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AVERAGE RUN LENGTH TO FALSE ALARM FOR
SURVEILLANCE SCHEMES DESIGNED WITH PARTIALLY

SPECIFIED PRE-CHANGE DISTRIBUTION

By Louis Gordon1;2 and Moshe Pollak2

Filoli Information Systems and
Hebrew University of Jerusalem

Observations are taken independently and sequentially. Detection of a
change in distribution is studied when the problem has an invariance struc-
ture. The prechange distribution is assumed to be a member of a specified
family and is assumed known up to a nuisance parameter. We provide a
general method of constructing surveillance schemes in the presence of a
nuisance parameter and give sufficient conditions for approximating their
average run lengths to false alarm. Applications include detecting a change
in scale of i.i.d. gamma variates with unknown initial scale, detecting a
change in location of i.i.d. normal variates with unknown initial mean,
and a non-parametric scheme based on ranks for detecting a change to a
stochastically larger distribution.

1. Introduction. The problem of sequentially detecting a changepoint
has been of interest in the context of process control for over half a century.
Shewhart (1931) introduced the notion of control charts with associated “3σ”
limits for the problem of detecting a large and sudden shift in mean in a
set of independent normally distributed observations with known variance
and known initial mean. Cusum control charts, introduced by Page (1954)
provide a substantial increase in sensitivity of detection over Shewhart charts.
Both procedures are in widespread industrial use today. Our mathematical
understanding of cusum procedures is profoundly advanced in the paper of
Lorden (1971).

We consider observations X1;X2; : : : taken sequentially. Under the mea-
sure P∞, the observations are i.i.d. with continuous distribution F0. Under
the measure Pk, prechange observations X1; : : : ;Xk−1 are i.i.d. with distribu-
tion F0, independent of postchange observations Xk; : : :; the latter are i.i.d.
with continuous distribution F1. At the nth observation, the cusum procedure
requires us to compute maxk≤n dPk/dP∞�X1; : : : ;Xn� and to assert a change
has occurred when the statistic first exceeds some critical level.

We desire a procedure with associated stopping rule which under Pk will
stop with high probability shortly after the kth observation—ensuring rapid
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detection of a change. It is of course undesirable to stop before time k under
the Pk measure—a false alarm. Naturally, we wish to control the tendency to
issue false alarms, measured by the average run length (ARL) to false alarm.

When F0 and F1 are completely known to the statistician, increasingly
strong optimality properties of the cusum procedure have been shown by Lor-
den (1971), Moustakides (1986) and Ritov (1990).

A competitor to the cusum technique is due to Shiryayev (1963) and
Roberts (1966) when prechange and postchange distributions are com-
pletely specified. They both suggest computing the sum of likelihood ratios
Rn =

∑n
k=1 dPk /dP∞�X1; : : : ;Xn� at time n and asserting that a change

has already occurred when Rn first exceeds a specified level A. Pollak
(1985) shows that the Shiryayev–Roberts procedures have strong asymptotic
optimality properties. Also, see Yakir (1997).

If the postchange distribution is unknown, classical theory essentially calls
for choosing a representative distribution F1 and employing a control chart
based on F0 and the representative F1. Another approach is to employ mix-
tures; see Pollak (1987).

Much less is known when the prechange distribution is not completely
specified; for example, if the form of the prechange distribution is specified
up to an unknown nuisance parameter. By analogy with hypothesis testing,
a natural approach is to reduce the compound decision problem by using
invariant statistics. We desire a detection procedure invariant under some
set of transformations x → g�x�. Given a set of invariant statistics Tn =
Tn�X1; : : : ;Xn�, we can compute the sum of invariant likelihood ratios Rn =∑n
k=1 dPk /dP∞�T1; : : : ;Tn� determined by the joint densities of the invariant

statistics at time n, and assert that a change has already occurred when Rn

first exceeds a specified level A. For technical reasons, this Shiryayev–Roberts
statistic is more amenable to analysis than the analogous cusum statistic.

For example, Pollak and Siegmund (1991) studied a Shiryayev–Roberts pro-
cedure invariant under the translation group and so treated the problem of
detecting a unit shift in mean when prechange observations are i.i.d. N �µ;1�
with µ unknown and postchange observations are i.i.d. N �µ+ δ;1�.

We here study the ARL to false alarm of such invariant procedures.
While conceptually straightforward, the technical difficulties involved are
formidable. Because one loses independence, the likelihood ratio of the in-
variant statistics is no longer a product of univariate ratios, so one must
find a computationally useful form for the likelihood ratio. Because one loses
identical distribution, the tools of renewal theory are not directly applicable.
While these difficulties can be overcome on a case-by-case basis, a substantial
number of similarities are common to many cases. It therefore is useful to
present a general formulation which isolates the difficulties unique to specific
problems. This we do with Theorem 1 stated in Section 2 and proved in
Section 4. Examples are given in Section 3.

Our first example involves detection of a sudden change in scale in a se-
quence of independent gamma variates with known shape and unknown initial
scale. This problem is invariant under the group of scale-change transforma-
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tions. The nuisance parameter is the initial scale. Such problems include the
detection of a halving in the mean of exponential variates from unknown base-
line, or the doubling in variance of normally distributed observations having
the same known mean prechange and postchange. The former problem was
studied by Lorden and Eisenberger (1973). For the latter problem in a practi-
cal context, see Wilson, Griffiths, Kemp, Nix and Rowlands (1979).

Our second example involves detection of a shift in normal mean from
unknown baseline. The problem is invariant under the group of shifts. The
nuisance parameter is the prechange mean. Both prechange and postchange
behavior of the invariant Shiryayev–Roberts statistic is given in Pollak and
Siegmund (1991). We briefly indicate how results there imply the hypotheses
of Theorem 1.

Our third example involves the detection of a stochastically larger distribu-
tion following disruption. The problem is invariant under the group of strictly
increasing transformations. The nuisance parameter is the pre-change distri-
bution. We present without proof an invariant likelihood ratio based on ranks
and the asymptotic ARL to false alarm. The proof, using Theorem 1, and an
analysis of the postchange ARL to detection is deferred to a companion pa-
per, Gordon and Pollak (1995). Another application of Theorem 1 appears in
Gordon and Pollak (1994). Studied there are sequential nonparametric proce-
dures in which the prechange distribution is symmetric, with known center of
symmetry.

2. The schemes and their ARL to false alarm. We consider two fam-
ilies of probability density functions. The first, H0 = �f0�·�η� �η ∈H0� is
assumed entirely indexed by a nuisance parameter η. The second family
H = �f�·�η;α� � �η;α� ∈H0 ×A� is assumed to be indexed by both the same
nuisance parameter η as specifies H0 and possibly by another parameter α.

Let X1;X2; : : : be independent observations under any of an indexed set of
probability measures Pη;α1 , Pη;α2 ; : : : ;Pη∞ = Pη;α∞ . Under Pη∞, they are identi-
cally distributed with marginal density f0�·�η�, where the nuisance parameter
η is unknown. Under Pη;αν , observations Xj for j < ν are i.i.d., again with
marginal density f0�·�η�, while the subsequent observations Xν;Xν+1; : : : are
i.i.d. with marginal density f�·�η;α�.

We assume there exists a function α�η� such that when X has density
f0�·�η� then the likelihood ratio random variable f�X�η;α�η��/f0�X�η� has
distribution that does not depend on η. Note that the nuisance parameter η
may appear in the likelihood ratio random variable even though its distri-
bution does not depend on η. While this assumption seems restrictive, it is
satisfied in the three examples described at the end of Section 1.

Assume also that there exists a sequence of nontrivial invariant statistics
�Tn� which are possibly vector-valued, where Tn = Tn�X1; : : : ;Xn� are such
that the distribution of �Tn� induced by any Pη;α�η�ν does not depend on η. We
write Fn for the σ-algebra generated by the statistics �T1; : : : ;Tn�. As usual,
F0 is the trivial σ-algebra. Because of the assumed invariance, so long as we
only study properties determined by the sequenceT1;T2; : : : we may specify in
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our computations some canonical nuisance parameter η0 whose choice is solely
a matter of convenience. We write Pν for Pη0; α�η0�

ν and Eν for the expectation
corresponding to Pν.

In this paper, we choose a distinguished family of densities f�·�η;α�η�� to
represent the postchange distribution. That is, we concentrate on the leading
special case for which in the presence of an unknown nuisance parameter one
wishes to detect a change from observations generated with density f0�·�η�
prechange to those generated with density f�·�η;α�η�� postchange.

