

Assume that (i) {{Ch(k)}, {Nk}} are mutually independent and (ii) Nk = nk or
Nk ∼ Po(δk) according to whether ZF includes the kth column of Z or not. In
words, Z determines the strata from which samples are drawn, ZF indicates which
samples have a priori fixed sample sizes (the nonfixed sample sizes have Poisson
distributions) and n gives the fixed sample sizes.

Define the data model probabilities as πi ≡ P (C = i|C ∈ φki
), where ki is

the column in Z that has a 1 in the ith row (i.e., φki
	 i). The data model

expected sample sizes are in γ ≡ E(N1, . . . ,NK)T , which will be assumed
positive throughout this article. The data model parameters (γ ,π) satisfy:

(i) γ = QF n + QRδ > 0,
(ii) π = D−1(ZZT P)P > 0 and

(iii) ZT π = 1K .

Note that the dimensions of n and δ equal the numbers of columns in ZF and ZR ,
respectively. We also point out that the a priori fixed sample sizes n, corresponding
to a nonzero ZF , are assumed to be positive throughout this work.

3.3. Multinomial–Poisson distribution. Using standard distribution theory
arguments, it follows that the counts Yi ≡ #(Ch(k) = i), i = 1, . . . , c, are sufficient
for (γ ,π) and Yφ1, . . . ,YφK

are mutually independent. Moreover, standard
arguments [e.g., Ross (1993), pages 216 and 217] lead to

Yφk
∼ mult(nk,πφk

) if ZF includes the kth column of Z,

Yφk,j indep ∼ Po(δkπφk,j ), j = 1, . . . ,Z+k,

if ZF does not include the kth column of Z.
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It also follows that the sufficient counts Y ≡ (Y1, . . . , Yc)
T have the following

properties:

(i) ZT Y = (N1,N2, . . . ,NK)T ,
(ii) P (ZT

F Y = n) = 1,
(iii) E(Y) = D(Zγ )π ,
(iv) var(Y) = D(Zγ )[D(π) − D(π)ZF ZT

F D(π)].
The probability density function of the sufficient count vector Y can be

parameterized in terms of (γ ,π) or, owing to the one-to-one result of Proposition 1
below, the expected count vector m ≡ E(Y). It will prove useful to give the
general form of the probability density for both parameterizations—the (γ ,π)

parameterization is convenient for the study of asymptotic behavior of model
estimators and the m parameterization is convenient for model fitting and
specification.

The random vector Y, with corresponding sampling plan (Z,ZF ,n), will
be called a multinomial–Poisson (MP) random vector. When the density is
parameterized in terms of (γ ,π), we will write Y ∼ MP∗

Z(γ ,π |ZF ,n), and when
the density is parameterized in terms of m, we will write Y ∼ MPZ(m|ZF ,n).

3.3.1. The (γ ,π) parameterization of the MP density. It can be shown that
the probability density function of Y ∼ MP∗

Z(γ ,π |ZF ,n) has the general form

P (Y = y) = c∗(y) exp
{
yT logπ + yT ZR log

(
QT

Rγ
) − 1T QT

Rγ
}
I (y ∈ S),(3.2)

where c∗(y) ≡ n!/y! if ZF �= 0 and c∗(y) ≡ 1/y! if ZF = 0. Here, (x1, . . . , xm)! ≡
x1!x2! · · ·xm! and S is the support set as described in Section 3.3.2.

The collection of admissible (γ ,π) parameter values will be written as

ω∗
Z(0|ZF ,n) ≡ {

(γ ,π) :γ = QF n + QRδ, δ > 0,π > 0,ZT π = 1K

}
.

By convention, ω∗
Z(0|0) = {(γ ,π) :γ = δ, δ > 0,π > 0,ZT π = 1K} and

ω∗
Z(0|Z,n) = {(γ ,π) :γ = n,π > 0,ZT π = 1K}.

3.3.2. The m parameterization of the MP density. The following proposition
gives the one-to-one correspondence between the (γ ,π) parameters and the
expected count or mean parameter m ≡ E(Y) = D(Zγ )π .

PROPOSITION 1. Let R(γ ,π) ≡ D(Zγ )π = m. (1) The function R :ω∗
Z(0|

ZF ,n) �→ R(ω∗
Z(0|ZF ,n)) is one-to-one, (2) the inverse function R−1 : R(ω∗

Z(0|
ZF ,n)) �→ ω∗

Z(0|ZF ,n) is defined as R−1(m) = (ZT m,D−1(ZZT m)m) ≡ (γ ,π)

and (3) the range set R(ω∗
Z(0|ZF ,n)) can be reexpressed as R(ω∗

Z(0|ZF ,n)) =
{m : m > 0,ZT

F m = n} ≡ ω(0|ZF ,n).
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By convention, if ZF = 0 (i.e., QF = 0), we have ω(0|0) = {m : m > 0}. The
proof of Proposition 1 is relatively straightforward and is omitted.

The probability density function of Y ∼ MPZ(m|ZF ,n) has the general form

P (Y = y) = c(y) exp
{
yT log m − 1T ZT

Rm
}
I (y ∈ S),(3.3)

where c(y) = n! exp{−nT log n}/y! if ZF �= 0 and c(y) = 1/y! if ZF = 0.
The collection of admissible m parameter values is

ω(0|ZF ,n) ≡ {
m : m > 0,ZT

F m = n
}
.

The support set S, which satisfies P (Y ∈ S) = 1, is related to the m parameter
space ω(0|ZF ,n). Specifically, S = {y ∈ Zc : y ≥ 0,ZT

F y = n}, where Z is the set
of integers.

REMARK. Multinomial–Poisson distributions have been used before for the
purpose of comparing expected count estimates for two different contingency table
models. For example, Birch (1963) and Bishop, Fienberg and Holland [(1975),
pages 446 and 447] described data models with corresponding densities that
can be shown to have the MP density form (3.3). The current article not only
uses a derivation that motivates the appropriateness of this density, but it also
introduces the alternative (γ ,π) parameterization (3.2), which will prove very
useful for model interpretation and for describing the large-sample behavior of
MP estimators.

REMARK. Two common, special-case MP distributions are MP∗
Z(γ ,π |0) =

MPZ(m|0) (i.e., product Poisson) and MP∗
Z(γ ,π |Z,n) = MPZ(m|Z,n) (i.e.,

product multinomial). The well-known relationship between the two distributions
[see Bishop, Fienberg and Holland (1975), page 440] can be stated here as follows.
If Y ∼ MP∗

Z(γ ,π |0), then Y|ZT Y = n ∼ MP∗
Z(γ ,π |Z,n).

3.4. Multinomial–Poisson data models. A primary goal in contingency table
analysis is to use data y, a realization of some MP random vector Y (denoted
y ← Y), to model and conduct inferences about the predata probability vector P
and, at times, the unknown expected sample size, or rate parameters in γ . For now,
suppose that it is possible to write a model of interest for P in terms of constraints
on the expected counts, say h(m) = 0. Section 10 gives sufficient conditions under
which this is possible.

The “unrestricted” MP data model states that Y ∼ MPZ(m|ZF ,n), where m is
some value in ω(0|ZF ,n). That is, any m that satisfies the sample size constraint
ZT

F m = n and the positivity constraint m > 0 is a candidate value.
More generally, a MP data model imposes the additional constraints h(m) = 0

on m. That is, in general, a MP data model constrains m to fall in the model space

ω(h|ZF ,n) ≡ {
m : m > 0,ZT

F m = n,h(m) = 0
}
,(3.4)
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where h is some model constraint function. The notation Y ∼ MPZ(h|ZF ,n) will
mean that Y ∼ MPZ(m|ZF ,n), where m ∈ ω(h|ZF ,n).

The MP data model Y ∼ MPZ(h|ZF ,n) is equivalent to the reparameterized
version Y ∼ MP∗

Z(h|ZF ,n), which means Y ∼ MP∗
Z(γ ,π |ZF ,n), where (γ ,π)

is some value in

ω∗
Z(h|ZF ,n) ≡ {

(γ ,π) :γ = QF n + QRδ,

δ > 0,π > 0,ZT π = 1K,h
(
D(Zγ )π

) = 0
}
.

(3.5)

4. Motivating example: citation patterns in statistics journals. Stigler
(1994) investigated citation patterns in several journals of statistics and probability.
Herein, we restrict attention to the Journal of the American Statistical Association
(JASA), Biometrics (BMCS) and The Annals of Statistics (ANNS). Let C = (A,B)

be a cross-citation, where A is the journal of the citing article (1 = JASA,
2 = BMCS, 3 = ANNS) and B is the journal of the cited article (1 = JASA,
2 = BMCS, 3 = ANNS). Let Pij = P (A = i,B = j) be the probability that a
randomly selected cross-citation refers to an article published in journal i and a
cited reference published in journal j . One of the primary objects of inference is
P = (P11,P12, . . . ,P33)

T or some function thereof.

4.1. Unrestricted MP data models. Stigler (1994) used citation data on
journals published between 1987 and 1989. Let (ah, bh) be the citing journal and
cited journal, respectively, for the hth selected cross-citation from the 1987–1989
journal issues. Using similar arguments to those given in Stigler (1994), a tenable
1987–1989 data model is

(ah, bh) ← (Ah,Bh) i.i.d. ∼ (A,B), h = 1, . . . ,N ∼ Po(δ).

The data parameters are πij = P (A = i,B = j) = Pij and δ, which is the expected
number of cross-citations involving JASA, BMCS and ANNS during 1987–1989.
The counts Yij ≡ #(Ah = i,Bh = j) are sufficient for this model. Moreover, the
resulting sufficient data model is yij ← Yij indep ∼ Po(δπij ), i, j = 1,2,3. Using
MP model notation, y ← Y ∼ MP19(m|0) = MP∗

19
(γ ,π |0), where γ = δ and

m = D(19γ )π = δπ . The observed counts y, which are taken from Table 4 of
Stigler (1994), are reproduced in Table 1.

TABLE 1
1987–1989 statistics journals citation pattern counts

Cited

Citing JASA BMCS ANNS

JASA 1072 264 739
BMCS 348 770 155
ANNS 340 42 1623
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We conducted a small-scale study of citation patterns for more recently
published statistics articles appearing in JASA, BMCS and ANNS. Specifically,
the cited journals in the bibliographies of articles appearing in the December 1999
issues of JASA and BMCS were recorded. Because the ANNS includes fewer
articles and, hence, fewer references per issue than the other two, it was decided
to start with the December 1999 issue and go back in time to sample until 225
JASA, BMCS or ANNS articles were referenced. With this stopping rule, it was
necessary to go to the fourth article in the August 1999 issue of ANNS.

For the current 1999 cross-citation study, let bih be the cited journal for the hth
reference in journal i. A tenable data model is

bih ← Bh(i) indep ∼ B|A = i, h = 1, . . . ,Ni,

where Ni ∼ Po(δi), i = 1,2, and N3 = n3 = 225. The Bh(i)’s and Ni ’s are
mutually independent. Note that the parameters of this model are πij ≡ P (B =
j |A = i) = Pij /Pi+, δ1 and δ2. The rate parameters δi give the expected number
of JASA, BMCS and ANNS references per issue of journal i.

To illustrate the coordinate-free notation of the previous section, identify
events (C = 1), (C = 2), . . . , (C = 9) with (A = 1,B = 1), (A = 1,B = 2), . . . ,

(A = 3,B = 3). It follows that the sampling plan is characterized by (Z,ZF ,n),
where Z = ⊕3

k=1 13, ZF is equal to the third column of Z and n = n3 = 225.
Notice that B|A = k ∼ C|C ∈ φk , where φk = (i :Zik = 1), k = 1,2,3.

The 1999 data model above implies that the counts Yij = #(Bh(i) = j) are
sufficient. Using standard arguments it can be shown that

yij ← Yij indep ∼ P (δiπij ), i = 1,2, j = 1,2,3,

(y31, y32, y33) ← (Y31, Y32, Y33) ∼ mult(n3 = 225, π31, π32, π33).
(4.1)

The multinomial and the six Poisson random variables are mutually independent.
More succinctly, we can write y ← Y ∼ MPZ(m|ZF ,n) = MP∗

Z(γ ,π |ZF ,n),

where γ = [δ1, δ2, n3]T , m = D(Zγ )π and n = n3 = 225. The observed counts
y are shown in Table 2.

