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OPTIMAL DISCRIMINATION DESIGNS FOR
MULTIFACTOR EXPERIMENTS

BY HOLGER DETTE 1 AND INGO RODER¨
Ruhr-Universitat Bochum and Universitat Leipzig¨ ¨

In this paper efficient designs are determined when Anderson’s proce-
dure is applied in order to identify the degree of a multivariate polynomial
regression model. It is shown that the optimal designs are very closely
related to model robust designs which maximize a weighted p-mean of
D-efficiencies. As a consequence we obtain designs with high efficiency for
model discrimination and for the statistical analysis in the identified
model.

1. Introduction. The construction of optimal designs for multifactor
experiments has received considerable attention in the recent literature
w Ž . Ž .Farell, Kiefer and Walbran 1967 , Lim and Studden 1988 , Rafajlowicz and

Ž . Ž .xMyszka 1988, 1992 and Wong 1994 . While most of this work considers the
problem of designing experiments for a given model, the optimal design
problem for the identification of the relevant parameters in a multifactor
model is more complicated and has not been discussed so far. In this paper
efficient designs are constructed for discrimination between several multifac-
tor models. More precisely, we concentrate on a multivariate regression of
degree m in q variables,

q

h x s a q a x q a x xŽ . Ý Ým 0 i i i , i i i1 2 1 2
is1 1Fi Fi Fq1 2

q ??? q a x ??? x ,Ý i , . . . , i i i1 m 1 m
1Fi F ??? Fi Fq1 m

1.1Ž .

Ž .Twhere x s x , . . . , x denotes the independent variable which varies in1 q

w x q Ž .the design space XX s y1, 1 . The regression functions in the model 1.1 are
Ž . Ž . q m ithe N [ q q 1 ??? q q m rm! multiple monomials of the form Ł x ,q, m is1 i

where Ýq m F m. A first problem in regression analysis is to determine theis1 i
degree of the regression which adequately fits the data.

Assume that the experimenter observes independent, normally distributed
2 w x Ž .responses Y , . . . , Y with common variance s G 0 and mean E Y s g x ,1 n j j

Ž .j s 1, . . . , n, where g x is a regression function which belongs to the class of
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multivariate polynomials up to degree m, that is,

� 41.2 g g FF s h , . . . , h .Ž . m , q 1 m

Ž .Anderson 1962 studied the following decision rule for the determination of
Ž .the degree of the regression. For a given set of levels a , . . . , a choose the1 m

� 4 Ž .largest integer l in 1, . . . , m , for which the F-test in the model h x rejectsl
the hypothesis

1.3 H Ž l . : a s 0 for all 1 F i F ??? F i F qŽ . 0 i , . . . , i 1 l1 l

Ž .at the level a . Note that the coefficients specified in 1.3 correspond to thel
multiple monomials Ł q x m i with exact degree l s Ýq m . Anderson’s pro-is1 is1 i

w Ž .cedure satisfies several optimality properties see Anderson 1962 or Spruill
Ž .x1990 . Roughly speaking, it minimizes the probability of the error of choos-
ing a too high degree polynomial.

The F-test for the hypothesis H Ž l . can be obtained from the confidence0
ellipsoid EE for KT b , where K is the parameter matrix corresponding to thel l l l
hypothesis H Ž l . and b is the vector of parameters in the model of degree l.0 l
The hypothesis H Ž l . is rejected if and only if 0 f EE . The volume of the0 l

y1r2 < T Ž T .y1 <1r2 Tellipsoid is proportional to d s K X X K , where X X denotesl l l l l l l
the design matrix. The quality of the test is improved if the volume of the
ellipsoid is reduced and consequently a ‘‘good’’ discrimination design will
make d , . . . , d as large as possible. In the cases of practical interest a1 m
simultaneous maximization of these quantities is not possible and it is
common practice to maximize real-valued functions of d , . . . , d with respect1 m
to the choice of the design which are called optimality criteria.

wThis paper deals with the approximate theory of optimal design see Kiefer
Ž .x1974 , which means that a design is treated as a probability measure on the

w x dcube y1, 1 with finite support. Thus an approximate design h requires the
observations to be taken at the support points of the probability measure and
in proportion to the masses at the corresponding support points. If h denotes

w x qa design on the cube y1, 1 we define

T N =Nq , l q , lM h s f x f x dh x g R , l s 1, . . . , m,Ž . Ž . Ž . Ž .Hl l l
qw xy1, 1

Ž .as the information matrix of h, where f x denotes the vector of the Nl q, l
q m i Ž .multiple monomials Ł x of degree less than or equal to l; M h is theis1 i l

continuous analogue of the design matrix XT X , and the quantities corre-l l
sponding to the determinants d are given byl

det M hy1 Ž .ly1T1.4 d h s K M h K s , l s 1, . . . , m.Ž . Ž . Ž .l l l l det M hŽ .ly1

Following the discussion of the previous paragraph a ‘‘good’’ approximate
Ž . Ž .discrimination design h maximizes a real-valued function of d h , . . . , d h .1 m