The likelihood ratio 3nk�T1; : : : ;Tn� = dPk/dP∞�T1; : : : ;Tn� is well defined
and has a distribution under P∞ that does not depend on the unknown param-
eter η. To implement a Shiryayev–Roberts procedure we define Rn =

∑n
k=1 3

n
k

and the stopping rule NA = min �n�Rn ≥ A�. Without loss, we may choose a
convenient η0 and do all calculations as if we knew that η = η0 were truly to
be the nuisance parameter which specifies both prechange and postchange dis-
tributions. Write f1�·� = f�·�η0; α�η0�� and f0�·� = f0�·�η0�. If prechange and
postchange densities are completely specified, Pollak (1987) shows that, given
level A, the ARL to false alarm is asymptotically A1�f0�·�η�; f�·�η;α�η���,
where 1�f�·�η�; f�·�η;α�η�� will be described below. By assumption, 1�f0�·�η�;
f�·�η;α�η��� does not depend on η, so that we may denote this quantity as
1�f0; f1�.

Specifically, we obtain 1�f0; f1� as follows. Let Zi = log�f1�Xi�/f0�Xi��
with associated hitting time Mb = inf �n � ∑n

i=1Zi ≥ b�, where Mb = ∞ if no
such n exists. Recall that E1 denotes expectation when the Xi are i.i.d. with
density f1. From Pollak (1987),

1�f0; f1� = 1
/

lim
b→∞

E1

{
exp

(
−
[ Mb∑
i=1

Zi

]
+ b

)}
;

which is computable by renewal theoretic methods. See, for example, Sieg-
mund (1985), Chapter VIII.

Our theorem shows that—under suitable conditions—the invariant
Shiryayev–Roberts statistic has the same limiting constant of proportionality
1�f0; f1�. Therefore, asymptotically, it has the same ARL to false alarm as the
Shiryayev–Roberts procedure with nuisance parameter known and specified.

The key observation is that Rn − n is a zero-expectation martingale under
the prechange measure P∞. Therefore, given critical level A, we study the ex-
pected time to false alarm E∞�NA� by studying the expected level E∞�RNA

�
at which a false alarm is asserted. We have found that a common approach
can be applied to obtain the limit of E∞�RNA

�/A as A→∞. We prove below
that this limit equals 1�f0; f1� whenever we can verify the three conditions
formally given in the statement of Theorem 1.

Condition 1A requires that there be little contribution from likelihood ratios
whose putative changepoint k is far removed from the ends of the sequence
of observations. This would be clear in the i.i.d. case where the log-likelihood
is a random walk with negative drift. The hypothesis thus says that there
should be enough information about the original data in the invariant statis-
tics T1; : : : ;Tn to make the invariant likelihood behave similarly to the fully
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specified likelihood. The restriction to values k of intermediate magnitude
comes from situations like the normal shift problem in which the measures
P∞ and P1 are identical.

Condition 1B has the heuristic interpretation that, given η0, when lots
of data are observed prechange, the invariant statistics T1; : : : ;Tn permit a
near-perfect reconstruction of the data X1; : : : ;Xn. Hence, conditional on the
past, the next increment in invariant log-likelihood is almost the fully spec-
ified log-likelihood. In symbols, Rn+1 ≈ �1+Rn�f1�Xn+1�/f0�Xn+1�. When n
and Rn are both large we should therefore expect that for a short while the
statistics Rn+j should be close to Rn

∏j
i=1�f1�Xn+i�/f0�Xn+i��, enabling us

to approximate the excess over the boundary—if it should occur rapidly—by
that appropriate from renewal theory for the i.i.d. fully specified log-likelihood
random variables.

Conditions 1A and 1B are used only once during the proof, to establish
Lemma 6 of Section 4. In contrast, Condition 1C is used many times. As with
the other conditions, Condition 1C also requires the invariant log-likelihood
ratio to behave qualitatively like the log-likelihood ratio in the fully speci-
fied i.i.d. case. Specifically, relative to A, the overshoot should have bounded
expectation and should be uniformly integrable. Although the other two con-
ditions are permitted to fail with small probability, Condition 1C must hold
with probability 1. This allows us to control the contribution of the condi-
tional expectation on exceptional sets. While we often use Condition 1C to
bound expectations, uniform integrability is used only to prove Lemma 10, in
the argument following (17).

Theorem 1. Suppose that the following three conditions hold.

1A. Let 0 < ε1, ε2 < 1 be given. There then exist positive constants a1, a2 and
a3 depending on ε1 and ε2 such that for all n ≥ 1,

P∞
{

sup
nε1≤k≤n�1−ε2�

3nk > e
−a1n

}
< a2e

−a3n:

1B. Let 0 < ε < 1 be given. There then exist positive constants θ < 1; b1, b2
and a set Bε, all depending only on ε such that for all n ≥ 1,

P∞

{
Xn+1 ∈ Bε and max

�1−θ�n≤k≤n+1

∣∣∣∣ 1− 3
n+1
k

3nk

/
f1�Xn+1�
f0�Xn+1�

∣∣∣∣> ε
}
≤ b1e

−b2n

and P∞ �Xn+1 6∈ Bε� < ε.
1C. For t ≥ 1 there exist finite functions A0�t� and κ�t� such that κ�t� → 0 as

t → ∞, and such that if M ≥ 0 is any stopping time adapted to Fn and
NM
A =N = min �n�∑n

k=M+1 3
n
k ≥ A� then

E∞

{[ N∑
k=M+1

3Nk

]
I�∑N

k=M+1 3
N
k ≥At�

∣∣∣My T1; : : : ;TM

}
≤ κ�t�A

uniformly for all A > A0�t�, all t ≥ 1 and all stopping times M.
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Suppose also that the log-likelihood ratio log�f1�X�/f0�X�� has a contin-
uous distribution when the prechange density is f0�·�. We may then conclude
that limA→∞E∞�NA/A� = 1�f0; f1�.

An immediate consequence of Condition 1C is that κ�1� ≥ 1. An alter-
native condition which implies Condition 1C is that for some δ positive,
A−�1+δ�E∞��

∑N
k=M+1 3

N
k �1+δ �M;T1; : : : ;TM� < κ′ for all A > A0. To see

this, let X be any random variable. By Holder’s inequality, E�XI�X>t�� <
�E�X1+δ��1/�1+δ��P �X > t��δ/�1+δ�. By Markov’s inequality, the latter upper
bound is in turn bounded by t−δE�X1+δ�.

A more arduous approach would be to treat mixtures across orbits of the set
of possible postchange distributions. While such elaboration appears feasible,
it would lengthen an already long argument.

3. Examples.

3.1. Detecting a change in a gamma sequence with unknown initial scale.
Our first application is to detecting a change in scale of gamma-distributed
observations with known shape parameter. The results are formally presented
in Theorem 2. The theorem covers exponentially distributed observations, as
would occur if one were monitoring a Poisson process with unknown mean
interarrival time for a sudden decrease in mean. The theorem also pertains
to the chi-square distribution with a single degree of freedom, as is the case
if one were monitoring normally distributed variates with known mean and
unknown initial variance for a sudden increase in variance. We believe both
problems to be of practical interest. The problem we treat is invariant under
the group of scale-change transformations. The nuisance parameter is the
initial unknown scale of the gamma-distributed observations.

The problem of detecting a sudden change in exponential mean is also
treated in Lorden and Eisenberger (1973), where the statistics Tj of Theo-
rem 2 are also used. The value of using invariant Shiryayev–Roberts statistics
lies in both the ease with which an appropriate procedure is obtained from a
general viewpoint, and in the applicability of our Theorem 1.

A number of technical points are illustrated by this example. First, P∞
and P1 induce identical distributions for the invariant statistics. Hence the
likelihood ratio 3n1 equals 1 identically for all n. This is why Condition 1A
allows us to neglect 3nk only for k which are neither too large nor too small.

Second, Condition 1C is trivially verified in case the postchange distribu-
tion involves postchange scale parameter α > 1, implying a decrease in mean,
because the fully specified likelihood ratio is bounded. However, the verifica-
tion is nontrivial in case α < 1. The style of argument used in the latter case
is also of interest. We have found it highly effective to argue the monotonicity
of the Shiryayev–Roberts statistic relative to the last observation, and then to
argue conditionally with respect to the threshold established by monotonicity.
Similar arguments are used in Pollak and Siegmund (1991).
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Third, although this paper deals only with ARL to false alarm, the proce-
dures derived from invariance considerations often have desirable operating
characteristics postchange as well. For example, it is possible to prove for the
gamma scale-change problem that, for changes occurring even relatively early,
the procedures of Theorem 2 have very strong conditional upper bounds for
expected time to detection postchange. These bounds are comparable to Lor-
den’s (1971) minimax bounds for cusum procedures. (The key observation is
that if the first postchange observation is seen at time k, then the prechange
statistics Rj for j < k are independent of the sum

∑k−1
j=1Xj.) A similar result

due to Pollak and Siegmund (1991) holds in the context of our next example,
presented later.

Theorem 2. Let F�·� be the gamma distribution function with shape β and
scale 1, having density f�x� = 0−1�β�xβ−1e−x.