TABLE 2
1999 statistics journals citation pattern counts (n3 = 225)

Cited

Citing JASA BMCS ANNS

JASA 104 24 65
BMCS 76 146 30
ANNS 50 9 166
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4.2. Some estimands, hypotheses and models of interest. Some estimands
of interest include the Gini concentrations of citations for each of the journals,
Si(P) = Gi = ∑3

j=1(Pij /Pi+)2, i = 1,2,3; the odds that a JASA article cites
a JASA rather than a BMCS or ANNS paper, S4(P) = P11/(P12 + P13); the
probability that a BMCS article cites an ANNS paper rather than BMCS or JASA,
S5(P) = P23/P2+; and, for a randomly selected cross-citation that involves BMCS
and JASA, the odds that a BMCS article cites a JASA paper rather than the
other way around, S6(P) = P21/P12. It is also of interest to estimate the expected
number of ANNS references per issue of JASA and the expected number of JASA
references per issue of ANNS.

One hypothesis of interest is the hypothesis of no change in Gini concentrations
from the 1987–1989 values. Using the counts in Table 1, we have that the observed
1987–1989 Gini concentrations are 0.410, 0.455 and 0.684 for JASA, BMCS
and ANNS, respectively. Treating these as population values, the no-change
hypothesis can be written as h1(P) = (G1 −0.410,G2 −0.455,G3 −0.684)T = 0.
Other candidate hypotheses include h2(P) = (G1 − G2,G1 − G3) = 0, h3(P) =
P12 − P22 = 0 and h4(P) = log(P21/P12) − log(P31/P13) + log(P32/P23) = 0.
The hypotheses corresponding to h2 and h3 have straightforward interpretations,
but h4 requires some elaboration.

Stigler (1994) used the 1987–1989 citation data to model the probabilities Pij

through the so-called exchange score model. Specifically, the exchange score
model in our setting has the form

log
Pij

Pji

= αi − αj , i > j, i, j = 1,2,3,

and is equivalent to the Bradley–Terry paired-comparison model [see Agresti
(1990), page 370]. Without loss of generality, α1 can be set to zero for
identifiability. The values α1 ≡ 0, α2 and α3 are the exchange scores, which
measure the level of information exchange among the three journals. This
exchange score model can be restated in terms of the single constraint, h4(P) =
log(P21/P12) − log(P31/P13) + log(P32/P23) = 0.

Section 10 argues that the constraints specified using h1,h2 and h4 can be
reexpressed in terms of the 1999 data model expected count parameters m.
Specifically, hi (P) = 0 if and only if hi(m) = 0 for i = 1,2,4. This implies that
tests of these hypotheses using the 1999 data are equivalent to tests of goodness
of fit of the 1999 restricted data models MPZ(hi|ZF ,n), i = 1,2,4. In contrast,
Section 10 argues that h3(P) = 0 is not equivalent to constraints on the 1999
expected counts m.

5. Z-homogeneous functions. Most contingency table models commonly
used in practice can be directly specified using a constraint function h that has
several convenient properties. For example, h often satisfies (i) h(P) = 0 if and
only if h(π) = 0 if and only if h(m) = 0 and (ii) the collection of constraints
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h(π) = 0 and ZT π = 1 is nonredundant. Provided a MP model has constraint
function h that is sufficiently smooth, nonredundant and satisfies properties
(i) and (ii), model fitting and inference are simplified, as are comparisons of
inferences for different sampling plans. This section introduces a broad class
of functions h that have these useful properties.

DEFINITION 3. Let � = {x ∈ Rc : x > 0}. A function h :� → Ru is
Z-homogeneous [of order p = (p(1), . . . , p(u))T ] if

h
(
D(Zδ)x

) = G(δ)h(x) ∀ δ > 0,∀x ∈ �,

where G(δ) = diag{δp(j)
ν(j) : j = 1, . . . , u}. Here, Z is a c ×K population matrix and

ν(j) ∈ {1, . . . ,K}. When the orders are not important the phrase in square brackets
is omitted. The function h is Z-homogeneous of order 0 if p = 0. In this special
case,

h
(
D(Zδ)x

) = h(x) ∀ δ > 0,∀x ∈ �.

The zero function defined as h(x) ≡ 0 is a zero-order Z-homogeneous function for
any Z.

EXAMPLE 5.1. Consider the population matrices Z1 = 14, Z2 = ⊕2
1 12

and Z3 = 12 ⊗ I2. The function defined as h(x) = [x1 − x3, x2
2 − x2x4]T is

Z3-homogeneous of order p = (1,2)T . To see this note that

h
(
D(Z3δ)x

) =
[

δ1 0
0 δ2

2

]
h(x).

This function h is also Z1-homogeneous of order p = (1,2)T , but it is not
Z2-homogeneous. The function defined as h(x) = x1/(x1 + x2) − x3/(x3 + x4)

is Z1- and Z2-homogeneous of order 0, but it is not Z3-homogeneous.

EXAMPLE 5.2. Consider the functions Si, i = 1, . . . ,6, of Section 4.2. Define
population matrices Z1 = 19, Z2 = ⊕3

k=1 13 = I3 ⊗ 13 and Z3 = 13 ⊗ I3. It is
straightforward to see that, for example, the first Gini concentration function S1,
defined as S1(P) = ∑3

j=1(P1j /P1+)2, is Z1- and Z2-homogeneous of order 0,
but it is not Z3-homogeneous. The function S6, defined as S6(P) = P21/P12, is
Z1-homogeneous of order 0, but it is not Z2- or Z3-homogeneous.

Consider the population matrices of the previous paragraph and the constraint
functions h3 and h4 of Section 4.2. The function h3 is Z1- and Z3-homogeneous
of order 1, but it is not Z2-homogeneous. The function h4 is Z1-, Z2- and
Z3-homogeneous of order 0.



352 J. B. LANG

For notational convenience, we let H(Z) be the set of all Z-homogeneous
functions. The subset Hp(Z) contains only Z-homogeneous functions of order p.
The following definition gives other useful subsets and supersets.

DEFINITION 4. The set H ′′(Z) contains all functions h :� �→ Ru that satisfy
the following four conditions:

H0. ω(h|0) ≡ {x : x > 0,h(x) = 0} �= ∅.
H1. h has continuous second-order derivatives on �.
H2. H(x) ≡ ∂hT (x)/∂x is full column rank u on �.
H3. h ∈ H(Z).

The subset H ′′
p (Z) includes only H ′′(Z) functions of order p. The superset

H ′′ ≡ ⋃
Z∈P H ′′(Z) and H ′′

p ≡ ⋃
Z∈P H ′′

p (Z).

To conveniently state results that accommodate the singular case, unrestricted
model (with zero constraint function h ≡ 0), it will prove convenient to include
the zero function in H ′′(Z). To accomplish this, we consider the following
conventions: (i) the zero function will be considered a mapping from � to R0 ≡ {0}
and (ii) the derivative of the zero function, H ≡ 0, will be considered to be of full
column rank u = 0.

Propositions 2–7 give useful properties of Z-homogeneous functions. With
the exception of Proposition 5, the proofs are relatively straightforward and are
omitted.

PROPOSITION 2. Let Z1 and Z2 be compatible population matrices. If h ∈
Hp(Z1), then h ∈ Hp(Z1Z2).

PROPOSITION 3. If h ∈ Hp(Z), then there exists a matrix-valued function
B(·) such that B(x) is diagonal and positive definite on � and h0 ≡ Bh ∈ H0(Z).

As an example, h(x) = [x1 − x2, x
3
1 − x1x2x3]T is 13-homogeneous of

orders (1,3)T . Defining B(x) = diag{1/x1,1/x3
1}, it follows that h0 ≡ Bh is

13-homogeneous of order 0.
For modeling purposes, the constraint function h0 could be called zero-

order version of h. This language is reasonable because the m parameter
space (3.4) satisfies ω(h|ZF ,n) = ω(h0|ZF ,n). Thus, without loss of generality,
homogeneous function model spaces could be specified in terms of zero-order
homogeneous constraint functions. We point out, however, that in practice it may
be simpler to work with homogeneous constraints of nonzero order.

PROPOSITION 4. Provided first-order derivatives exist, if h ∈ H(Z), with
h(D(Zδ)x) = G(δ)h(x), then

H
(
D(Zδ)x

) = D−1(Zδ)H(x)G(δ) ∀ δ > 0,∀x ∈ �.
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PROPOSITION 5 (Generalized Euler’s homogeneous function theorem). Pro-
vided first-order derivatives exist,

h ∈ Hp(Z) if and only if ZT D(x)H(x) = AD(p)D(h(x)) ∀x ∈ �,

where the matrix A has components that satisfy Aij ∈ {0,1},A+j = 1.

Proposition 5 is very important for the subsequent results in this article; its proof
is given in the Appendix. An inspection of the proof of the necessity part of this
theorem indicates that A has components of the form Aij = I (ν(j) = i), where

the ν(j)’s are subscripts in h(D(Zδ)x) = G(δ)h(x), where G(δ) = diag{δp(j)
ν(j) : j =

1, . . . , c}. This in turn leads to the useful identity

AD(p) = ∂dG(1)T

∂δ
,(5.1)

where dG(δ) is the diagonal vector of G(δ).
Proposition 5 and its direct corollaries, Propositions 6 and 7, lead to simpli-

fications in model fitting and in derivations of the model equivalence results of
Section 8.

PROPOSITION 6. If h ∈ H ′′(Z), then ZT D(x)H(x) = 0 ∀x ∈ ω(h|0). In case
h ∈ H ′′

0 (Z), the identity holds for all x ∈ �.

PROPOSITION 7. If h ∈ H ′′(Z), then the matrix [H(x)
...Z] is full column rank

on ω(h|0). In case h ∈ H ′′
0 (Z), the full rank condition holds throughout �.

Notice that condition H2 of Definition 4 implies that h(x) = 0 contains
no redundant constraints. Proposition 7, which follows from the orthogonality
property of Proposition 6, implies that the entire collection of model and
identifiability constraints, h(x) = 0 and ZT x = 1, is nonredundant as well. This
further implies that h(x) = 0 and ZT

F x = n are nonredundant also.

6. MP homogeneous data models.

DEFINITION 5. The data model M is said to be an MP homogeneous model
if there exist a sampling plan (Z,ZF ,n) and a homogeneous constraint function
h ∈ H ′′(Z) such that M = MPZ(h|ZF ,n). This MPH model will be denoted
MPHZ(h|ZF ,n).

Multinomial–Poisson homogeneous data models of the form MPHZ(h|ZF ,n)

have constraint functions h that satisfy the two useful properties discussed at the
beginning of Section 5. That is, when h ∈ H ′′(Z), (i) h(P) = 0 if and only if
h(π) = 0 if and only if h(m) = 0 and (ii) the collection of constraints h(π) = 0
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and ZT π = 1 is nonredundant. Property (i) follows directly from the definition of
a Z-homogeneous function and property (ii) follows from Proposition 7.

Multinomial–Poisson homogeneous models have (γ ,π) parameter spaces that
are well structured. In particular the (γ ,π) parameter space (3.5) of Section 3.4
can be written as a product space, namely

ω∗
Z(h|ZF ,n)

= {
(γ ,π) :γ = QF n + QRδ, δ > 0,π > 0,ZT π = 1K,h

(
D(Zγ )π

) = 0
}

= {
(γ ,π) :γ = QF n + QRδ, δ > 0,π > 0,ZT π = 1K,h(π) = 0

}
≡ D(Z,ZF ,n) × ω(h|Z,1),

(6.1)

where D(Z,ZF ,n) ≡ {γ :γ = QF n + QRδ, δ > 0}. Moreover, because Proposi-
tion 7 implies that the u+K constraints, h(π) = 0 and ZT π = 1, are nonredundant
and because h ∈ H ′′(Z) is well behaved, the space ω(h|Z,1), as defined in (3.4), is
a (c−u−K)-dimensional manifold [see Fleming (1977), Section 4.7] and is topo-
logically well behaved. It is precisely this product-space manifold representation
that leads to many of the subsequent results in this article.

EXAMPLE 6.1 (Log-linear models). Suppose that Y ∼ MPZ(m|0), where
log m = Xβ . This is the Poisson log-linear model, which can be written as
the MP model MPZ(h|0), where h(m) = UT log m = 0 and the matrix U is
a full-column-rank orthogonal complement of X. The m parameter space is
ω(h|0) = {m : m > 0,h(m) = 0}. If the range (or column space) of X, denoted
R(X), contains R(Z) so that UT Z = 0, then h(D(Zγ )π) = UT log(D(Zγ )π) =
UT Z logγ + UT log π = UT log π = h(π). Thus, provided that R(X) contains
R(Z), the function h is in H ′′(Z) and MPZ(h|0) = MPHZ(h|0); that is, it is an
MPH model. Reparameterizing in terms of γ = ZT m and π = D−1(ZZT m)m,
the (γ ,π) parameter space simplifies to ω∗

Z(h|0) = D(Z,0) × ω(h|Z,1) = {γ :
γ > 0} × ω(h|Z,1).

The multinomial analogue of the previous Poisson log-linear model is MPHZ(h|
Z,n). The m parameter space is ω(h|Z,n) = {m : m > 0,ZT m = n,h(m) = 0}.
The (γ ,π) parameter space simplifies to ω∗

Z(h|Z,n) = D(Z,Z,n)×ω(h|Z,1) =
{n} × ω(h|Z,1). The similarity between ω∗

Z(h|0) and ω∗
Z(h|Z,n) hints at an

“equivalence” between the Poisson and multinomial log-linear models. This
equivalence is formally addressed in Section 8.

7. Numerical, asymptotic and approximation results.

7.1. Numerical results for maximum likelihood estimates. Consider the MPH
data model y ← Y ∼ MPHZ(h|ZF ,n). The ML estimate m̂ of m is the
maximizer of the log likelihood yT log m − 1T ZT

Rm [see density (3.3)], subject
to m ∈ ω(h|ZF ,n)). Assume that m̂ exists and uniquely solves the restricted (or
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Lagrangian) likelihood equationsy − D(m)ZR1 + D(m)H(m)λ + D(m)ZF τ
h(m)

ZT
F m − n

 = 0(7.1)

for some Lagrange multipliers λ and τ . The classic articles by Aitchison and
Silvey (1958, 1960) and Silvey (1959) give a general discussion of Lagrangian or
restricted likelihood equations, and Lang (1996b) considered restricted likelihood
equations for a special class of categorical data models.

Theorem 1, which is proven in the Appendix, implies that for MPH models the
ML estimate m̂ does not depend on the sampling plan (Z,ZF ,n). This, of course,
does not mean that the sampling distribution of m̂ does not depend on the sampling
plan; indeed, Theorem 4 shows that it does.

THEOREM 1. Suppose that the maximum likelihood estimate m̂ under model
MPHZ(h|ZF ,n) uniquely solves the restricted likelihood equations (7.1). Then m̂
arises as the solution to the reduced set of equations[

y − m + D(m)H(m)λ
h(m)

]
= 0.(7.2)

Consider the MPH model reparameterized in terms of (γ ,π). By the one-to-one
result of Proposition 1 and by invariance, m̂ = D(Zγ̂ )π̂ , so m̂ exists if and only
if (γ̂ , π̂) exists. Theorem 2 shows that the ML estimates have a simple form. The
proof is given in the Appendix.

THEOREM 2. Under the same conditions as in Theorem 1, the ML estimate
(γ̂ , π̂) under MPH∗

Z(h|ZF ,n) can be computed as follows: γ̂ = ZT y and π̂ is the
maximizer of yT log π over ω(h|Z,1), which can be written as π̂ = D−1(Zγ̂ )m̂.

7.2. Asymptotic results. Consider the following collection of MPH random
vectors indexed by ν > 0: Yν ∼ MPZ(mν |ZF ,nν), where mν ∈ ω(h|ZF ,nν) and
h ∈ H ′′(Z). For each ν > 0, Proposition 1 and equation (6.1) imply that the mean
vector can be written as mν = D(Zγ ν)πν , where γ ν = QF nν + QRδν = ZT mν

and πν = D−1(ZZT mν)mν ∈ ω(h|Z,1). For asymptotic purposes, we use the
sequence {Yν} defined by assuming that πν = π is fixed with respect to ν and
that γ ν/ν → w > 0, as ν → ∞. Notice that as ν → ∞, nν/ν → QT

F w > 0,
δν/ν → QT

Rw > 0 and mν/ν → D(Zw)π > 0. In words, all the expected sample
sizes and all the expected cell counts go to infinity at the same rate.

For convenience, the index ν will be dropped and Y ∼ MPHZ(h|ZF ,n) will
denote the sequence {Yν} defined above. Set N = D(ZZT Y) and note that,
depending on ZF , N may or may not be a random matrix. Also, for convenience,
let D ≡ D(π), W ≡ D(Zw) and H ≡ H(π).
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The next four lemmas give limiting results for the sequence of MPH random
vectors Y ∼ MPHZ(h|ZF ,n). These lemmas will be used to prove subsequent
limiting results for MPH model estimators.

LEMMA 1. ν−1/2(Y − m)
d→ N(0,WD − WDZF ZT

F D).

LEMMA 2. ν−1/2(Y − Nπ)
d→ N(0,WD − WDZZT D).

LEMMA 3. ν−1/2(ZT Y − γ )
d→ N(0,QRQT

RD(w)).

LEMMA 4. ν1/2(N−1Y − π)
d→ N(0,W−1D − W−1DZZT D).

Haberman [(1974), Theorem 1.1] proved Lemma 1 in the more general
conditional–Poisson sampling setting. In the independent sampling setting of this
article, the proof can be simplified. For completeness, the Appendix outlines the
simplified proof. Lemmas 2–4 follow sequentially from Lemma 1. The proofs are
given in the Appendix.

Not surprisingly, the limiting distribution of ν−1/2(Y − m) depends on which
sample sizes are fixed a priori, that is, it depends on ZF . Interestingly, the limiting
distributions of ν−1/2(Y − Nπ) and ν1/2(N−1Y − π) do not depend on ZF . As
a special case, the sample proportions N−1Y, when properly normalized, have
the same limiting distributions whether Y is product-multinomial or Poisson.
For example, whether (Y1, Y2) is multinomial (with Y1 + Y2 fixed) or comprises
independent Poisson components, the limiting distribution of ν1/2(Y1/(Y1 +Y2)−
m1/(m1 + m2)) is unchanged.

The following limiting results for MPH model estimators are most easily
derived using the (γ ,π) parameterization as described in Section 3.3.1. By
Theorem 2, π̂ is the maximizer over ω(h|Z,1) of YT logπ and γ̂ = ZT Y. By
invariance of ML estimators, m̂ = D(Zγ̂ )π̂ = Nπ̂ .

The next lemma states that there exists a sequence of local maximizers of
YT logπ that is strongly consistent for the true π value. This implies that if the ML
estimators exist and are unique, the ML estimator sequence is strongly consistent.
The Appendix gives an outline of the proof, which uses results from Silvey (1959)
and Wald (1949).

LEMMA 5. Suppose that Y ∼ MPHZ(h|ZF ,n). There exists a sequence π̂ of
(local ) maximizers in ω(h|Z,1) of YT logπ that is strongly consistent. Moreover,
for sufficiently large ν, with probability going to 1, these maximizers emerge
through the solution m̂ = Nπ̂ to the restricted likelihood equations (7.2).

This strong consistency result does not come as a surprise because model
spaces specified in terms of H ′′(Z) functions are well behaved topologically. The



MPH MODELS FOR CONTINGENCY TABLES 357

regularity conditions of Definition 4 and Proposition 7 imply that if h ∈ H ′′(Z),
then ω(h|Z,1) is a (c − u − K)-dimensional manifold, which is topologically
well behaved [see Fleming (1977), page 153]. For example, the implicit function
theorem states that, provided u + K < c, ω(h|Z,1) can be anywhere locally
reparameterized in terms of c − u − K freedom parameters. That is, for any π
in an open neighborhood of a point π0 ∈ ω(h|Z,1), there exists a function f with
open domain D ⊆ Rc−u−K such that π ∈ ω(h|Z,1) if and only if there exists
a θ ∈ D such that π = f(θ). Moreover, the function f is locally well behaved
(e.g., differentiable) and satisfies regularity conditions like those of Birch (1964).
Rather than take the more standard “freedom” approach of Birch (1964), we follow
the lead of Aitchison and Silvey (1958) and use the constraint specification of
the model-space manifold in the derivation of results. As will become evident,
this constraint approach has several advantages over the freedom-specification
approach.

The next theorem gives the joint limiting behavior of the sequence of π and λ
maximum likelihood estimators. The proof, which is outlined in the Appendix,
is based on the approach of Aitchison and Silvey (1958). Specifically, a linear
approximation to a set of maximum likelihood estimating equations leads to the
result.

THEOREM 3. Suppose that the sequence of models Y ∼ MPHZ(h|ZF ,n)

holds, with h(D(Zγ )x) = G(γ )h(x). Let the ML estimator (m̂ = Nπ̂, λ̂) be the
unique solution to the restricted likelihood equations (7.2). Then the limiting
results

ν1/2(π̂ − π)
d→ N(0,	),

ν−1/2G(γ )λ̂
d→ N

(
0,

[
HT DW−1H

]−1)
hold, where 	 = W−1D − W−1DH[HT DW−1H]−1HT DW−1 − W−1DZZT D.
Moreover, the estimators π̂ and λ̂ are asymptotically independent.

By Theorems 2 and 3 and Lemma 3, we know the limiting distribution of
γ̂ = ZT Y and the joint limiting distribution of (π̂, λ̂). The next lemma gives an
independence result that leads to the joint limiting distribution of the entire vector
of estimators (γ̂ , π̂, λ̂). The Appendix gives an outline of the proof.

LEMMA 6. Suppose that Y ∼ MPHZ(h|ZF ,n) holds. The ML estimators γ̂ ,
π̂ and λ̂ are mutually asymptotically independent.

The independence result of Lemma 6 is exploited in the derivation of many
of the subsequent theoretical results. As an example, it is used to prove the next
theorem, which gives the limiting distribution of the expected count ML estimators
m̂ = Nπ̂ .
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THEOREM 4. Suppose that Y ∼ MPHZ(h|ZF ,n) holds. Then m̂ and λ̂ are
asymptotically independent and

ν−1/2(m̂ − m)
d→ N

(
0,WD − DH

[
HT DW−1H

]−1HT D − DWZF ZT
F D

)
.

PROOF. Note that ν−1/2(m̂ − m) = Wν1/2(π̂ − π) + DZν−1/2(γ̂ − γ ) +
oP (1). However, by Lemma 6, the two summands are asymptotically independent.
Their normal limiting distributions are given in Theorem 3 and Lemma 3,
respectively. Some algebra leads to the simplified form of the limiting variance.

�

REMARK. Haberman [(1974), pages 78 and 87] proved, under certain
restrictions, that for log-linear models, which impose constraints of the special
form h(m) = UT log m = 0, the asymptotic distributions of m̂ and π̂ , respectively,
do and do not depend on the sampling constraint. Theorems 3 and 4 generalize
these log-linear model results, in the case of independent sampling, to the broader
class of MPH models. For MPH models, the limiting distribution of π̂ depends
only on the population matrix Z; it does not depend on the sampling constraint
matrix ZF . The limiting distribution of m̂ depends only on the sampling constraint
matrix ZF ; it does not depend on the population matrix Z.

For example, by Theorem 3, whether Y ∼ MPHZ(h|0) (i.e., Y is Poisson) or
Y ∼ MPHZ(h|Z,n) (i.e., Y is product multinomial), the ML estimator (π̂, λ̂) will
have the same limiting distribution. By Theorem 4, whether Y ∼ MPHZ1(h|ZF ,n)

or Y ∼ MPHZ2(h|ZF ,n), the ML estimator (m̂, λ̂) will have the same limiting
distribution.

This section closes with a discussion of three of the more common goodness-of-
fit statistics (Wald’s W 2, Pearson’s X2 and Wilks’ likelihood ratio G2) for testing
whether or not h(m) = 0. They have the following forms [see Silvey (1959)]:

W 2(Y) = h(Y)T
[
H(Y)T D(Y)H(Y)

]−1h(Y) = h(Y)T [avar(h(Y))]−1h(Y),

X2(Y) = (Y − m̂)T D−1(m̂)(Y − m̂)

= λ̂
T

H(m̂)T D(m̂)H(m̂)λ̂ = λ̂
T [avar(λ̂)]−1λ̂,

G2(Y) = 2YT log(Y/m̂) − 2
[
1T ZT

R(Y − m̂)
] = 2YT log(Y/m̂).

That Pearson’s form of X2 can be written as a quadratic form in the Lagrange
multipliers is a consequence of the form of the restricted likelihood equations (7.2);
for example, Y − m̂ = −D(m̂)H(m̂)λ̂. The simplification of the form of G2

follows because Proposition 6 along with the form of the restricted likelihood
equations (7.2) implies that 1T ZT

R(Y − m̂) = 1T QT
RZT (Y − m̂) = 0.

The next theorem gives the null limiting distribution of all three goodness-of-fit
statistics. The proof exploits the asymptotic equivalence of these statistics. Proofs
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of the asymptotic equivalences for certain classes of models exist in the literature
[see Silvey (1959), Haberman (1974), page 99, and Agresti (1990), page 434]. For
completeness, the proofs of these general MPH limiting results are outlined in the
Appendix, using notation presented herein.

THEOREM 5. Suppose that the sequence of models Y ∼ MPHZ(h|ZF ,n)

holds. Then W 2(Y) = X2(Y) + oP (1) = G2(Y) + oP (1)→dχ2(u) as ν → ∞,

where χ2(u) is a central chi-squared random variable with degrees of freedom
u = dim(h), the dimension of the model constraint function h.