(i) The likelihood ratio of the sequence of maximal invariant statistics �Tn�
under the scale-change group of transformations for the change-point problem
F�ηx� prechange and F�ηαx� postchange with unknown η > 0 and specified
α 6= 1 is given, for n+ 1 ≥ k ≥ 1, by

3nk = αβ�n−k+1�
[
α+ �1− α�

n∏
j=k

Tj

]−nβ
;

where T1 = 0 and Tn =
∑n−1
j=1 Xj

/ ∑n
j=1Xj for n > 1.

(ii) For the invariant Shiryayev–Roberts rule with critical level A,

lim
A→∞

E∞�NA�/A = 1�f�x�; f�αx��;

where 1�f�x�; f�αx�� is the limit corresponding to the fully specified detection
rule for F�x� prechange and F�αx� postchange.

Proof. A maximal invariant for the problem is given by the sequence
Yj =Xj/X1, for j = 1;2; : : : : Note that Y1 = 1. Write Sn =

∑n
j=1Xj and let

n ≥ k > 1. Compute the joint distribution of the first n invariants from

Pk�Y2 ≤ y2; : : : ;Yn ≤ yn�

=
∫ ∞

0

∫ x1y2

0
· · ·
∫ x1yn

0

k−1∏
j=1

x
β−1
j e−xj

0�β�
n∏
j=k

αβx
β−1
j e−αxj

0�β� dxn · · · dx2 dx1:

Differentiation yields the density and then, for n ≥ k > 1, the likelihood ratio.
When k = 1 or k = n+ 1, the distribution of X1; : : : ;Xn is identical under

P1 or Pn+1 to that under P∞, save perhaps for a different scale. Hence the
distribution of any scale-invariant statistic based on the first n observations
is the same under P1 or Pn+1 as under P∞, and so 3n1 = 3nn+1 = 1 identically,
proving the first assertion of Theorem 1.
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The second assertion is proved by verifying the conditions of Theorem 1.
Conditions 1A and 1B follow from elementary exponential bounds on tails of
gamma-distributed variates. If α > 1, Condition 1C is immediate from the
boundedness of Tj. The case α < 1 is substantially more complicated, requir-
ing study of the conditional distribution of the overshoot of the likelihood ratio,
given that the jump over the boundary occurs at a specified time. Monotonic-
ity arguments provide the needed uniform bounds. Full details will be given
elsewhere. 2

3.2. Detecting a change in a normal sequence with unknown initial mean.
We next consider a problem studied by Pollak and Siegmund (1991). Suppose
that prechange observations are known to be normal with unit variance and
mean µ0. Postchange, the distribution is known to be normal with unit vari-
ance and mean µ1 > µ0, where both means are unknown. Here the nuisance
parameter is µ0. This problem is invariant under translation, with maximal
invariant �Ti =Xi −X1; 2 ≤ i ≤ n� at time n. Choose δ > 0 and let the
postchange distribution be represented by N �µ0 + δ;1�. We denote the stan-
dard normal density by φ�·�.

Theorem 3. Consider the changepoint problem N �µ0;1� prechange and
N �µ0 + δ;1� postchange with unknown µ0 and specified δ > 0.

(i) The likelihood ratio of the sequence of statistics maximally invariant
under translations is given for 1 ≤ k ≤ n+ 1 by

3nk = exp
(
�k− 1�

(
δ
[
Xn −Xk−1

]
− 1

2δ
2��n− k+ 1�/n�

))
;

where Xn =
∑n
j=1Xj/n when n ≥ 1 and X0 = 0.

(ii) For the invariant Shiryayev–Roberts rule with critical level A, the ARL
to false alarm has limit limA→∞E∞�NA�/A = 1�φ�x�; φ�x − δ��, where
1�φ�x�; φ�x − δ�� is the corresponding limit for the fully specified detection
rule for N �0;1� prechange and N �δ;1� postchange.

Proof. Under any of the measures Pk the invariants T2; : : : ;Tn are mul-
tivariate normal with identical covariance matrix I+J, where J is the matrix
having all entries 1, yielding the first assertion.

To prove the second assertion, we use Theorem 1. We begin with Condi-
tion 1A. Let 0 < ε1; ε2 < 1 be given. Write ε3 = �ε1�1− ε1� ∧ ε2�1− ε2��/2 and
set a1 = δ2ε3/4. Suppose k− 1 ∈ �nε1; n�1− ε2��. For n ≥ 1/ε3,

P∞ �3nk < e−a1n� = P∞
{
�k− 1�

(
δ
[
Xn −Xk−1

]
− δ

2

2

[
n− k+ 1

n

])
< −δ

2ε3n

4

}
;

from which Condition 1A follows by standard bounds on the tails of the normal
distribution.

We now verify Condition 1B. Because the likelihood ratio 3nk is invariant,
we may take µ0 = 0 with no loss of generality. Hence f1�x�/f0�x� = exp�δx−
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δ2/2�. Write θ = �n− k+ 2�/�n+ 1�, so that
∣∣∣∣log

(
3n+1
k

3nk

/
f1�Xn+1�
f0�Xn+1�

)∣∣∣∣ < δθ�Xn+1� + δ2
(
θ+ 1

n+ 1

)
+ δ�Xn�;

which is easily used to establish Condition 1B.
Lastly, we consider Condition 1C. Let Fn be the σ-field generated by the

first n−1 invariant statistics X2−X1, : : : , Xn−X1. Follow exactly the lines of
Pollak and Siegmund’s (1991) Lemma 2, replacing ν0 by an arbitrary stopping
time M. We thus obtain a constant k1 such that for all A > 1 and all stopping
times M,

E∞

{[ N∑
k=M+1

3Nk

]2 ∣∣∣FM

}
≤ �1+A�2E∞

{
k1 + exp

(
2δ2 + 2δmax

i≥M
�Xi�

) ∣∣FM

}
;

where N = NM
A . Observe that Xn is independent of the invariant σ-field

Fn for each integer n. Hence, using the strong Markov property implies that

E∞��
∑N
k=M+1 3

N
k �

2 �FM� ≤ k2A
2, for some positive constant k2 and all A > 1.

Now apply the alternate condition given after Theorem 1. 2

3.3. Detecting a shift to a stochastically larger distribution. Our final ex-
ample is the nonparametric problem which motivated the formulation of our
main theorem. The ARL to false alarm of parametric cusum procedures is
known to be quite sensitive to small perturbations of the prechange distri-
bution. This nonrobustness is of substantial practical concern. See, for exam-
ple, van Dobben de Bruyn [(1968), Section 2.4]. Use of a procedure based on
ranks—which is invariant to strictly increasing transformations—is a natu-
ral response to this problem. Specifically, the procedure described below in
Theorem 4 permits us to assert known ARL to false alarm regardless of the
prechange distribution. Such robustness of validity can be purchased at small
price. For the N �µ;1� prechange versus N �µ + 1;1� postchange detection
problem, calculations similar to those of Gordon and Pollak (1994) show that
choosing p = 0:8413, α = 0:53 and β = 1:7 yields a procedure with 97%
asymptotic relative efficiency as A→∞.

Although the procedure is computation intensive, it is still feasibly imple-
mented with current technology. A complete analysis of the operating char-
acteristics of the procedure, including a proof of Theorem 4 by verifying the
hypotheses of Theorem 1 is the subject of Gordon and Pollak (1995).

Theorem 4. Consider the changepoint problem where f0�x� = e−�x�/2
prechange, and f1�x� = pαe−αxI�x>0� + qβeβxI�x≤0� postchange. If p > 1/2,
α ≤ 1 ≤ β and pα ≥ qβ then:

(i) The ranks are invariant under the group of strictly increasing transfor-
mations of the data. Given the permutation ρ�·; n� determined by the ranks
with inverse permutation τ�·; n�, the corresponding likelihood ratio function
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for 1 ≤ k ≤ n+ 1 is

3nk�ρ�·; n�� =
Pν=k �Xτ�1; n� < · · · < Xτ�n;n��
Pν=∞ �Xτ�1; n� < · · · < Xτ�n;n��

=
n∑

m=0

λnk;m�ρ�·; n��;

where Uk�i; n� =
∑n
j=k I�ρ�j;n�>i�, Vk�i; n� = �n+ 1− k� −Uk�i; n� and

λnk;m�ρ�·; n�� =
(
n

m

)(
1
2

)n(pα
qβ

)Uk�m;n�
�2qβ�n+1−k

×
m∏
i=1

(
1+ Vk�i; n�

i
�β− 1�

)−1 n∏
i=m+1

(
1+ Uk�i− 1; n�

n+ 1− i �α− 1�
)−1

:

(ii) Given the Shiryayev–Roberts stopping rule NA = inf �n � ∑n
k=1 3

n
k ≥ A�,

its expected time to false alarm has limit limA→∞E∞�NA/A� = 1�f0; f1�
where 1�f0; f1� is the same limiting value as obtains for the parametric
Shiryayev–Roberts procedure.

4. Proof of Theorem 1. We follow the structure of Pollak (1987). The
proof is divided into a series of lemmas, with intervening discussion. To facil-
itate reference, we begin with a listing of notation which will be reintroduced
when needed.