Interestingly, the common limiting distribution does not depend on the true
parameter values m or the sampling plan (Z,ZF ,n).

7.3. Asymptotic-based approximation results. Most of the asymptotic results
above are not directly applicable in practice, because (i) w and ν are not
identifiable parameters and (ii) the limiting distributions have variances that
depend on the unknown parameter π . This section uses a generalization of
“asymptotic normality” as described in Serfling (1980) to formally state more
directly applicable approximation results based on asymptotic arguments.

The next definition shows how one can use an asymptotic result to obtain an
approximation result when orders of convergence are allowed to vary, as they will
for homogeneous models of nonzero orders.

DEFINITION 6. The sequence Uα is said to have an approximate normal

distribution with mean µα and variance Vα , denoted Uα ∼ ÂN(µα,Vα), if, as 0 <

α → ∞, (i) αsAp(Uα − µα)→dN(0,	), where µα is a constant sequence, 	 has

positive diagonal terms, Ap = diag{api

i } and ai/α → bi > 0, and (ii) the sequence
of deterministic or stochastic matrices Vα satisfies α2sApVαAp→P 	. The matrix
Vα is called an approximating variance of Uα and is denoted avar(Uα) = Vα .

The ÂN (approximate normal) notation is meant to resemble Serfling’s (1980)
AN (asymptotic normal) notation; the circumflex over the AN indicates that the
sequence of approximating variances Vα is allowed to be stochastic. (Serfling’s
AN definition does not allow for stochastic Vα .) Sometimes the orders of
convergence are noted as well. The sequence Uα − µα of Definition 6 is of
order OP (α−(s+p)) because the ith component Uα,i − µα,i , when multiplied by
αs+pi , converges in distribution to a normal random variable with nondegenerate
variance.

The justification for Definition 6 is based on the following observations. (i) It
can be shown using standard limiting results (e.g., Slutsky’s theorem) analogous
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to the asymptotic normal arguments used in Serfling (1980) that

θT (Uα − µα)√
θT Vαθ

d→ N(0,1) ∀ θ ∈ �(B−p	B−p,p),

where B−p = diag{b−pi

i }, �(�,p) = {θ �= 0 :τ (θ)T �τ (θ) > 0}, τ (θ) =
diag{I (pi = p(θ))}θ and p(θ) = min{pi : θi �= 0}. (ii) Because 	 and B−p have
nonzero diagonal terms, it follows that the elementary vectors of the form θ =
(0, . . . ,0,1,0, . . . ,0)T fall in �(B−p	B−p,p). Thus, (Uαi − µαi)/

√
Vα,ii→d

N(0,1), i = 1, . . . , c. Note also that if 	 is positive definite, then �(B−p	B−p,
p) = Rc − {0}, that is, every nonzero vector θ belongs to the set. (iii) Finally, note
that αs+p(θ)θT (Uα −µα)→dN(0, σθ2), where σθ2 ≡ τ (θ)T B−p	B−pτ (θ). It can
be shown that, for any deterministic sequence {qα}, it follows that∣∣P (θT Uα ≤ qα) − P (Nα ≤ qα|Vα)

∣∣ P→ 0
(7.3)

where Nα|Vα ∼ N(θT µα, θT Vαθ).

Serfling’s definition of asymptotic normality follows as a special case of
approximate normality, when p = 0 and Vα is nonstochastic. We note that the
stochastic convergence of the ÂN result (7.3) can be replaced by deterministic
convergence in the AN case of Serfling.

In practice, the approximating variance Vα = avar(Uα) in Uα ∼ ÂN(µα,Vα) is
chosen so that it is an identifiable estimator. To illustrate, consider two independent
sequences of Poisson random variables Yiν ∼ Po(ν), i = 1,2. It is straightforward
to see that ν−1/2(Y1ν − Y2ν)→dN(0,2). By definition, either of 2ν or Y1ν + Y2ν

could serve as an approximating variance of (Y1ν − Y2ν), because ν−12ν and
ν−1(Y1ν + Y2ν) both converge in probability to 2. We would choose avar(Y1ν −
Y2ν) = (Y1ν + Y2ν) because, unlike 2ν, (Y1ν + Y2ν) is an estimator. We write
Y1ν − Y2ν ∼ ÂN(0, Y1ν + Y2ν) = OP (ν1/2). An estimator of P (Y1ν − Y2ν ≤ 10)

is P (Nν ≤ 10|Y1ν, Y2ν), where Nν |Y1ν, Y2ν ∼ N(0, Y1ν + Y2ν). As an example,
when ν = 100, P (Y1ν − Y2ν ≤ 10) = 0.771. Five realizations of the estimator
P (Nν ≤ 10|Y1ν, Y2ν) were 0.766,0.753, 0.770,0.761 and 0.765.

Several useful approximation results are given in the next theorem. Here,
Y is viewed as a member of the sequence {Yν} defined in the previous section.
The Appendix outlines the proofs of Ax3 and Ax7. The other proofs follow
analogously.

THEOREM 6 (MPH approximation results). Suppose that Y ∼ MPHZ(h|
ZF ,n) holds, with h ∈ H ′′

p (Z). Then the following approximation results Ax1
through Ax8 are valid, with the approximations improving as the components in m
increase. For convenience, define D̂ ≡ D(m̂) and Ĥ ≡ H(m̂).
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Ax1. N−1Y − π ∼ ÂN(0,N−1[D̂ − N−1D̂ZZT D̂]N−1) = OP (ν−1/2).

Ax2. π̂ − π ∼ ÂN(0,N−1[D̂ − D̂Ĥ(ĤT D̂Ĥ)−1ĤT D̂ − N−1D̂ZZT D̂]N−1) =
OP (ν−1/2).

Ax3. Y − m ∼ ÂN(0, D̂ − N−1D̂ZF ZT
F D̂) = OP (ν1/2).

Ax4. m̂ − m ∼ ÂN(0, D̂ − D̂Ĥ(ĤT D̂Ĥ)−1ĤT D̂ − N−1D̂ZF ZT
F D̂) = OP (ν1/2).

Ax5. Y − m̂ ∼ ÂN(0, D̂Ĥ(ĤT D̂Ĥ)−1ĤT D̂) = OP (ν1/2).

Ax6. λ̂ ∼ ÂN(0, [ĤT D̂Ĥ]−1) = OP (ν1/2−p).

Ax7. h(Y) − h(m) ∼ ÂN(0, ĤT D̂Ĥ) = OP (νp−1/2).

Ax8. log m̂− log m ∼ ÂN(0, D̂−1−Ĥ(ĤT D̂Ĥ)−1ĤT −N−1ZF ZT
F )=OP (ν−1/2).

Several remarks are in order.

1. Ax1 and Ax2 imply that the probability estimators have approximating
variances that depend only on the population matrix Z; they do not depend
on the sampling constraints.

2. Ax2 and Ax4 taken together indicate how one can use the approximating
variance of m̂ to directly compute the approximating variance of π̂ without
resorting to the delta method.

3. Because N−1ZF ZT
F can be shown to equal ZF D−1(ZT

F Y)ZT
F , Ax3 and Ax4

imply that the expected count estimators have approximating variances that
depend on the the sampling constraint matrix ZF , but not on the population
matrix Z. This means, for example, that we can always use Z = 1 for
convenience when considering the approximating distributions of expected
count estimators m̂ for Poisson sampling, that is, when ZF = 0.

4. Ax3–Ax5 taken together imply that the residuals Y − m̂ and fitted values m̂
for MPH models are asymptotically independent, because their approximating
variances add up to the approximating variance of Y − m.

5. Ax5 implies that the approximating variance of the residuals does not depend
on the sampling plan (Z,ZF ,n).

6. Ax6 and Ax7 imply that the approximating distributions of λ̂ and h(Y) do not
depend on the sampling plan (Z,ZF ,n).

8. Equivalence results for MPH models. In contingency table analyses, it
is common practice to exploit equivalences between certain models. As a simple
example, when faced with fitting a product-multinomial log-linear model, one
might choose to fit the “equivalent” Poisson log-linear model for convenience.

This section formalizes the notion of model equivalence. Specifically, we
introduce a formal definition of model equivalence and explicitly compare the ML
fit results for two equivalent models. This has both theoretical and computational
utility.
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8.1. Equivalence classes of MPH models. Let U(y) ≡ {M :M is a MPH
model for data y}. Notice that any model M in U(y) can be written as M =
MPHZ(h|ZF ,n) for some sampling plan (Z,ZF ,n) and some constraint function
h ∈ H ′′(Z); the sample sizes n are determined by ZF and y through n = ZT

F y.

DEFINITION 7. Two models M1,M2 ∈ U(y) are equivalent, denoted
M1≈M2, if there exist sampling plans (Z1,Z1F ,n1) and (Z2,Z2F ,n2) and a con-
straint function h ∈ H ′′(Z1) ∩ H ′′(Z2) such that M1 = MPHZ1(h|Z1F ,n1) and
M2 = MPHZ2(h|Z2F ,n2). If, in addition, the population matrices Z1 and Z2 are
identical (the sampling constraint matrices Z1F and Z2F need not be identical),

then the models M1 and M2 are population equivalent, denoted M1
P≈ M2.

Loosely, two MPH models that can be specified in terms of the same constraints
on the expected table counts are equivalent. Two equivalent MPH models that
are based on the same population matrix are population equivalent. Obviously,
population equivalence is a stronger version of equivalence. That is, if two models
are population equivalent, then they are equivalent; the converse is not true.

It will be useful to introduce a notation for the equivalence classes that
corresponds to the equivalence relationships “≈” and “≈P .” Let E(h,y) ≡ {MPH
models for y that can be specified using constraint function h} and let subset
E(h,Z,y) ≡ {MPH models for y, with population matrix Z, that can be specified
using constraint function h}. The set E(h,y) is an equivalence class induced by
“≈” in that any two models in E(h,y) are equivalent. Similarly, the set E(h,Z,y)

is an equivalence class induced by “≈P ” in that any two models in E(h,Z,y) are
population equivalent.

Note that although U(y) = ⋃
h∈H ′′ E(h,y) = ⋃

h∈H ′′
⋃

Z∈P E(h,Z,y), the sets
E(h,y) are not disjoint; neither are the sets E(h,Z,y). For example, E(3h,y) and
E(h,y) are identical. Herein, we have no need for a disjoint partition of U(y); the
equivalence classes E(h,y) and E(h,Z,y) will suffice.

The choice of equivalence relationship definition is reasonable because, when
models are equivalent, we will show that, among other things, (i) expected
count ML estimates are identical, (ii) goodness-of-fit statistics are identical and
(iii) adjusted residuals [see Haberman (1973)] are identical.

8.2. Numerical equivalence and comparison results. Theorem 7 gives a
collection of useful comparisons between ML fit results for two equivalent data
models, y ← Y1 ∼ M1 and y ← Y2 ∼ M2. In the statement of the theorem,
maximum likelihood estimates and goodness-of-fit statistics for model Mi are
subscripted with an i, i = 1,2. The symbol Ni ≡ D(ZiZT

i Yi ) = D(Zi γ̂ i) for
i = 1,2 and D̂ = D(m̂1) = D(m̂2). The approximating variances, as derived in
Section 7.3 and denoted avar, are viewed as nonrandom estimates, evaluated using
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the observed data y. All of these results are direct consequences of the numerical
results of Section 7.1 and the approximation results of Section 7.3; hence, proofs
are omitted.

THEOREM 7. Consider two candidate data models, y ← Y1 ∼ M1 and
y ← Y2 ∼ M2. Assume that M1 and M2 are equivalent in that they both are
members of the same equivalence class E(h,y). For specificity, assume that
Mi = MPHZi

(h|ZiF ,ni ), i = 1,2. Then the following numerical equivalences and
comparisons hold.

NE1. m̂1 = m̂2.
NE2. avar(m̂1) − avar(m̂2) = N−1

2 D̂Z2F ZT
2F D̂ − N−1

1 D̂Z1F ZT
1F D̂.

NE3. avar(log m̂1) − avar(log m̂2) = N−1
2 Z2F ZT

2F − N−1
1 Z1F ZT

1F .
NE4. π̂1 = N−1

1 N2π̂2. If, in addition, M1 and M2 are population equivalent,
then π̂1 = π̂2.

NE5. avar(π̂1) − avar(π̂2) depends only on Z1, Z2, m̂ = m̂1 = m̂2 and H(m̂).
The difference can be computed using Ax2. If, in addition, M1 and M2 are
population equivalent, then avar(π̂1) = avar(π̂2).

NE6. λ̂1 = λ̂2.
NE7. avar(λ̂1) = avar(λ̂2).
NE8. avar(h(Y1)) = avar(h(Y2)).
NE9. avar(Y1 − m̂1) = avar(Y2 − m̂2).

NE10. The adjusted residuals, defined as r̂it = (yt − m̂it )/
√

avar(Yit − m̂it ),

i = 1,2, are numerically identical (i.e., r̂1t = r̂2t , t = 1, . . . , c). Here, m̂it

is the t th fitted value for model Mi .
NE11. W 2

1 (y) = W 2
2 (y), X2

1(y) = X2
2(y) and G2

1(y) = G2
2(y).

Inspection of the form of the differences between point estimates or approxi-
mate variance estimates for two equivalent models indicates the practical utility
of these numerical equivalence results. Specifically, any numerical difference can
be explicitly computed using the ML fit results of either equivalent model. This
means the ML fit results for any particular MPH model can be obtained directly
from the ML fit results of any conveniently chosen equivalent model.

Birch (1963) gave a necessary and sufficient condition for numerical equiva-
lence NE1 of Theorem 7 when a Poisson model is compared to a MP model. Re-
stated in terms of constraint models, Birch’s result implies that for the two models
M = MPZ(h|0) and M2 = MPZ(h|ZF ,n = ZT

F y), the fitted values are numeri-
cally equal (i.e., m̂ = m̂2) if and only if ZT

F m̂ = n. In practice, with the exception
of special cases like log-linear models [see Haberman (1974)], it is not always easy
to know what models will generally lead to ZT

F m̂ = n.
Here, we give a very general and simple to verify sufficient condition for when

the identity ZT
F m̂ = n holds. Namely, it holds when h ∈ H ′′(Z). This can be argued
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as follows: by Proposition 6, ZT
F D(m̂)H(m̂) = 0. This implies that when the first

set of equations in (7.2) is multiplied by ZT
F , the identity ZT

F m̂ = ZT
F y = n is

obtained. Bergsma (1997) implicitly used a result similar to Proposition 6 to assert
that Poisson and multinomial point estimates are identical in the special case of
zero-order homogeneous constraint models.

Numerical equivalence NE3 affords a straightforward comparison of the
approximating variances of the linear predictors in any two equivalent log-linear
models for data y. For example, the difference between the approximating variance
estimate of log m̂ for a Poisson log-linear model and a multinomial–Poisson
log-linear model with sampling constraint matrix ZF is simply N−1ZF ZT

F =
ZF D−1(ZT

F y)ZT
F .

EXAMPLE 8.1 (Log-linear models). Suppose that the counts in y are observed
and the log-linear model of the form log m = Xβ, or equivalently, h(m) =
UT log m = 0, is considered. Provided R(X) contains both R(Z1) and R(Z2), the
Poisson log-linear model M1 = MPHZ1(h|0) and the product-multinomial log-
linear model M2 = MPHZ2(h|Z2,n) are equivalent [i.e., M1,M2 ∈ E(h,y)]. It
follows that the many numerical equivalences outlined above hold. For example,
we obtain the well-known result [see Bishop, Fienberg and Holland (1975), Agresti
(1990) and Fienberg (2000)] that the equivalent log-linear model fitted values are
identical (i.e., m̂1 = m̂2). Furthermore, by the numerical comparison result NE3
of this section, avar(log m̂1) − avar(log m̂2) = Z2D−1(ZT

2 y)ZT
2 . This result leads

directly to many useful equivalence results for the log-linear coefficient estimators
in β̂, because Xβ̂ i = log m̂i . As an example, if the j th component of β , say βj ,
corresponds to a column in X that is not needed to span the space of Z2, then
avar(β̂j1) = avar(β̂j2). This special case example is well known [see Haberman
(1974), Palmgren (1981), Christensen (1990), page 215, and Lang (1996a)].

EXAMPLE 8.2. Consider the hypothesis h(m) = ∑R
i=1 m2

i+ − ∑R
i=1 m2+i = 0

for an R × R contingency table. The function h is in H ′′
2 (1), so the Poisson

and multinomial data models M1 = MPH1(h|0) and M2 = MPH1(h|1, n) are
population equivalent. It follows that M1 and M2 have identical fitted values
(m̂1 = m̂2 = m̂); the difference avar(m̂1) − avar(m̂2) = m̂m̂T /n; the estimated
cell probabilities and their approximating variance estimates are identical; the
adjusted residuals are identical; and the goodness-of-fit statistic values are
identical. We point out that h(m) = 0 if and only if h(P) = 0, so M1 and M2
are models of equal marginal Gini concentration.

EXAMPLE 8.3. Consider the hypothesis of a fixed odds ratio, h(m) =
(m11m22)/(m12m21) − 3 = 0 for a 2 × 2 table. Let Z1 = 14, Z2 = I2 ⊗ 12 and
Z3 = 12 ⊗ I2. The function h is in H ′′(Zi ), i = 1,2,3, so the six data models
MPHZi

(h|Zi,ni ),MPHZi
(h|0), i = 1,2,3, are all equivalent. By the equivalence
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results of this section, the ML fit results for one of the models, say the Poisson
model MPHZ1(h|0), can be explicitly adjusted to give the ML fit results for the
other five equivalent models.

9. Z-homogeneous statistics. Analysis of contingency tables often involves
estimation of functions of the expected counts m. Previous sections described esti-
mation of certain functions, such as S(m) = D−1(ZZT m)m = π and
S(m) = m. This section explores the broader class of smooth Z-homogeneous
functions and describes the limiting behavior of the corresponding ML estimators.
These ML estimators, which have the form S(m̂), are called Z-homogeneous sta-
tistics. In practice, many estimators of interest can be written as Z-homogeneous
statistics.

DEFINITION 8. The estimator S(m̂) is a Z-homogeneous statistic of order p
if (i) m̂ is the ML estimator under MPHZ(h|ZF ,n), (ii) S ∈ Hp(Z) and (iii) S has
continuous first-order derivatives at the true π .

The asymptotic distribution of properly normalized S(m̂) can be found using
Theorem 3 and Lemma 6 in conjunction with the delta method. The proof can be
found in the Appendix. In the following D ≡ D(π) and H ≡ H(π).

THEOREM 8. Suppose that the sequence of MPH models MPHZ(h|ZF ,n)

holds. Let S(m̂) be a Z-homogeneous statistic of order p, where S(D(Zγ )x) =
G(γ )S(x). Then

ν1/2G−1(γ )
(
S(m̂) − S(m)

) d→ N

(
0,

∂S(π)

∂πT

[
	∗ − W−1DZF ZT

F D
]∂S(π)T

∂π

)
,

where 	∗ = W−1D − W−1DH[HT DW−1H]−1HT DW−1.

As in Section 7.3, this asymptotic result can be used to obtain a practically
useful approximation result. As before, let N ≡ D(ZZT Y), D̂ ≡ D(m̂) and
Ĥ ≡ H(m̂).

COROLLARY 1. Under the conditions of Theorem 8, the following approxi-
mation result is obtained:

S(m̂) − S(m)

∼ ÂN
(

0,
∂S(m̂)

∂mT

[
D̂ − D̂Ĥ

(
ĤT D̂Ĥ

)−1ĤT D̂ − N−1D̂ZF ZT
F D̂

]∂S(m̂)T

∂m

)
= OP (νp−1/2).
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REMARK. In view of Ax4, the approximating variance has the form

∂S(m̂)

∂mT
avar(m̂)

∂S(m̂)T

∂m
.

Because of this result, it is often mistakenly assumed that one can find the
approximating distribution of S(m̂), for any sufficiently smooth function S, by
formally applying the delta method directly to S(m̂). Corollary 1 shows that
when S is Z-homogeneous this is true. However, it is not true in general.
Consider an example from Bishop, Fienberg and Holland [(1975), pages 489
and 490]. When Y ∼ Po(m), the approximating distribution of S1(Y ) = Y r can
be found by formally applying the delta method because S1 is homogeneous of
order r ; thus, Y r ∼ AN(mr , r2m2r−1) or Y r ∼ ÂN(mr, r2Y 2r−1). In contrast,
the approximating distribution of the nonhomogeneous function S2(Y ) = exp(Y )

cannot be found using a formal application of the delta method; that is, exp(Y )

is not AN(exp(m),m exp(2m)). We point out that there are classes of S functions
other than Z-homogeneous functions for which a formal application of the delta
method works. For example, it can be shown that the formal method works if
S(D(Zγ )x) = a(γ )+ S(x), where a(γ 1)− a(γ 2) = a(γ 1/γ 2)− a(1). As a special
case example, the function S(m) = log(m) satisfies this condition.

If S is Z-homogeneous of order 0 [i.e., S(D(Zγ )x) = S(x)], the approximation

result of Corollary 1 simplifies because N−1D̂ZF ZT
F D̂(∂S(m̂)T )/∂m = 0 by

Proposition 5. The result can be stated as follows.

COROLLARY 2. Under the conditions of Theorem 8, if S is Z-homogeneous
of order 0, then

S(m̂) − S(m) ∼ ÂN
(

0,
∂S(m̂)

∂mT

[
D̂ − D̂Ĥ

(
ĤT D̂Ĥ

)−1ĤT D̂
]∂S(m̂)T

∂m

)
= OP (ν−1/2).

The previous two corollaries can be used to compare the approximating
distributions of Z-homogeneous statistics for equivalent models. We state the
result in the form of a corollary.

COROLLARY 3. Suppose that y is observed and that M1 = MPHZ1(h|
Z1F ,n1) and M2 = MPHZ2(h|Z2F ,n2) are any two equivalent models in E(h,y).
If S(m̂i ) is a Zi-homogeneous statistic for i = 1,2, then S(m̂1) and S(m̂2) are
numerically identical and

avar
(
S(m̂1)

) − avar
(
S(m̂2)

)
= ∂S(m̂)

∂mT

[
N−1

2 D̂Z2F ZT
2F D̂ − N−1

1 D̂Z1F ZT
1F D̂

]∂S(m̂)T

∂m
,
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where m̂ = m̂1 = m̂2. If, in addition, S is of order 0, then avar(S(m̂1)) =
avar(S(m̂2)).

EXAMPLE 9.1 (Log odds ratio estimator). Suppose that outcomes are clas-
sified according to dichotomous variables (A,B) ∼ P and that the vector of
counts y = (y11, y12, y21, y22)

T = (32,18,12,38)T is observed. Here, yij = num-
ber of (A = i,B = j) events. It is of interest to estimate the log odds ratio
S(P) = log(P11P22/P12P21).

Consider the following three equivalent—they all fall in E(0,y)—unrestricted
data models: y ← Y ∼ MPHZi

(0|ZiF ,ni ), i = 1,2,3, where Z1 = 14,Z2 =
I2 ⊗ 12,Z3 = 12 ⊗ I2 and ZT

iF y = ni . Because the log odds ratio function S is in
H0(Zi ) for i = 1,2,3, S(P) = S(m) for any of the three data models. This implies
that the unrestricted ML estimators of S(P) have the form S(m̂i ) = S(Y). Now, the
estimator S(m̂i ) = S(Y) is a Zi-homogeneous statistic of order 0, i = 1,2,3. Thus,
not only are the S(m̂i ) numerically identical [and equal to S(y) = 1.728044], but
Corollary 3 states that they have the same approximating variance estimate, namely
from Corollary 2,

avar
(
S(m̂i )

) = ∂S(m̂i )

∂mT
D̂

∂S(m̂i )
T

∂m
= ∂S(y)

∂mT
D(y)

∂S(y)T

∂m
= ∑∑

y−1
ij = 0.1965.

These results hold regardless of the choice of sampling constraint matrices
ZiF , i = 1,2,3.

EXAMPLE 9.2 (Conditional probability estimator). Haberman [(1974), pages
88–90] described the asymptotic distributions of conditional probability ML
estimators for conditional–Poisson sampling and log-linear model constraints.
Using Theorem 8 and its corollaries, we can generalize these log-linear model
results for the independent sampling schemes used in this article to the broader
class of MPH models.

Suppose it is desired to estimate the conditional probabilities in S(P) =
D−1(Z1ZT

1 P)P. Consider two candidate data models, y ← Y ∼ MPHZ1(h|
Z1F ,n1) and y ← Y ∼ MPHZ2(h|Z2F ,n2), where Z2 = Z1Z for some population
matrix Z. Because S is in H0(Z1), Proposition 2 implies that it is also in H0(Z2).
It follows that S(P) = S(m) under either data model. Therefore the ML estimators
of S(P) that correspond to the two data models are S(m̂1) and S(m̂2). Because
both models are equivalent [i.e., both belong to E(h,y)], the ML estimates are
numerically identical. Also, for i = 1,2, the estimator S(m̂i) is a Zi homogeneous
statistic of order 0, so by Corollary 3 the approximating variance estimates are
identical as well. These results hold regardless of the choice of sampling constraint
matrices ZiF ∈ S(Zi ).