4.1. Notation. We write 1 = 1�f0; f1�, the constant corresponding
to the detection problem with nuisance parameter known. Let Zi =
log�f�Xi�η0; α�η0��/f0�Xi�η0�� denote the log-likelihood ratio for the fully
parameterized problem. We make the critical assumption that the distribution
of the Zi is continuous.

Let c > 1 be a large integer whose value is fixed in Section 4.3. From
Jensen’s inequality, E∞�Zi� < 0, so we let nc be the least positive integer
with P∞ �exp�∑nc

i=1Zi� > c−8� < c−4. Note that nc is nondecreasing in c.
Inductively define timesLj adapted to the invariant σ-fields Fn. LetL0 = 0.

For j > 0,

Lj = min
{
n
∣∣∣n > Lj−1 and

n∑
k=Lj−1+1

3nk ≥ A/c
}
:

Let W = max �j �Lj ≤NA�. Note that W is not a stopping time.
The contributions to Rn indexed by times after Lj−1 are, for j ≥ 1,

Q�j;n� =





n∑
k=Lj−1+1

3nk; if n > Lj−1;

0; otherwise.

Next define the fully parameterized continuation of Q�j;Lj�,

V�j;n� =





Q�j;n�; if n ≤ Lj;

Q�j;Lj� exp
( n∑
i=Lj+1

Zi

)
; if n > Lj;
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and the invariant continuation of Q�j;Lj�,

v�j;n� =





Q�j;n�; if n ≤ Lj;
Lj∑

k=Lj−1+1

3nk; if n ≥ Lj:

Both V�j;n� and v�j;n� are sums of Lj −Lj−1 terms when n ≥ Lj.
Corresponding to the fully specified continuation V�j;n�, define stopping

times

Hj =
{

min �n�n ≥ Lj and V�j;n� ≥ A�;
∞ if the set of such n is empty;

Mj =Hj ∧ �Lj + nc� ∧Lj+1

with analogous quantities for the invariant continuation,

hj =
{

min �n�n ≥ Lj and v�j;n� ≥ A�;
∞ if the set of such n is empty;

mj = hj ∧ �Lj + nc� ∧Lj+1:

Finally, define random indices

J = min�j �v�j;mj� ≥ A�;
J∗ = J ∧ �c3 + 1�;

and, analogously, given a stopping time Y, let

JY = min
{
j
∣∣ sup
n≥Y

v�j;n� ≥ A
}
;

J∗Y = JY ∧ �c3 + 1�:
As is usual, given a stopping time M, we write FM for the σ-field associated

with the stopping time. We frequently indicate conditioning on FM by explicitly
conditioning on MyT1; : : : ;TM.

Write ôc�A� for functions ψ�A; c� such that lim supA→∞
∣∣ ψ�A; c�/A

∣∣ can
be made arbitrarily small by choosing and fixing c large. Similarly, we write
ôc�1� for functions ψ�A; c� such that lim supA→∞

∣∣ ψ�A; c�
∣∣ can be made small

by fixing c large.
Our plan is to show that RNA

is well approximated by v�J∗;m�J∗��. The
idea is that when Rn becomes large—say of the order A/c—then Condition 1A
tells us that the summands contributing by far the greatest amount are those
3nk with k close to n. Hence for n’s not much larger than some Lj, we have
Rn ≈ v�j;n� from which RNA

≈ v�J;m�J�� will follow. We will show that
with high probability �v�j;n��∞n=Lj either crosses the level A quickly or never
crosses A. Therefore, because of Condition 1B, and because the summands
which contribute to v�j;n� have k’s close to n, the overshoot of v�j;n� overA—
if it crosses at all—should resemble closely the overshoot in the fully specified
problem. Hence renewal theory will yield the limit E∞�RNA

�/A → 1, the
same limit as in the fully specified problem.
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Lemmas 1 to 3 give bounds related to the increments in stopping times
referred to in Condition 1C. Lemma 4 states that the number of Lj’s observed
up to time cA is bounded by c3 with high probability. Lemma 5 states that
the time between successive Lj’s tends to be large.

Lemma 6 formalizes the idea that v�j;n� ≈ V�j;n� for n only slightly
larger than Lj, while Lemma 7 tells us that v�j;n� cannot be large for
n much larger than Lj. These imply Lemma 8 which states that NA is
close to one of the first c3 stopping times Lj. Lemmas 9 to 14 allow us
to approximate the expectations of v�j;mj� conditional on v�j;mj� ≥ A,
in order to obtain E�v�J∗;mJ∗��/A ≈ 1. The rest of the proof shows that
E∞�RNA

− v�J∗;mJ∗��/A is negligible, which finally yields Theorem 1.

4.2. Preliminary lemmas.

Lemma 1. For stopping times M and N =NM
A as in Condition 1C,

E∞
{
NM
A −M

∣∣MyT1; : : : ;TM
}
≤ κ�1�A:

In particular, E∞�NA� ≤ κ�1�A and E∞�Lj+1 −Lj� ≤ κ�1�A/c, for j ≥ 0.

Proof. The centered sum of likelihood ratios
∑M+n
k=M+1 3

M+n
k − n is a P∞-

martingale adapted to �MyT1; : : : ;TM+n� for n ≥ 0. Truncate the stopping
time NM

A at some large finite time M +m to obtain from Condition 1C that
E∞��N−M� ∧m �MyT1; : : : ;TM� ≤ κ�1�A. Now let m→∞. 2

Lemma 2. If M and N =NM
A are as in Condition 1C, then conditional on

the entire past through M, the distribution of N −M is stochastically larger
than a uniform�0;A� random variate. Specifically, for all t ∈ �0;1�,

P∞ �N−M ≤ tA �MyT1; : : : ;TM� ≤ t:

Proof. Apply the optional sampling theorem to
∑M+n
k=M+1 3

M+n
k −n yielding

tA≥E∞
{M+��N−M�∧�At��∑

k=M+1

3
M+��N−M�∧�At��
k

∣∣∣FM

}
≥AP∞ �N−M≤At �FM�: 2

Lemma 3. IfM andN =NM
A are as in Condition 1C, then for all t positive,

P∞ �N−M ≥ At �MyT1; : : : ;TM� ≤ κ�1�/t:
In particular, P∞ �N−M ≥ At� ≤ κ�1�/t.

Proof. Lemma 1 and Markov’s inequality. 2

Recall that we have partitioned the observation times into exceedance
epochs Lj. Hence we have the decomposition

Rn =
n∑
j=1

Lj∧n∑
k=Lj−1+1

3nk;



1296 L. GORDON AND M. POLLAK

where we follow the usual convention that summation over a null set of indices
yields a sum with value 0.

Lemma 4. If c ≥ 5, then P∞ �Lc3 < cA� < c−3.

Proof. From Lemma 2, the sum
∑c3

i=1�Li−Li−1� is stochastically greater
than the sum

∑c3

i=1Ui, where the Ui are i.i.d. uniform�0;A/c�. The former
sum is exactly Lc3 . The bound follows from Chebychev’s inequality applied to∑c3

i=1Ui. 2

Lemma 5. P∞ �Lj −Lj−1 > Ac
−5 for all 1 ≤ j ≤ c3� ≥ 1− c−1.

Proof. From Lemma 2,P∞ �Lj −Lj−1 ≤ εA/c�FLj−1
� ≤ ε. Now set ε = c−4

and sum over j. 2

In the following, we write B for the complement of an event B.

Lemma 6. Given 0 < ω1;ω2 < 1 and c > 4, there exist positive functions
A�6� = A�6��c;ω1;ω2� and b�6� = b�6��c;ω1;ω2� such that

P∞

{
sup

1≤i≤2nc

∣∣∣∣
v�j;Lj + i�
V�j;Lj + i�

− 1
∣∣∣∣> ω1 and L1 >

A

c4

∣∣∣FLj−1

}
< ω2 +Dj−1

whenever j > 1 and A > A�6�, where Dj−1 ∈ FLj−1
is a Bernoulli variate with

E∞�Dj−1� < exp�−b�6�A�.