Note that S(m̂1) = D−1(Z1ZT
1 m̂1)m̂1 = N−1

1 m̂1 = π̂1 and that S(m̂2) =
D−1(Z1ZT

1 m̂2)m̂2 = N−1
1 m̂2 (because ZT

1 m̂2 = ZT
1 m̂1 = ZT

1 Y). Theorem 6 gives
the common approximating variance estimate as avar(S(m̂1)) = avar(S(m̂2)) =
N−1

1 [D̂ − D̂Ĥ(ĤT D̂Ĥ)−1ĤT D̂ − N−1
1 D̂Z1ZT

1 D̂]N−1
1 .
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10. On estimability and testability. A primary goal of contingency table
inference is to estimate functions of, or test hypotheses about, the predata
probabilities P and perhaps certain rate parameters. Of course, we are restricted by
the fact that our model for data y, which depends on the sampling plan (Z,ZF ,n),
only affords inferences about the data model parameters γ and π = D−1(ZZT P)P
or, equivalently, m = D(Zγ )π . This section formally defines estimability and
testability, and gives sufficient conditions for when an estimand S(P) is estimable
and/or a hypothesis h(P) = 0 is testable.

10.1. Estimability of functions of P.

DEFINITION 9. A function S(P) is said to be Z-estimable if there exists a
function S∗ satisfying S(P) = S∗(m).

Note that every estimand S(P) is 1-estimable, because in this case P = m/1T m.
More generally, a simple to verify sufficient condition for Z-estimability of S(P)

is that S ∈ H0(Z); that is, S is zero-order Z-homogeneous. This follows because
S(m) = S(D(Zγ )π) = S(D(Zγ )D−1(ZZT P)P) = S(P), where the last equality
follows when S is in H0(Z).

That this zero-order homogeneity is not a necessary condition follows, for
example, from S(P) = P1 − P2 being 12-estimable. Similarly, there are simple
examples that show that the more general condition S ∈ H(Z) is not sufficient for
Z-estimability of S(P).

REMARK. Consider data model MPHZ(h|ZF ,n). If S ∈ H0(Z) and first-
order derivatives exist, then S(P) is Z-estimable and Ŝ(P) = S(m̂) is a zero-order
Z-homogeneous statistic.

EXAMPLE 10.1. Consider the estimands of Section 4.2. The 1987–1989 data
and the 1999 data resulted from sampling plans with population matrices 19 and
Z = ⊕3

1 13, respectively. It follows that all of the estimands can be estimated using
the 1987–1989 data. The sufficient condition for Z-estimability can be used to
show that the Gini concentrations Si(P) = Gi = ∑3

j=1(Pij /Pi+)2, i = 1,2,3, as
well as S4(P) = P11/(P12 + P13) and S5(P) = P23/P2+, can be estimated using
the 1999 data. In contrast, the estimand S6(P) = P21/P12 does not satisfy the
sufficient condition for Z-estimability. In fact, it is straightforward to see that
S6(P) is not Z-estimable. Note that, for i = 1, . . . ,5, Ŝi(P) = Si(m̂) is a zero-order
Z-homogeneous statistic under the 1999 data model.

EXAMPLE 10.2. Consider the exchange score model of Section 4.2. The
exchange scores have the form αi = log(Pi1/P1i) ≡ αi(P). It follows that, for
i = 2,3, the function αi(·) is not in H0(Z); in fact, it is straightforward to see
that αi(P) is not Z-estimable. That is, the exchange scores are not estimable using
the 1999 data.
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EXAMPLE 10.3. Consider the linear logit model log(Pi2/Pi1) = α + β ∗ i,

i = 1, . . . ,4, for the probabilities in a 4 × 2 table. Suppose that the observed MP
counts are the result of a sampling plan with Z = 14 ⊗ I2. If the dichotomous
column variable is viewed as the response of interest, we would call this a
retrospective or case-control sampling plan. It is straightforward to see that the
data cannot be used to estimate log(Pi2/Pi1) or α, but they can be used to
estimate the slope coefficient β . For example, the Z-estimability of β follows
because β = log(Pi1Pi+1,2/(Pi+1,1Pi,2)) for any i, and these log odds ratios are
Z-estimable.

10.2. Testability of h(P) = 0.

DEFINITION 10. A hypothesis h(P) = 0 is said to be Z-testable if there exists
a function h∗ satisfying h(P) = 0 if and only if h∗(m) = 0.

Note that every hypothesis is 1-testable. More generally, a simple to ver-
ify sufficient condition for Z-testability of h(P) = 0 is that h ∈ H(Z); that
is, h is Z-homogeneous of any order. This follows because h(m) = 0 iff
h(D(Zγ )D−1(ZZT P)P) = 0 iff h(P) = 0, where the last equivalence follows
when h is in H(Z).

That this homogeneity condition is not necessary follows from a simple
example: Let P = (P11,P12, P21,P22)

T and consider the data model with
population matrix

⊕2
1 12. The function h defined as h(P) = log(P11/P+1) −

log(P12/P+2) is not in H(
⊕2

1 12), but h(P) = 0 if and only if h∗(m) ≡
log(m11m22) − log(m12m21) = 0. This equivalence follows because, in 2 × 2
tables, the relative risk equals 1 if and only if the odds ratio equals 1.

REMARK. When h ∈ H ′′(Z), the hypothesis h(P) = 0 is Z-testable and is
equivalent to the test of goodness of fit of the MPH data model MPHZ(h|ZF ,n),
which imposes the constraint h(m) = 0.

EXAMPLE 10.4. Consider the four hypotheses of Section 4.2. Using the
sufficient condition for testability, it is straightforward to see that the 1999 data
as modeled in Section 4.1 can be used to test h1(P) = 0, h2(P) = 0 and h4(P) = 0.
In contrast, the sufficient condition does not hold for h3; in fact, h3(P) = 0 is not
testable using the 1999 data. We point out, however, that it is testable using the
1987–1989 data.

The fact that h4(P) = 0, the hypothesis that the exchange score model of
Section 4.1 holds, is testable using the 1999 data leads to what at first glance
appears to be a paradox. Example 10.2 argued that the parameters in the exchange
score model are not estimable using the 1999 data. Thus, the 1999 data can be
used to test whether the exchange score model holds, but they cannot be used to
estimate any of that model’s parameters.
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EXAMPLE 10.5. Consider the setting of Example 10.3 and recall that Z =
14 ⊗ I2. Denote the local odds ratios by θi = (Pi1Pi+1,2)/(Pi2Pi+1,1), i =
1,2,3. The constraint form of the linear logit model, log(Pi2/Pi1) = α + β ∗ i,

i = 1, . . . ,4, can be written as h(P) = (log(θ1/θ2), log(θ1/θ3)) = 0. It follows that
h is in H ′′(Z), so by the sufficiency condition h(P) = 0 is Z-testable. The test is
equivalent to the goodness-of-fit test of the model MPHZ(h|ZF ,n).

10.3. Estimability of rate parameters. The estimability of rate quantities is
dependent on the sample size assumptions. If a sample size is fixed a priori, then
we cannot estimate the sampling rate parameter without additional information.
When the sample sizes are random and events occur according to a Poisson
process, we can estimate the rate parameters in a natural way. Note that estimation
must proceed unconditionally, that is, it is not appropriate to conduct inferences
conditional on sample sizes in this setting.

EXAMPLE 10.6. The 1999 citation data can be used to estimate the expected
number of ANNS references per issue of JASA—this rate is equal to E(Y13) =
δ1π13 = m13. In contrast, the 1999 data cannot be used to estimate the expected
number of JASA references per issue of the ANNS, because the expected number
of ANNS references E(Y3+) = 225 is fixed by sampling design.

11. Numerical computation of ML fit results: statistics journal citation
data analysis. Maximum likelihood fitting for MPH models is relatively straight-
forward. I have written a software program in R [discussed in Ihaka and Gentleman
(1996)] that produces maximum-likelihood fit results for any MPH model that has
a constraint function that can be explicitly specified. The program uses a modi-
fied Newton–Raphson algorithm to solve the restricted likelihood equations (7.2)
of Theorem 1. The algorithm is related to the algorithms of Aitchison and Silvey
(1958) and Lang and Agresti (1994). By-products of the fitting algorithm, in con-
junction with the MPH model approximation results presented herein, are used
to compute a wide variety of ML fit results including goodness-of-fit statistics,
residuals and approximating variance estimates.

Section 10.2 argued that the hypothesis h1(P) = (G1 − 0.410,G2 − 0.455,

G3 − 0.684)T = 0 that the Gini concentrations of cited journals have not changed
from the 1987–1989 values (see Section 4.2) is testable using the 1999 data model,
denoted MPHZ(0|ZF ,225). In fact, this test is equivalent to the test of goodness
of fit of the model MPHZ(h1|ZF ,225). The observed likelihood ratio and Pearson
score statistics are G2 = 7.773 and X2 = 8.421, respectively. Comparing these
values to the approximate null distribution χ2(3) gives p-values of 0.051 and
0.038. To assess the local fit of the no-change model, the nine adjusted residu-
als are computed: their values are (0.455,−0.455,−0.455, 0.642,−0.642,0.642,

2.793,2.793,−2.793). Evidently, the no-change hypothesis is questionable, espe-
cially regarding the citation patterns in ANNS. The observed 1999 Gini concentra-
tions are 0.419 (ase = 0.021), 0.441 (ase = 0.022) and 0.595 (ase = 0.032); the
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JASA and BMCS concentrations are nearly unchanged from 1987–1989, but there
appears to be less concentration in 1999 than in 1987–1989 for ANNS.

Section 10.2 argued that the 1999 data could be used to test the hypoth-
esis h4(P) = 0 that Stigler’s (1994) exchange score model log(Pij /Pji) =
αi −αj holds. This model holds if and only if the data model parameters m satisfy
log(mij /mji) = βi − βj or, in generic matrix notation, L1(m) = X1β1. Alterna-
tively, the exchange score model holds if and only if the data model parameters m
satisfy the quasisymmetry model logmij = β + βA

i + βB
j + βij , where βij = βji

[see Fienberg and Larntz (1976) and Stigler (1994)], or in generic matrix notation,
L2(m) = X2β2.

The models L1(m) = X1β1 and L2(m) = X2β2 are qualitatively different in
that L1 is a many-to-one link and L2 is a one-to-one link. Standard approaches
to ML fitting require the link to be one-to-one because the likelihood is to
be reparameterized in terms of the β “freedom” parameters. For this reason,
the many-to-one link models are typically fitted using non-ML methods, such
as weighted least squares [see Stokes, Davis and Koch (2000), Chapter 13].
This need not be the case. Following the approach of Aitchison and Silvey
(1958), either model can be easily fitted using ML because they both can be
respecified in terms of constraints: L1(m) = X1β1 is equivalent to h4,1(m) ≡
UT

1 L1(m) = 0 and L2(m) = X2β2 is equivalent to h4,2(m) ≡ UT
2 L2(m) = 0;

here Ui is the orthogonal complement of Xi , i = 1,2. It can be shown that h4,
h4,1 and h4,2 lie in H ′′(Z), so the exchange score data model MPHZ(h4|ZF ,n)

can be equivalently respecified as MPHZ(h4,1|ZF ,n) or MPHZ(h4,2|ZF ,n). The
goodness-of-fit statistic values for the exchange score data model are G2 = 0.187,
X2 = 0.190 and df = 1. Furthermore, all the adjusted residuals are less than 0.4361
in absolute value. Thus, it appears that the exchange score model fits these data
very well. Recall from Section 10.1 that the exchange score parameters αi cannot
be estimated using these 1999 data.

We estimate the expected number of ANNS references per JASA issue, which
in terms of the data model parameters is E(Y13) = δ1π13 = m13, using the
exchange score model. To this end, it is important that we do not conduct
inference conditional on the sample sizes. Instead, we use the restricted data
model MPHZ(h4|ZF ,n). The ML estimate of m13 under the exchange score
model is m̂13 = 64.12 and the approximating standard error is 7.75. Interestingly,
the corresponding approximate 95% confidence interval [48.90, 79.34] contains
the average number of ANNS references per 1987–1989 JASA issue, which was
739/12 = 61.58, so we do not observe a statistically significant change in the rate
from 1987–1989. If we inappropriately condition on the sample sizes and use
the equivalent product-multinomial model MPHZ(h4|Z,n1 = (193,252,225)),
the ML estimate of m13 is the same, but the approximating standard error 6.22
is smaller than 7.75, the correct standard error. The difference in standard errors
can be computed using NE2.
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The estimated Gini concentration for JASA under the 1999 exchange score
data model MPHZ(h4|ZF ,n) is 0.417 (ase = 0.020). If two references in
JASA are randomly selected, given they refer to JASA, BMCS or ANNS, the
probability they refer to the same journal is estimated to be 41.7%. Because
this Gini concentration estimator is a Z homogeneous statistic of order 0, the
ML estimate and approximate standard error estimate would be unchanged if,
for example, we instead used the population equivalent product-multinomial
data model MPHZ(h4|Z,n1 = (193,252,225)) or the equivalent Poisson model
MPH19(h1|0).