Proof. Whenever unambiguous, we suppress the explicit dependence
of various quantities upon the fixed values c, ω1, and ω2. Choose and fix
α�c;ω1;ω2� large so that

P∞

{
sup

1≤i≤2nc
exp

(
−

i∑
l=1

Zl

)
>
αω1

2

}
<
ω2

12
:(1)

Let B0 =
⋃2nc
i=1 �XLj+i 6∈ Bε�, where Bε is as in Condition 1B. Clearly,

P∞ �B0� ≤ 2ncε. Choose ε small so that P∞�B0� ≤ ω2/2.
Let M be a stopping time and let 1 ≤m0 <∞. By Condition 1B,

P∞

{
max

�1−θ�M≤k≤M+1

∣∣∣∣ 1− 3
M+1
k

3Mk

/
f1�XM+1�
f0�XM+1�

∣∣∣∣> ε

and XM+1 ∈ Bε and M ≥m0

}

≤ b1

1− exp�−b2�
exp�−b2m0�:

(2)
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The times Lj are monotone in j, so FLj−1
⊂ FLj

. Apply (2) 2nc times to obtain
n∗0�c;ω1;ω2�, θ∗�c;ω1;ω2� positive and b∗�c;ω1;ω2� such that for

B1 =
{

sup
1≤i≤2nc

sup
�1−θ∗�Lj≤k≤Lj

∣∣∣∣
3
Lj+i
k

3
Lj
k exp�∑Lj+i

l=Lj+1Zl�
− 1

∣∣∣∣>
ω1

2

}

we have P∞ �B0 and B1 and L1 > n� < exp�−b∗n�, whenever n > n∗0. Now
consider the event B2 = �sup0≤i≤2nc

∑
α−1Lj≤k≤�1−θ∗�Lj3

Lj+i
k > c−1�, the event

B3 = �Lj−1 < α
−1Lj� and B4 = �L1 > A/c

4�. Use Condition 1A to choose
a∗1, a∗2 and a∗3 such that P∞ �sup0≤i≤2nc

∑
α−1n≤k≤�1−θ∗�n 3

n+i
k > n exp�−a∗1n�� ≤

a∗2 exp�−a∗3n�. Hence there exist n∗∗0 �c;ω1;ω2� > n∗0 and b∗∗�c;ω1;ω2� > 0
such that

P∞
{
B0 and B1 and L1 > n

}
+P∞

{
B2 and L1 > n

}
< ω2 exp�−b∗∗n�/12;(3)

for n ≥ n∗∗0 . Let A�6��c;ω1;ω2� = �n∗∗0 α� ∨ �2/ω1� and assume A > A�6�. By
definition, �L1 ≥ n∗∗0 � ⊃ B4. Use Condition 1C and Lemma 2 to show that

P∞
{
B3

∣∣FLj−1

}
= P∞

{
�α− 1�Lj−1 < Lj −Lj−1

∣∣FLj−1

}
≤ A/c

3c4L1
ω2:(4)

Now let 9j−1 = P∞ ��B0B1 ∪B2�B4 �FLj−1
�. From (3), E∞�9j−1� <

�ω2/12� exp�−b∗∗A/c4�. LetDj−1 be the indicator of the event �9j−1 > ω2/12�.
Apply the Markov inequality to choose b�6� for which

E∞�Dj−1� < exp�−b�6�A�;(5)

increasing A0, if necessary. Recall A > α and Q�j;Lj� ≥ A/c. Use (1), (3), (4)
and (5) to obtain on B4 that

P∞

{
B4 and B0 and sup

1≤i≤2nc

∣∣∣∣
v�j;Lj + i�
V�j;Lj + i�

− 1
∣∣∣∣ > ω1

∣∣∣FLj−1

}
<
ω2

2
+Dj−1:

Combine P∞ �B0� ≤ ω2/2 with the preceding to obtain the bound ω2 +Dj−1,
proving the lemma. 2

Recall that Zi are the fully specified increments in log-likelihood ratio.
Prechange, they are i.i.d. with negative drift. We now use the defining property
of nc, that P∞ �exp�∑nc

i=1Zi� > c−8� < c−4.

Lemma 7. There exists a function A�7��c� and constants c�7� and k�7� such
that both

P∞
{

max
2≤j≤c3

max
n≥nc

v�j;Lj + n� > A/c
}
<
k�7�

c

and

P∞
{

max
2≤j≤c3

max
n≥2nc

v�j;Lj + n� > A/c9
}
<
k�7�

c
;

whenever c > c�7� and A > A�7��c�.
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Proof. Let B0 = �L1 ≤ A/c4�. Define

B1�j� =
{
v�j;Lj + nc�
V�j;Lj + nc�

> 1+ 1
c

}
and B2�j� =

{
V�j;Lj + nc� > c−5A

}

for 2 ≤ j ≤ c3. Use Lemma 6 to choose A�7��c� ≥ A�6��c; c−1; c−4/2� sufficiently
large that A > A�7� implies

P∞
{
B0B1�j�

}
<

1
c4
:(6)

Also note that

P∞ �B2�j�� ≤ P∞
{
Q�j;Lj� > c3A

}

+P∞
{
Q�j;Lj� ≤ c3A and exp

( nc∑
l=1

ZLj+l

)
> c−8

}

≤ κ�1�
c4
+ 1
c4
:

(7)

We may use the martingale maximum inequality and Condition 1C to
bound P∞ �maxn≥nc v�j;Lj + n� > A/cy B0B1�j�B2�j�� because v�j;Lj + n�
is a martingale for n ≥ 0. From Lemma 2, P∞ �B0� < c−3. Use (6) and (7) to
complete the proof of the first assertion.

Prove the second similarly by replacing nc with 2nc in the definitions of
B1�j� and B2�j� and bounding P∞ �V�j;Lj + 2nc� > c−13A�. 2

Recall that W = max �j�Lj ≤NA� and that W is not a stopping time.

Lemma 8. There exists a function A�8��c� and constants c�8� and k�8� such
that

P∞ �NA −LW > nc� ≤
k�8�

c

and

P∞ �W ≥ c3� ≤ k
�8�

c
;

whenever c > c�8� and A > A�8��c�.

Proof. Take c > 5 and choose

A�8��c� = A�6��c; c−4; c−4� ∨ �4 log�c�/b�6��c; c−4; c−4��:
Let A > A�8��c�. Observe

A ≤ RNA
= v�1;NA� +

W−1∑
j=2

v�j;NA� +
LW∑

k=LW−1+1

3
NA

k +
NA∑

k=LW+1

3
NA

k :
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Decompose the event of interest as

P∞ �NA −LW > nc� ≤ P∞ �W ≥ c3�(8)

+P∞ �v�1;NA� > A/4�(9)

+P∞
{W−1∑
j=2

v�j;NA� > A/4 and W < c3
}

(10)

+P∞
{

max
2≤j≤c3

max
n≥nc

v�j;Lj + n� > A/4
}

(11)

+P∞
{ NA∑
k=LW+1

3
NA

k > A/4
}
:(12)

Use Lemmas 3 and 4 to show

P∞ �W ≥ c3� ≤ P∞ �Lc3 < cA� +P∞ �NA ≥ cA� ≤ c−3 + κ�1�/c;

bounding (8) and proving the second assertion of the lemma.
Bound (9) by 4κ�1�/c using the martingale maximum inequality and Con-

dition 1C. Use Lemmas 2, 5, 6, the choice of A > A�8��c� and the martingale
maximum inequality to bound (10) by 9/c. Next, bound (11) using Lemma 7.
Finally, (12) has probability 0, by the definition of W as a maximum. 2

Recall that hj is the first time after the stopping time Lj that the invariant

continuation of
∑Lj
k=Lj−1+1 3

Lj
k is at least as large as A. The next lemma tells

us that if we do go over the barrier A at the jth excursion above A/c, then
with high probability the exceedance occurs very soon after Lj.

Lemma 9. Let j > 1. There exist positive functions A�9��c� and b�9��c� such
that A > A�9��c� and c > 4 implies

P∞
{
Lj + nc < hj <∞ and L1 > A/c

4
∣∣FLj−1

}
< 3c−4 +Dj−1;

where Dj−1 ∈ FLj−1
is a Bernoulli variate with E∞�Dj−1� < exp�−b�9�A�.

Proof. Note that Lj < hj implies Q�j;Lj� < A. Hence, on �L1 > A/c
4�

we may bound the conditional probability of interest by

P∞

{
v�j;Lj + nc�
V�j;Lj + nc�

> 2
∣∣∣FLj−1

}
(13)

+P∞
{
V�j;Lj + nc�
Q�j;Lj�

> c−7
∣∣∣FLj−1

}
(14)

+P∞
{
Lj + nc < hj <∞ and

v�j;Lj + nc�
A

≤ 2c−7
∣∣∣FLj−1

}
:(15)
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For A large enough, we bound (13) using Lemma 6. We bound (14) using
the strong Markov property for i.i.d. variates with the definitions of nc and
V�j;Lj + nc�. Finally, use the martingale maximum inequality to bound (15)
by 2c−7. 2

Lemma 10. Let j > 1. There exist positive functions c�10��ξ�, b�10��c; ξ� and
A�10��c; ξ� and a positive constant k�10� such that, given 0 < ξ < 1, on the event
�L1 > A/c

4�,
∣∣∣∣
E∞�Q�j;Lj� �FLj−1

�
A1

−P∞
{
hj <∞

∣∣FLj−1

} ∣∣∣∣< k
�10�

(
ξ

c
+Dj−1

)
;

where Dj−1 ∈ FLj−1
is a Bernoulli variate with E∞�Dj−1� < exp�−b�10�A�

whenever c > c�10��ξ� and A > A�10��c; ξ�:

Proof. Recall that Zi has positive mean under PLj+1 and that its distri-
bution is continuous. Because V�j;Lj + n�/Q�j;Lj� is a likelihood ratio,

P∞
{
Hj <∞

∣∣FLj

}

= P∞
{

sup
n≥0

Lj+n∑
i=Lj+1

Zi ≥ log�A� − log�Q�j;Lj��
∣∣∣FLj

}

= ELj+1

{
exp

(
−
[ Hj∑
i=Lj+1

Zi

]
+ log�A/Q�j;Lj��

) ∣∣∣FLj

}
Q�j;Lj�

A
:

(16)

Given fixed ξ > 0, we may use renewal theory as in Siegmund (1985), Chapter
VIII to approximate the expectation in (16) by 1/1 = 1/1�f0; f1� with error
less than ξ/1 whenever log�A� − log�Q�j;Lj�� exceeds some threshold τ�ξ�.
Hence, Condition 1C and Markov’s inequality imply

P∞
{
log�A� − log�Q�j;Lj�� ≤ τ�ξ�

∣∣FLj−1

}

≤ 1
c

exp�τ�ξ��E∞
{
Q�j;Lj�
A/c

I��A/c�−1Q�j;Lj�≥c exp�−τ�ξ���

∣∣∣FLj−1

}

≤ 1
c

exp�τ�ξ��κ�c exp�−τ�ξ���;

(17)

showing also that E∞�A−1Q�j;Lj�I�A−1Q�j;Lj�≥exp�−τ�ξ��� �FLj−1
� is bounded by

(17). Because κ�t� → 0 as t→∞, we may choose c�10��ξ� such that c > c�10��ξ�
implies both exp�τ�ξ��κ�c exp�−τ�ξ��� < ξ and 1/c < ξ.

Let c > c�10��ξ�. From (16) and renewal theory,

P∞
{
Hj <∞

∣∣FLj

}
≥ P∞

{
Hj <∞ and

Q�j;Lj�
A

< exp�−τ�ξ��
∣∣∣FLj

}

≥ �1− ξ�Q�j;Lj�
A1

(
1− I�Q�j;Lj�/A≥exp�−τ�ξ���

)
:
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Now take expectations with respect to the coarser σ-field FLj−1
and apply

(17), Condition 1C and the definition of c�10��ξ� to obtain

P∞
{
Hj <∞

∣∣FLj−1

}
≥ E∞

{
Q�j;Lj�
A1

∣∣∣FLj−1

}
− ξ�κ�1� + 1�

c1
:(18)

Similarly, again using (17),

P∞
{
Hj <∞

∣∣FLj−1

}
≤ E∞

{
Q�j;Lj�
A1

∣∣∣FLj−1

}
+ ξ
c

(
κ�1�
1
+ 1

)
:(19)

It remains to approximate hj with Hj. Use the continuity of the distribu-
tion of Zi and the finiteness of nc to choose δ = δ�c; ξ� ∈ �0;1/2� such that
maxx≥0

∑nc
j=1P∞ �

∑j
i=1Zi ∈ �x− δ; x+ δ�� < ξ/c. Define events

B0 = �L1 ≤ A/c4�

B1 =
{

min
1≤i≤nc

∣∣∣∣
[
log�Q�j;Lj�� +

i∑
l=1

ZLj+l

]
− log�A�

∣∣∣∣ < δ
}

B2 =
{

max
1≤i≤nc

∣∣log�v�j;Lj + i�/V�j;Lj + i��
∣∣ > δ

}

B3 =
{
Hj 6= hj and Hj ∧ hj ≤ Lj + nc

}
:

Conclude from the choice of δ thatP∞�B1 �FLj−1
�<ξ/c. Use Lemma 6 to choose

A∗�c; δ; ξ� and b∗�c; δ; ξ�>0 such that A>A∗ implies P∞ �B2B0 �FLj−1
�<

ξ/c+D∗j−1, where D∗j−1 ∈ FLj−1
is Bernoulli having E∞�D∗j−1� < e−b

∗A.
Use Lemma 9 and the definition of nc to obtain A∗∗ and b∗∗ > 0 for which

A > A∗∗ implies �P∞ �Hj <∞�FLj−1
�−P∞ �hj <∞�FLj−1

�� is bounded above
by

5c−4 +D∗∗j−1 +P∞
{
B1

∣∣FLj−1

}
+P∞

{
B2

∣∣FLj−1

}
+P∞

{
B3B2B1

∣∣FLj−1

}

on B0 with D∗∗j−1 ∈ FLj−1
Bernoulli having E∞�D∗∗j−1� < e−b

∗∗A. On B1B2, we
have hj = Hj if Lj < hj ∧Hj ≤ Lj + nc. Therefore �P∞ �Hj <∞�FLj−1

� −
P∞ �hj <∞�FLj−1

�� is bounded above by 5ξ/c3 +D∗∗j−1 + 2ξ/c +D∗j−1 on the

event B0. Finally, combine this last bound with (18) and (19). 2

Recall that the stopping time mj is defined in terms of the invariant con-
tinuation v�j; ·� of Q�j;Lj�. Specifically, mj = hj ∧ �Lj + nc� ∧Lj+1.

Lemma 11. There exist a constant k�11� and positive functions c�11��ξ�,
b�11��c; ξ� and A�11��c; ξ� such that, given 0 < ξ < 1, on the event �L1 > A/c

4�,
∣∣∣∣
E∞�Q�j;Lj� �FLj−1

�
A1

−P∞
{
v�j;mj� ≥ A

∣∣FLj−1

} ∣∣∣∣< k
�11�

(
ξ

c
+Dj−1

)
;
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where Dj−1 ∈ FLj−1
is a Bernoulli variate with E∞�Dj−1� < exp�−b�11�A�

whenever j > 1, c > c�11��ξ� and A > A�11��c; ξ�.

Proof. From Lemma 2, P∞ �Lj+1 −Lj ≤ nc �FLj
� ≤ nc�A/c�−1. Now con-

dition on the coarser σ-field FLj−1
, and then apply Lemmas 9 and 10. 2

Lemma 12. There exist A�12��c� and b�12��c� > 0 for which, on �L1 > A/c
4�,

E∞
{
v�j;mj�y v�j;mj� < A

∣∣FLj−1

}
< cnc + 3Ac−4 +ADj−1;

where Dj−1 ∈ FLj−1
is a Bernoulli variate with E∞�Dj−1� < exp�−b�12�A�

whenever j > 1, c > 4 and A > A�12��c�.

Proof. Consider the events B1=�Q�j;Lj�<A�, B2=�v�j;Lj+nc�<A�,
B3=�V�j;Lj+nc�/v�j;Lj+nc� ≥ 1/2�, and B4=�

∑Lj+nc
i=Lj+1Zi≤ − 8 log�c��.

Because mj = hj ∧ �Lj + nc� ∧Lj+1, we will typically see mj = Lj + nc. Note
that P∞ �B3 ∪B4 ∪B3B4� = 1. From Lemma 2 and the definition of nc,

E∞
{
v�j;mj�y v�j;mj� < A

∣∣FLj−1

}

≤ A nc
A/c
+E∞

{
2V�j;Lj + nc�y B1B3B4

∣∣FLj−1

}

+E∞
{
v�j;Lj + nc�y B2B4

∣∣FLj−1

}
+E∞

{
v�j;Lj + nc�y B2B3

∣∣FLj−1

}

≤ cnc + 2Ac−8 +Ac−4 +AP∞
{
B3

∣∣FLj−1

}
:

The lemma follows by direct application of Lemma 6. 2

Lemma 13. Let j > 1 and ξ > 0. There exist constant k�13� and positive
functions c�13��ξ�, b�13��c; ξ� and A�13��c; ξ� such that, on �L1 > A/c

4�,
∣∣∣ E∞

{
v�j;mj�y v�j;mj� ≥ A

∣∣FLj−1

}
−A1P∞

{
v�j;mj� ≥ A

∣∣FLj−1

} ∣∣∣

≤ k�13�A
[
ξP∞

{
v�j;mj� ≥ A

∣∣FLj−1

}
+Dj−1

]
;

where Dj−1 ∈ FLj−1
is a Bernoulli variate with E∞�Dj−1� < exp�−b�13�A�

whenever c > c�13��ξ� and A > A�13��c; ξ�.

Proof. Assume without loss that ξ < 1. Because v�j;Lj+n� is a martin-
gale,

E∞
{
v�j;mj�y v�j;mj� ≥ A

∣∣FLj−1

}

= E∞
{
Q�j;Lj�

∣∣FLj−1

}
−E∞

{
v�j;mj�y v�j;mj� < A

∣∣FLj−1

}
:
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We now bound the last term. We use Lemma 12 and the martingale property
of v�j;Lj + n� to obtain for A sufficiently large the bounds

E∞
{
Q�j;Lj�

∣∣FLj−1

}
−
(
cnc + 3Ac−4 +AD�12�

j−1

)

≤ E∞
{
v�j;mj�y v�j;mj� ≥ A

∣∣FLj−1

}

≤ E∞
{
Q�j;Lj�

∣∣FLj−1

}
≤ κ�1�A

c

(20)

on the event �L1 > A/c
4�; the last inequality follows from Condition 1C.