Section 10.2 argued that the hypothesis of common Gini concentration
h2(P) = 0 (see Section 4.2 also) is testable using the 1999 data. The common
Gini model is equivalent to L(m) = α13, where L(m) ≡ (

∑3
j=1(m1j /m1+)2,∑3

j=1(m2j /m2+)2,
∑3

j=1(m3j /m3+)2)T = L(P). The link L is a many-to-one
link, but as argued above, this causes no problems with ML fitting because
L(m) = α13 if and only if h2,1(m) ≡ UT L(m) = 0, where U is the orthogonal
complement of 13. Note that h2,1 ∈ H ′′(Z). The fit of the restricted 1999 data
model MPHZ(h2|ZF ,n) gives α̂ = 0.478 (ase = 0.015), G2 = 24.63, and df =
2 (p < 0.0001). Evidently, the model of common Gini concentrations is unten-
able—in particular, it appears that there is more concentration in ANNS than the
other two journals.

12. Discussion. This article makes a clear distinction between the predata
probabilities P and the data model parameters π = D−1(ZZT P)P and γ =
E(ZT Y). It is generally more informative to begin a contingency table analysis
by specifying a model and/or estimands in terms of the predata probabilities P,
rather than the data model parameters. It can then be determined whether the
model and/or estimands can be restated in terms of the data model parameters that
correspond to the sampling plan (Z,ZF ,n). As an example, consider a 2× 2 table,
where (A,B) ∼ P = (P11,P12,P21,P22). Suppose the estimand of interest is the
relative risk S(P) = (P11/P1+)/(P21/P2+). Under sampling plan (Z1,Z1F ,n1),
where Z1 = ⊕2

1 12, the data model probabilities are defined as πij = Pij /Pi+ and
the relative risk S(P) = π11/π21 is estimable. In contrast, under sampling plan
(Z2,Z2F ,n2), where Z2 = 12 ⊗ I2, the data model probabilities are πij = Pij /P+j

and S(P) is not estimable.
I have written a MPH model ML fitting program in R [Ihaka and Gentleman

(1996); see also http://cran.r-project.org]. This program (available from the author
upon request) can be used to compute ML fit statistics for many less standard
contingency table models. An important example is the class of linear predictor
models of the form L(m) = Xβ , where L is generally many-to-one. Currently
available statistical packages typically fit these many-to-one link models using
nonlikelihood methods, such as weighted least squares [see Stokes, Davis and
Koch (2000), Chapter 13]. The current article and the companion fitting program
illustrate that models like these can be fitted easily using maximum likelihood.
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Aside from the examples, this article focused on results for the very general
class of MPH models. Lang (2000) exploited the special structure of and gave
more in-depth results for several important subclasses of MPH models. Included
among these subclasses are generalized log-linear models [see Lang and Agresti
(1994) and Lang, McDonald and Smith (1999)] and the broad class of probability
freedom models that lend themselves to the multinomial-to-Poisson transformation
of Baker (1994).

APPENDIX: SELECTED PROOFS

PROOF OF PROPOSITION 5 (Generalized Euler’s homogeneous function
theorem). A version of Euler’s theorem can be stated as follows: Suppose that
first-order partial derivatives of the scalar-valued function h :� �→ R exist. Then

δph(x) = h(δx) ∀ δ > 0,∀x ∈ �

if and only if

ph(x) = xT ∂h(x)

∂x
∀x ∈ �.

The proof is straightforward [see Fleming (1977), page 89]. This result will be
used repeatedly in the proof of Proposition 5.

Let φk = (i :Zik = 1) and for x = (x1, . . . , xc)
T define yk = xφk

, that is,
yk comprises those components in x that correspond to the kth column in Z. Define
the argument-permuting function EZ as EZ(y1, . . . ,yK) = x. For example, if
Z is a 4 × 2 population matrix that gives φ1 = (1,3) and φ2 = (2,4), then y1 =
(x1, x3) and y2 = (x2, x4). The argument-permuting function would be defined as
EZ(a1, a2, a3, a4) = (a1, a3, a2, a4), so that EZ(y1,y2) = (x1, x2, x3, x4) = x.

Necessity. Assume that h(D(Zδ)x) = diag{δp(j)
ν(j) , j = 1, . . . , u}h(x) ∀ δ > 0,

∀x ∈ �. Let x ∈ �. The matrix ZT D(x)H(x) can be written as ZT D(x)[(∂h1(x))/

∂x, . . . , (∂hu(x))/∂x]. The j th column can be written as

ZT D(x)
∂hj (x)

∂x
=


yT

1
∂hj (x)

∂y1
...

yT
K

∂hj (x)

∂yK

 .

Define h
(k)
j (yk) = hj (x), where yj , j �= k, are viewed as fixed.

By assumption (i.e., h is Z-homogeneous), for every δ > 0,

h
(k)
j (δyk) =

 δp(j)h
(k)
j (yk), if k = ν(j),

h
(k)
j (yk), if k �= ν(j), k = 1, . . . ,K .



374 J. B. LANG

By Euler’s theorem, as stated at the beginning of this proof,

yT
k

∂h
(k)
j (yk)

∂yk

=
{

p(j)h
(k)
j (yk), if k = ν(j),

0, if k �= ν(j), k = 1, . . . ,K .

Equivalently,

yT
k

∂hj (x)

∂yk

=
{

p(j)hj (x), if k = ν(j),
0, if k �= ν(j), k = 1, . . . ,K.

Therefore,

ZT D(x)
∂hj (x)

∂x
=

 I (ν(j) = 1)
...

I (ν(j) = K)

p(j)hj (x) ∀x ∈ �

or

ZT D(x)H(x) = AD(p)D(h(x)) ∀x ∈ �,

where A is K × u with (i, j)th component Aij = I (ν(j) = i). Note that Aij ∈
{0,1} and

∑K
i=1 Aij = 1. This proves the necessity of the condition.

Sufficiency. Assume that ZT D(x)H(x) = AD(p)D(h(x)) ∀x ∈ �, where Aij ∈
{0,1} and

∑K
i=1 Aij = 1. By assumption, for any x ∈ �,

ZT D(x)
∂hj (x)

∂x
= p(j)hj (x)

 A1j
...

AKj


or, equivalently,

yT
k

∂hj (x)

∂yk

=
{

0, if Akj = 0,
p(j)hj (x), if Akj = 1, k = 1, . . . ,K .

This implies, using Euler’s theorem as stated above, that for k = 1, . . . ,K ,

hj

(
EZ(y1, . . . , δkyk, . . . ,yK)

) =
{

hj

(
EZ(y1, . . . ,yK)

)
, if Akj = 0,

δ
p(j)
k hj

(
EZ(y1, . . . ,yK)

)
, if Akj = 1,

= δ
p(j)Akj

k hj (x).

Letting y0k ≡ x0φk
be the components in x0 that correspond to the kth column in Z,

we can summarize by defining property k, for k = 1, . . . ,K :

PROPERTY k. hj(EZ(y01, . . . , δky0k, . . . ,y0K)) = δ
p(j)Akj

k hj (x0) ∀ δk > 0
∀x0 ∈ �.
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The result now follows by sequential applications of properties 1 through K .
Let δ > 0,x ∈ �. Then

hj

(
D(Zδ)x

) = hj

(
EZ(δ1y1, δ2y2, δ3y3, . . . , δKyK)

)
= δ

p(j)A1j

1 hj

(
EZ(y1, δ2y2, δ3y3, . . . , δKyK)

)
[apply property 1 with

x0 = EZ(y1, δ2y2, δ3y3, . . . , δKyK) ∈ �]

= δ
p(j)A1j

1 δ
p(j)A2j

2 hj

(
EZ(y1,y2, δ3y3, . . . , δKyK)

)
[apply property 2 with

x0 = EZ(y1,y2, δ3y3, . . . , δKyK) ∈ �]

...

= (
δ
A1j

1 · · · δAKj

K

)p(j)
hj

(
EZ(y1,y2,y3, . . . ,yK)

)
[apply property K with

x0 = EZ(y1,y2,y3, . . . ,yK) = x ∈ �]

= δ
p(j)
ν(j) hj (x),

where ν(j) ∈ {1, . . . ,K}. The last equality follows because Aij ∈ {0,1} and∑K
i=1 Aij = 1. Therefore, in matrix notation h(D(Zδ)x) = G(δ)h(x) ∀ δ > 0,

∀x ∈ �, where G(δ) = diag{δp(j)
ν(j) , j = 1, . . . , u}. This proves the sufficiency of

the condition. �

PROOF OF THEOREM 1. By convention, if ZF = 0 (so ZR = Z), the
equations (7.1) reduce to (7.2). Consider ZF �= 0. Using sampling constraint
matrix property S8 and Proposition 6, the first set of equations in (7.1), when
premultiplied by ZT

F , reduces to ZT
F y + ZT

F D(m)ZF τ = 0. Alternatively using S4

and the fact that ZT
F m = n = ZT

F y, the equations reduce to n + D(n)τ = 0. Thus,
τ = −1 and the solution m must satisfy the reduced set of equations[

y − D(m)
[
ZR1 + ZF 1

] + D(m)H(m)λ
h(m)

]
= 0.

However, by sampling constraint matrix property S9 these equations are identical
to those in (7.2). Therefore, the restricted likelihood equations can be reduced
to (7.2). �

PROOF OF THEOREM 2. That π̂ = D−1(Zγ̂ )m̂ follows from the invariance of
ML estimates. By the form of the log likelihood [see density (3.2)] and the product-
space form (6.1) of ω∗

Z(h|ZF ,n), it follows that π̂ is the maximizer over ω(h|Z,1)
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of yT logπ and γ̂ is the maximizer over D(Z,ZF ,n) of yT ZR log QT
Rγ −1T QT

Rγ .
If ZR = 0, then D(Z,ZF ,n) = {n}, so that γ̂ = n = ZT y. Otherwise, to find γ̂

we note that γ̂ = QF n + QR δ̂, where δ̂ is the unrestricted (δ > 0) maximizer
of yT ZR log[QT

R(QF n + QRδ)] − 1T QT
R(QF n + QRδ) = yT ZR log δ − 1T δ. It

follows that δ̂ = ZT
Ry, so that γ̂ = QF n + QR δ̂ = QF ZT

F y + QRZT
Ry = [QF QT

F +
QRQT

R]ZT y. Therefore, using the fact that QF QT
F + QRQT

R = I, we have that
γ̂ = ZT y. �

PROOF OF LEMMA 1. For appropriately chosen permutation matrix EZ , the
vector Y − m can be written as

EZ


Yφ1 − mφ1

Yφ2 − mφ2
...

YφK
− mφK

 ,

where φk = (i :Zik = 1). Because Y is a MP random vector, Yφk
’s are in-

dependent and either Yφk
is multinomial or it comprises independent Poisson

random variables. By standard results, the limiting distribution as ν → ∞ of
D−1/2(mφk

)(Yφk
− mφk

) is normal with mean vector zero and variance equal to

I − π
1/2
φk

π
T/2
φk

or I depending on whether Yφk
is multinomial or has independent

Poisson components. Using properties of permutation matrices and the properties
of φ, Z and ZF , the limiting distribution of unpermuted D−1/2(m)(Y − m) can be
shown to be normal with mean vector zero and variance equal to I − DZF ZT

F D,
where D ≡ D(π). Finally, because m/ν = D(Zw)π + o(1) = Wπ + o(1), it fol-
lows that ν−1/2(Y − m) = ν−1/2D1/2(m)D−1/2(m)(Y − m) has a normal limiting
distribution with mean zero and variance WD − WDZF ZT

F D. �

PROOFS OF LEMMAS 2–4. Lemma 2 is proven as follows. Recall that the
mean vector can be written as m = D(Zγ )π . It follows by properties of population
matrices that (I − DZZT )m = 0. Therefore, it can be shown that Y − Nπ =
(I − DZZT )(Y − m). The result of Lemma 2 now follows from Lemma 1 and
properties of population and sampling constraint matrices. Lemma 3 follows
directly from Lemma 1 because γ = ZT m; the simplified form for the limiting
variance follows by properties of population and sampling constraint matrices.
The result of Lemma 4 follows from Lemmas 2 and 3. Specifically, by Lemma 3,
N/ν = D(ZZT Y/ν) = D(Zw) + oP (1) = W + oP (1). Therefore, using Lemma 2,
ν1/2(N−1Y − π) = νN−1ν−1/2(Y − Nπ) = W−1ν−1/2(Y − Nπ) + oP (1). �

PROOF OF LEMMA 5. The proof is similar in spirit to that of Silvey (1959).
Let π0 ∈ ω(h|Z,1) be the true value. Define �∗(π) ≡ YT log π − YT ZZT π ,
U(π) ≡ ν−1[�∗(π) − �∗(π0)] and µ(π) = limν→∞ E(U(π)). It can be shown
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that as ν → ∞, supπ∈C |U(π) − µ(π)| a.s.→ 0 for any compact set C ⊂ � and
that µ(π) < µ(π0) = 0 for all π ∈ �, π �= π0. Let B ⊂ � be a compact
neighborhood of π0. By similar arguments to those of Wald (1949) [see, e.g.,
Ferguson (1996), pages 107–115], it follows that there exists π̂ , a sequence of
local maximizers in ω(h|Z,1) ∩ B of U that converges almost surely to π0. Now
νU(π) = YT logπ + const on the set ω(h|Z,1) ∩B . Thus, the strongly consistent
sequence π̂ comprises local [on ω(h|Z,1) ∩ B] maximizers of YT logπ .