By applying Condition 1C to E∞�Q�j;Lj� �FLj−1
�, we may for ε ∈ �0;1�

use Lemma 11 with (20) to find c∗∗�ε�, b∗∗�c; ε� and A∗∗�c; ε� for which

�1− ε�E∞
{
Q�j;Lj�

∣∣FLj−1

}
−AD�12�

j−1 ≤ E∞
{
v�j;mj�y v�j;mj� ≥ A

∣∣FLj−1

}

≤ E∞
{
Q�j;Lj�

∣∣FLj−1

}

and

�1− ε�
E∞�Q�j;Lj� �FLj−1

�
A1

− k�11�D
�11�
j−1

≤ P∞
{
v�j;mj� ≥ A

∣∣FLj−1

}

≤ �1+ ε�
E∞�Q�j;Lj� �FLj−1

�
A1

+ k�11�D
�11�
j−1

both hold on �L1 > A/c
4� whenever c > c∗∗�ε� and A > A∗∗�c; ε�. Now take

the difference of the latter two inequalities, with appropriate choice of ε. 2

Lemma 14. There exist functions c�14��ξ� and A�14��c; ξ� such that, given
0 < ξ < 1,

∣∣∣∣
E∞�v�J∗;mJ∗��

A1
− 1

∣∣∣∣≤ ξ;

whenever c > c�14��ξ� and A > A�14��c; ξ�.

Proof. Let B0 denote the event �L1 < A/c
4�. Denote by Bj the event

�v�j;mj� < A�, and let Ej denote the event �∑j
i=2D

�13�
i−1 = 0�. Recall that

mj = Lj+1 ∧ �Lj + nc� ∧ hj. Because mj 6∈ FLj
, care is needed when applying

our previous lemmas. Also note that Ej ∈ FLj−1
.

We decompose the expected truncated time to exceedance as

E∞
{
v�J∗;mJ∗�

}
= E∞

{
v�J∗;mJ∗�y EJ∗

}
(21)

+E∞
{
v�J∗;mJ∗�y EJ∗B0

}
(22)

+E∞
{
v�c3 + 1;mc3+1�y Ec3+1B0

c3+1⋂
i=1

Bi

}
(23)
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+E∞
{
v�1;m1�y B0B1

}
(24)

+
c3+1∑
j=2

E∞

{
v�j;mj�y EjB0Bj

j−2⋂
i=1

Bi

}
(25)

−
c3+1∑
j=2

E∞

{
v�j;mj�y EjB0BjBj−1

j−2⋂
i=1

Bi

}
;(26)

where intersection over an empty set of indices is the sample space.
Because v�j;Lj+n� is a martingale, we may use Condition 1C and Lemma 2

to show (22) and (24) can be made small by by taking c large. Use Lemma 12
to show (23) is negligible for A large enough.

We next bound the absolute value of (26) by

c3+1∑
j=2

E∞

(
E∞

{
v�j;mj�y Bj−1

j−2⋂
i=1

Bi

∣∣∣FLj

})

=
c3+1∑
j=2

E∞

{
�Q�j;Lj� −Q�j;mj−1�� +Q�j;mj−1�y Bj−1

j−2⋂
i=1

Bi

}
:

(27)

Decompose Q�j;Lj� −Q�j;mj−1� =
∑Lj
k=mj−1+1 3

Lj
k +

∑mj−1

k=Lj−1+1�3
Lj
k − 3

mj−1

k �,
for j > 1. Because v�j;Lj + n� is a martingale and because Lj ≥ mj−1, the
second sum in the decomposition has conditional expectation 0 given Fmj−1

.
Consider now L∗j = min �n � ∑n

k=mj−1+1 3
n
k ≥ A/c�. Because Lj ≤ L∗j, and from

Condition 1C, the first sum in the decomposition has conditional expectation
given Fmj−1

bounded by κ�1�A/c.
Because the events Bj−1

⋂j−2
i=1 Bi ∈ Fmj−1

are disjoint, we may bound (27)—
and hence the magnitude of (26)—by

κ�1�A
c
+E∞

{c3+1∑
j=2

Lj−1+nc∑
µ=Lj−1+1

Lj−1+nc∑
k=Lj−1+1

3
µ
k

}
≤ κ�1�A

c
+ c3n2

c = ôc�A�:(28)

Note for use in the future that in proving (28) we have obtained a bound for∑c3+1
j=2 E∞�Q�j;Lj�y Bj−1

⋂j−2
i=1 Bi�. Therefore the Markov inequality yields

c3+1∑
j=2

P∞

{
BjBj−1

j−2⋂
i=1

Bi

}
≤ κ�1�

c
+ c

3n2
c

A
= ôc�1�:(29)

Note that v�J∗;mJ∗� ≤
∑c3+1
j=1 v�j;mj�. Because Ej ∈ Fj−1 we use Condi-

tion 1C and Lemma 13 to show (21) is small. We next deal with (25). Note
that EjB0

⋂j−2
i=1 Bi are in FLj−1

when j > 1. We may use Lemma 13 to show
that for c and A large enough, (25) lies between

A1

(
1± ξ

2

)[ c3+1∑
j=2

P∞

{
EjB0Bj

j−2⋂
i=1

Bi

}]
:(30)
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We show the sum of probabilities in (30) is close to 1. Note that

c3+1∑
j=2

P∞

{
EjB0Bj

j−2⋂
i=1

Bi

}

=
c3+1∑
j=2

P∞

{
B0Bj

j−2⋂
i=1

Bi

}
−
c3+1∑
j=2

P∞

{
EjB0Bj

j−2⋂
i=1

Bi

}
;

(31)

and that the second sum in (31) is bounded by c6e−b
�13�A. We reexpress the first

sum in (31) as

P∞
{
B0 and J ≤ c3 + 1

}
−P∞

{
B0B1

}
+
c3+1∑
j=2

P∞

{
B0BjBj−1

j−2⋂
i=1

Bi

}
:(32)

Now use Lemma 11, Lemma 2, Condition 1C and (29) to conclude that
�32� = 1 + ôc�1� so that (25) is contained in the interval determined by
A1�1± �ξ/2� ± ôc�1��. Combining the bounds completes the proof. 2

Lemma 15. There exist constants k�15� and c�15�, and a function A�15��c�
such that

E∞
{
v�J∗Y;mJ∗Y

�y Y < mJ∗
}
≤ k�15�A

(
P∞

{
Y < mJ∗

}
+ c−1);

for any stopping time Y, whenever c > c�15� and A > A�15��c�.

Proof. Define J = max �j�Lj ≤ Y�, indexing the last excursion over A/c
before Y. We decompose

v�J∗Y;mJ∗Y
� ≤

J−1∑
j=1

v�j;mj� + v�J;mJ�

+ v�J+ 1;mJ+1� + v�J∗Y;mJ∗Y
�I�J∗Y≥J+2�:

(33)

We deal with the contributions to (33) in order. By definition, Lj ≤mj ≤ Lj+1.
Note E∞�v�j;mj�y Lj+1 ≤ Y < mJ∗� ≤ E∞�v�j;mj�y mj < mJ∗� for j < J.
On �mj < mJ∗�, we have v�j;mj� < A. Now use Condition 1C to bound
E∞�v�1;m1�� = E∞�v�1;L1�� and Lemmas 6, 2 and the definition of nc for
2 ≤ j ≤ c3 to show for c large and fixed and A large enough that

c3∑
j=1

E∞�v�j;mj�y mj < mJ∗� < 4κ�1�A/c:

On �mJ ≤ Y < mJ∗�, we must have v�J;mJ� < A, for otherwise mJ =
mJ∗ . To bound the second piece, observe that v�J;n∨Y� is a martingale and
that v�J;Y� < A when Y < mJ. Break �Y < mJ∗� into �mJ ≤ Y < mJ∗� ∪
�Y < mJ∗ ∧mJ� and integrate to obtain

E∞
{
v�J;mJ�y Y < mJ∗

}
≤ AP∞ �Y < mJ∗�:(34)
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Consider now the third piece of (33). Note that J + 1 indexes the first
Lj after time Y, so LJ+1 is a stopping time. Also, v�J + 1; n ∨ LJ+1� and
∑Y
k=LJ+1 3

Y+n
k are martingales and �Y < mJ∗� ∈ FY ⊂ FLJ+1

. Hence,

E∞
{
v�J+ 1;mJ+1�y Y < mJ∗

}

= E∞
{ Y∑
k=LJ+1

3Yk y Y < mJ∗

}
+E∞

{ LJ+1∑
k=Y+1

3
LJ+1

k y Y < mJ∗

}
;

Now use Y < LJ+1 to bound pointwise the sum in the first expectation, and
use the stopping time inf �n � ∑n

k=Y+1 3
n
k ≥ A/c� ≥ LJ+1 with Condition 1C to

bound the second.
We finally bound the last piece of (33). Let Bj = �v�j;mj� < A� and let

B0 = �L1 < A/c
4�. Use Lemma 13 and (34) to show that for c and A suffi-

ciently large,

E∞
{
v�J∗Y;mJ∗Y

�I�J∗Y≥J+2�y Y < mJ∗
}

≤ 2A1
c3+1∑
j=2

P∞

{
B0Bj

j−2⋂
i=1

Bi and Y < mJ∗

}
+ c3k�13�A exp�−b�13�A�

+
c3+1∑
j=2

E∞�v�j;mj�y B0� +AP∞ �Y < mJ∗�:

(35)

Apply Condition 1C and then Lemma 2 to obtain for j ≥ 2,

E∞�v�j;mj�y B0� = E∞�Q�j;Lj�y B0� ≤ κ�1�
A

c
P∞ �B0� ≤

κ�1�
c4

A:

Because both the odd and even indexed sets of (35) are collections of disjoint
events, we obtain for A large a bound of desired form. 2

4.3. Proof of Theorem 1. Recall the stopping times Lj, with associated
continuation processes v�j; ·�, and auxiliary quantities such as J, are defined
in terms of target A and integer c. We now introduce a constant ε > 0. For
convenience, we always choose ε < 1 rational and then choose c to make ±εc
an integer.

We require three sets of random times, one set corresponding to A and c,
and two other sets corresponding to choice of �1± ε�A and �1± ε�c. Note that
the stopping times Lj are the same, regardless of the pair specified. Therefore
the continuation processes v�j; ·� and V�j; ·� are also the same under any
specification. Where the choice makes a difference, we use the subscript ±ε.
For example, h−ε; j denotes the first time n that v�j;n� ≥ �1− ε�A. Similarly,
m+ε; j is defined to be h+ε; j ∧ �Lj + n�1+ε�c� ∧Lj+1.
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We show first thatE∞�RNA
�=E∞�NA�. From Lemma 1, the latter is finite.

For n large, E∞�RNA∧n −NA ∧ n� = 0 from the martingale property. Equality
follows from monotone convergence and Fatou’s lemma. Hence it suffices to
study E∞�RNA

�.
We now argue that lim infA→∞E∞�RNA

�/A ≥ 1. Let ξ, ε < 1/2, and c be
positive, whose exact values will be chosen and fixed in that order before we
let A→∞. Given ξ and ε, use Lemma 14 to show

1− ξ <
E∞�v�J∗±ε;m±ε;J∗±ε��

�1± ε�A1 < 1+ ξ(36)

for c > 2c�14��ξ� and A > 2A�14���1 ± ε�c; ξ�. With v−ε = v�J∗−ε;m−ε;J∗−ε�, we
obtain

E∞�RNA
� ≥ E∞

{
RNA
y NA ≥m−ε;J∗−ε

}

≥ E∞�v−ε� −E∞
{
v−εy NA < m−ε;J∗−ε

}
:

(37)

Define events

B1 = �NA −LW > nc�;
B2 = �W ≥ c3�;

B3 =
{

min
2≤j≤c3

Lj −Lj−1 ≤ 2nc
}
;

B4 =
{

max
2≤j≤c3

sup
n≥2nc

v�j;Lj + n� > A/c9
}
;

B5 =
{

sup
n≥LW

v�1; n� > εA/4
}
:

Consider now �NA < m−ε;J∗−ε� ⊂ �NA < m−ε;J∗−ε and
⋂4
i=1Bi� ∪

⋃4
i=1Bi. We

know Q�W;NA� < A/c, for otherwise LW+1 ≤ NA, contradicting the defini-
tion of W. On the event

⋂4
i=1Bi,

RNA
= Q�W;NA� + v�W;NA� +

W−1∑
j=1

v�j;NA�

< A/c+ v�W;NA� + c3A/c9 + sup
n≥LW

v�1; n�:

Hence v�W;NA�/A ≥ v�W;NA�/RNA
> 1− 2/c− ε/4 on

⋂5
i=1Bi. From Lem-

mas 5, 7 and 8, the probability of
⋃4
i=1Bi is less than �1+ k�7� + 2k�8��/c, for

c and A sufficiently large. Also,

P∞ �B5� = E∞P∞
{

sup
n≥LW

v�1; n� > εA

4

∣∣∣FL1

}
≤ E∞

{
v�1;L1�
εA/4

}
≤ 4κ�1�

εc
:
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When c is chosen to make ε > 4/c, we have NA ≥m−ε;J∗−ε on
⋂5
i=1Bi, so that

P∞
{
NA < m−ε;J∗−ε

}
<
(
1+ k�7� + 2k�8� + 4κ�1�ε−1)/c:(38)

Note both m−ε;J∗−ε and m−ε;J∗−ε;NA
are stopping times and m−ε;J∗−ε;NA

≤
m−ε;J∗−ε on �NA < m−ε;J∗−ε�. Hence, given fixed ξ and ε, use (36), (37), (38)
with Lemma 15 to choose c sufficiently large, so that

E∞
{
RNA

}
≥ E∞�v−ε� −E∞

{
v−εy NA < m−ε;J∗−ε

}

= E∞�v−ε� −E∞
{
v�J∗−ε;NA

;m−ε;J∗−ε;NA
�y NA < m−ε;J∗−ε

}

≥ �1− ξ��1− ε�A1−Aε

for all A sufficiently large. Hence lim infA→∞E∞�RNA
�/A ≥ 1.

Finally, we show lim supA→∞E∞�RNA
�/A ≤ 1, completing the proof of

Theorem 1. Note that NA ≤m+ε;J+ε for any ε > 0. Define and redefine

B0 =
{
L1 ≤ A/c4}

B1 =
{
NA ≥m+ε;J∗+ε

}

B2 =
{
J+ε > �1+ ε�3c3}:

Write m+ =m+ε;J∗+ε . Because NA =m+ on B1B2, we obtain

E∞�RNA
� = E∞

{
Rm+

}
+E∞

{
�RNA

−Rm+�y B1B2 ∪B1
}

≤ E∞
{
Rm+

}
−E∞

{
�Rm+ −RNA

�y B1
}
+E∞

{
RNA
y B1B2

}
:

(39)

We deal with the contributions to (39) in order. Write cε = �1 + ε�c. We de-
compose Rm+ into its exceedance epochs to obtain

Rm+ = Q�J
∗
+ε + 1;m+� + v�J∗+ε;m+� +

c3
ε∑

j=1

v�j;m+�I�mj<m+�:

The first term is bounded by
∑c3+1
j=1

∑ncε
l=1Q�j;Lj + l� which accounts for �c3

ε +
1�ncε�ncε + 1�/2 likelihood ratios, each having expectation 1. Apply (36) to the
second term. Hence E∞�Rm+� is bounded above by

[
�c3
ε + 1�

ncε�ncε + 1�
2

]
+ �1+ ξ��1+ ε�A1+E∞�v�1;m+��

+
c3
ε∑

j=2

E∞
{
v�j;m+�y B0 ∩ �mj < m+�

}
+

c3
ε∑

j=2

E∞�v�j;m+�y B0�:
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Because v�j;Lj + n� is a martingale and v�j;Lj� = Q�j;Lj�, we can apply,
respectively, Condition 1C, Lemma 12 and Lemma 2 to obtain

E∞
{
Rm+

}
<

[
�c3
ε + 1�

ncε�ncε + 1�
2

]
+ �1+ ξ��1+ ε�A1

+ κ�1�A
c
+
[
c4
εncε +

3A
c
+ �1+ ε�A exp�−b�12�A�

]

+ c3
εκ�1�

A

c4
;

(40)

bounding the first contribution to (39).
Note NA and m+ are both stopping times, and B1 ∈ FNA∧m+ , hence

E∞
{
�Rm+ −RNA

�y B1
}
= E∞

{
�m+ −NA�y B1

}
> 0;

by the martingale property, so we can ignore the second piece of (39).
We next bound the third contribution to (39). On B1B2, we have Q�c3

ε +
1;NA� ≤ Q�c3

ε + 1;N∗� for N∗ = infn≥L
c3ε+1
�n �Q�c3

ε + 1; n� ≥ A�. Now take

expectations, applying Condition 1C, Lemmas 2, 8, 12 and the martingale
property of the v�j; ·�, to obtain

E∞
{
RNA
y B1B2

}
≤ κ�1�AP∞ �B2� + κ�1�

A

c

+
c3
ε∑

j=2

(
cεncε +

3�1+ ε�A
c4
ε

+ �1+ ε�A exp�−b�12�A�
)

+ c3
εκ�1�

A

c
P∞ �B0�:

(41)

Finally, add (40) and (41), choose c large and then let A→∞. 2
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