We now show that for sufficiently large ν, with probability going to 1,
π̂ emerges as a solution to the restricted likelihood equations (7.2) through
m̂ = Nπ̂ . Because h lies in H ′′(Z), by Proposition 7 ω(h|Z,1) is a (c − u − K)-
dimensional manifold. Assume for the moment that u+K < c so the manifold has
dimension of at least 1. By strong consistency of π̂ , for large enough ν, with prob-
ability going to 1, π̂ will be in ω(h|Z,1)∩ int(B), where int(B) is the open version
of the neighborhood of π0. In this case, by Lagrange’s result [see Fleming (1977),
page 161] the maximizer will satisfy the equationsD−1(π̂)Y + H(π̂)λ̂π + Zτ̂

h(π̂)

ZT π̂ − 1

 = 0(A.1)

for some multipliers λ̂π and τ̂ . If u + K = c, the set ω(h|Z,1) = {π0}, and these
equations produce the single desired solution π̂ = π0.

Premultiply the first set of equations in (A.1) by ZT D(π̂) and set the result equal
to 0. Using Proposition 6, this leads to the solution τ̂ = −ZT Y. Premultiplying
the first set of equations by D(π̂), replacing τ̂ by −ZT Y and omitting the now-
redundant constraint ZT π̂ = 1, the equations in (A.1) can be reduced to[

Y − Nπ̂ + D(π̂)H(π̂)λ̂π

h(π̂)

]
= 0,

where N = D(ZZT Y). Set m̂ = Nπ̂ and note that because h ∈ H ′′(Z), h(π̂) = 0 if
and only if h(m̂) = 0. Using Proposition 4, the previous reduced set of equations
can be written as [

Y − m̂ + D(m̂)H(m̂)λ̂
h(m̂)

]
= 0,

where λ̂ = G−1(ZT Y)λ̂π . These are the restricted likelihood equations (7.2) of
Theorem 1. �

PROOF OF THEOREM 3. The proof of Lemma 5 implies that π̂ is the solution
to [

D−1(π̂)(Y − Nπ̂) + H(π̂)λ̂π

h(π̂)

]
= 0,(A.2)
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where λ̂π = G(ZT Y)λ̂. Owing to the strong consistency of π̂ and the smoothness
of h and H, these equations can be linearly approximated near the true π . In
particular, note that H(π̂) = H(π)+oP (1),h(π̂) = [H(π)T +oP (1)](π̂ −π) and,
by Lemma 3 ν−1N = W + oP (1). By Lemma 2 ν−1/2(Y − Nπ) is bounded in
probability, so the equations (A.2) can be written as[

ν−1/2D−1(Y − Nπ)

0

]
=

[
D−1W −H
−HT 0

][
ν1/2(π̂ − π)

ν−1/2λ̂π

]
+ oP (1),(A.3)

where D ≡ D(π) and H ≡ H(π). Write these equations in the generic form
Aν = VBν + oP (1). Lemma 2 implies that Aν→dN(0,V0), where

V0 =
[

WD−1 − WZZT 0
0 0

]
.

Because H is full column rank, it can be shown that V is nonsingular. It follows
that Bν→dN(0,V−1V0V−1). Going through some tedious algebra, the covariance
matrix simplifies and we have that[

ν1/2(π̂ − π)

ν−1/2λ̂π

]
d→ N

(
0,

[
	 0
0 (HT DW−1H)−1

])
,(A.4)

where 	 is as defined in the statement of the theorem. Now Lemma 3 implies
that ν−1/2λ̂π = ν−1/2G(ZT Y)λ̂ = ν−1/2G(γ )λ̂ + oP (1). Thus, the limiting result
of (A.4) is unchanged if we replace λ̂π by G(γ )λ̂. Finally, by properties of the
normal distribution, the block diagonal structure of the variance matrix in (A.4)
implies that π̂ and λ̂ are asymptotically independent. �

PROOF OF LEMMA 6. The approximating equations (A.3) in the proof of
Theorem 3, with λ̂π replaced by G(γ )λ̂, can be augmented as ν−1/2(ZT Y − γ )

ν−1/2D−1(Y − Nπ)

0



=
 I 0 0

0 WD−1 −H
0 −HT 0

 ν−1/2(γ̂ − γ )

ν1/2(π̂ − π)

ν−1/2G(γ )λ̂

 + oP (1).

(A.5)

Using properties of population matrices and a result cited in the proof of Lemma 2,
the left-hand side can be written as ZT

D−1 − ZZT

0

 ν−1/2(Y − m).

Lemma 1 states that ν−1/2(Y − m)→dN(0,WD − WDZF ZT
F D). Therefore, the

left-hand side of (A.5) has a normal limiting distribution with variance matrix ZT

D−1 − ZZT

0

(
WD − WDZF ZT

F D
)[

Z, D−1 − ZZT , 0
]
.
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By properties of population and sampling constraint matrices, and after some
tedious algebra, this variance matrix can be shown to have the block-diagonal formQRQT

RD(w) 0 0
0 WD−1 − WZZT 0
0 0 0

 .

It follows that ν−1/2(γ̂ − γ )

ν1/2(π̂ − π)

ν−1/2G(γ )λ̂

 d→ N(0,�),

where the variance matrix � simplifies as I 0 0
0 WD−1 −H
0 −HT 0

−1 QRQT
RD(w) 0 0
0 WD−1 − WZZT 0
0 0 0



×
 I 0 0

0 WD−1 −H
0 −HT 0

−1

=
QRQT

RD(w) 0 0
0 	 0
0 0 (HT DW−1H)−1

 ,

where 	 is as defined in the statement of Theorem 3. By properties of the normal
distribution, the block diagonal variance matrix implies that γ̂ , π̂ and λ̂ are
mutually asymptotically independent. �

PROOF OF THEOREM 5. Define π̄ = N−1Y. Show that G2 = X2 + oP (1),

G2 = 2YT log(Y/m̂)

= 2π̄T N log(π̄/π̂)

= 2π̄T N log
(
1 + D−1(π̂)(π̄ − π̂)

)
= 2π̄T N

[
D−1(π̂)(π̄ − π̂)

− 1
2 D

(
D−1(π̂)(π̄ − π̂)

)
D−1(π̂)(π̄ − π̂) + OP (ν−3/2)

]
= (π̄ − π̂)T ND−1(π̂)(π̄ − π̂) + oP (1)

= (Y − m̂)T D−1(m̂)(Y − m̂) + oP (1)

= X2 + oP (1),

where the fourth equality follows using the expansion log(1 + x) = x − 1
2 D(x)x +

O(|x|3,‖x‖ → 0) and the fifth equality uses the fact that, owing to the form of the
restricted likelihood equations (7.2), 1T (Y − m̂) = 0.
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To show that W 2 = X2 + oP (1),

W 2 = h(Y)T
[
H(Y)T D(Y)H(Y)

]−1h(Y)

= ν1/2h(π̄)T
[
H(π̄)T D(π̄)νN−1H(π̄)

]−1
ν1/2h(π̄)

= ν1/2h(π̄)T
[
νG−1(γ̂ )H(m̂)T D(m̂)H(m̂)G−1(γ̂ )

]−1
ν1/2h(π̄) + oP (1)

= λ̂
T

H(m̂)T D(m̂)H(m̂)λ̂ + oP (1)

= X2 + oP (1),

where the second equality follows upon writing h(Y) = G(γ̂ )h(π̄) and using
Proposition 4 to reexpress the inner matrix; the third equality follows because the
inner matrix can be shown to converge in probability to the same constant matrix
as the inner matrix of the previous expression and ν1/2h(π̄) = OP (1); the fourth
equality uses (i) the relationship π̄ − π̂ = −N−1D(m̂)H(m̂)λ̂, which follows
from the restricted likelihood equations (7.2), and (ii) the approximation h(π̄) =
H(π̂)T (π̄ − π̂) + oP (ν−1/2) = −G−1(γ̂ )H(m̂)T D(m̂)H(m̂)λ̂ + oP (ν−1/2).

To show that X2→dχ2(u),

X2 = λ̂
T

H(m̂)T D(m̂)H(m̂)λ̂

= λ̂
T

G(γ̂ )H(π̂)T D(π̂)N−1H(π̂)G(γ̂ )λ̂

= [
ν−1/2G(γ )λ̂

]T
× {[

G−1(γ )G(γ̂ )
]
H(π̂)T D(π̂)νN−1H(π̂)

[
G(γ̂ )G−1(γ )

]}[
ν−1/2G(γ )λ̂

]
= [

ν−1/2G(γ )λ̂
]T [

H(π)T D(π)W−1H(π)
][

ν−1/2G(γ )λ̂
] + oP (1)

d→ χ2(u),

where the second equality uses Proposition 4; the fourth equality uses facts
(i) [ν−1/2G(γ )λ̂] = OP (1) and (ii) the inner matrix is the probability limit of the
inner matrix in braces of the previous expression; and the limiting result follows
because [ν−1/2G(γ )λ̂] converges to a normal distribution (of dimension u) with
mean zero and variance [H(π)T D(π)W−1H(π)]−1. �

PROOF OF AX3. By Lemma 1, ν−1/2(Y − m) has a normal limiting
distribution with variance matrix WD − DZF ZT

F WD. Now

ν−1[
D̂ − N−1D̂ZF ZT

F D̂
] = ν−1ND(π̂) − D(π̂)ZF ZT

F ν−1ND(π̂)

P→ WD − DZF ZT
F WD.

Therefore, by Definition 6 [D̂ − N−1D̂ZF ZT
F D̂] is an approximating variance and

the approximation result follows. �
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PROOF OF AX7. Recalling that h(π) = 0 because the model is assumed to
hold, we can write

ν1/2G−1(γ )
(
h(Y) − h(m)

)
= ν1/2G(γ̂ /γ )

[
h(N−1Y) − h(π)

] + ν1/2[G(γ̂ /γ ) − G(1)]h(π)

= ν1/2[h(N−1Y) − h(π)
] + oP (1)

d→ N
(
0,HT (W−1D − W−1DZZT D)H

) ∼ N
(
0,HT W−1DH

)
,

where the limiting result follows from Lemma 4 and the simplification of the
variance matrix follows from Proposition 6. Also, by Proposition 4 Ĥ = H(m̂) =
N−1H(π̂)G(γ̂ ) and

νG−1(γ )
[
ĤT D̂Ĥ

]
G−1(γ ) = G(γ̂ /γ )H(π̂)T νN−1D(π̂)H(π̂)G(γ̂ /γ )

P→ HT W−1DH.

Finally, because G−1(γ ) = diag{γ −p(j)
u(j) : j = 1, . . . , c} and γu(j)/ν converges to

a positive constant, Definition 6 implies that h(Y) − h(m) ∼ ÂN(0, ĤT D̂Ĥ) =
OP (νp−1/2). �

PROOF OF THEOREM 8. Because S ∈ H(Z), we can write

ν1/2G−1(γ )
(
S(m̂) − S(m)

)
= G−1(γ )G(γ̂ )ν1/2(

S(π̂) − S(π)
) + ν1/2D(S(π))

(
dG(γ̂ /γ ) − dG(1)

)
.

Now, by Lemma 6, π̂ and γ̂ are asymptotically independent. The limiting
distribution follows from Lemma 3 and Theorem 3. The simplified form for
the limiting variance follows using the fact that D(S(π))(∂dG(1)/∂γ T ) =
(∂S(π)/∂πT )D(π)Z by identity (5.1) following Proposition 5. �
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