In this paper we determine efficient designs with respect to various
Ž . Ž .optimality criteria based on p-means of d h , . . . , d h . We restrict our1 m
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w Ž .xinvestigations to the class of product designs see Lim and Studden 1988
which is introduced in Section 2. This set is not convex, thus standard

w Ž .invariance arguments for multifactor experiments see, e.g., Kiefer 1974 or
Ž .xLim and Studden 1988 cannot be applied for the reduction of the dimen-

sionality of the optimization problem. Nevertheless, we will demonstrate that
for many optimality criteria a permutation invariance property can still be
established. Our argument is based on the theory of canonical moments

Ž .which was introduced by Studden 1980 and allows us to consider the
Ž .optimization problem in the nonconvex class of product measures as a

maximization of a concave function over a convex space. This enables us to
reduce the optimization to a composite design problem for a univariate
polynomial regression which is then solved in Section 3.

Finally, it is shown that for q G 2 the factors of the optimal discrimination
design are precisely the factors of a model robust design for multivariate
regression models up to degree m in q y 1 variables. This result generalizes

Ž .recent findings of Dette and Studden 1995 to the present multivariate case
and also explains the relation between the D- and D -optimal product1

Ž .designs found by Lim and Studden 1988 . Some examples for discrimination
designs between linear, quadratic and cubic multivariate regression are
presented in Section 4. The determined designs are highly efficient for model
discrimination and also have excellent efficiencies for the statistical analysis
in the identified model.

2. Product designs, the optimality criterion and permutation in-
variance. For moderate degree the situation is complicated and numerical

w Ž .xmethods are applied see Farell, Kiefer, Walbran 1967 for determining
Ž .D-optimal designs. However, as pointed out by Lim and Studden 1988 , these

algorithms fail to converge if the number of parameters in the model is too
large. For this reason these authors restricted the optimization to the class of

w x q Ž .all product designs, say J, on y1, 1 . Recalling the definition of d h , inl
Ž . Ž .1.4 we call a product design h g J a F -optimal discrimination designp

Ž .with respect to the prior b s b , . . . , b if h maximizes the function1 m

1rpm
pD12.1 F h s b eff h .Ž . Ž . Ž .� 4Ýp l l

ls1

Ž .Here y` F p F 0 and the prior b s b , . . . , b reflects the experimenter’s1 m
Ž . Ž .belief about the adequacy of the different models h x , . . . , h x . The1 m

quantity

1rNqy 1, l
d hŽ .lD12.2 eff h sŽ . Ž .l ž /max d mŽ .mg J l

is called D -efficiency and measures the loss of efficiency when the product1
Ž .design h is used instead of the optimal product design maximizing d m . Inl
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order to simplify the notation we define
p

2.3 s s , l s 1, . . . , m ,Ž . l Nqy1, l

ys l

2.4 g s b max d m , l s 1, . . . , m ,Ž . Ž .l l lž /
mgJ

and obtain
1rpm

sl2.5 F h s g d h .Ž . Ž . Ž .Ýp l lž /
ls1

wThe cases p s 0 and p s y` are understood as the corresponding limits see
Ž .xDette and Studden 1995 . We further remark that F is a concave functionp

w x qon the set of all probability measures on the q-dimensional cube y1, 1 and
that the set J of product designs is not convex.

A standard tool for the reduction of the dimensionality of the design
wproblem in a multivariate regression are invariance arguments see Kiefer

Ž .x Ž . � 41974 . More precisely, let p s p , . . . , p denote a permutation of 1, . . . , q1 q

Ž .and define p x s x , . . . , x . Then p induces an obvious permutation of thep p1 q

factors of the product design h s j = ??? = j , that is, h s j = ??? = j .1 q p p p1 q
Ž . w Ž .x Ž .Because d h is a ratio of determinants see 1.4 it follows that d h sl l p

Ž .d h , l s 1, . . . , m, and consequently we obtainl

2.6 F h s F h .Ž . Ž . Ž .p p p

Unfortunately, the standard argument for proving the existence of a permu-
tation-invariant optimal product design is not available, because the set J
of product measures is not convex. Nevertheless, the existence of a permu-
tation-invariant product design can still be established by mapping the
nonconvex set of product measures J in a one-to-one manner onto a convex
set.

To this end we need some basic facts about the theory of canonical
w Ž .xmoments see Studden 1980 . For a probability measure on the interval

w x 1 j Ž . qy1, 1 with moments c s H x dj x , j s 1, 2, . . . , define c as the maxi-j y1 j
1 j Ž .mum of the jth moment H x dm x over the set of all probability measuresy1

m having the given moments c , . . . , c . Similarly, let cy denote the corre-1 jy1 j

sponding minimum. If cy- cq, then the jth canonical moment is defined byj j

c y cy
j j

p s , j s 1, 2, . . . ,j q yc y cj j

Ž y q.otherwise c s c it is left undefined. Note that 0 F p F 1 whenever thej j j
canonical moments are defined. If i is the first index for which cys cq, thenj j
0 - p - 1 for j s 1, . . . , i y 2, p must have the value 0 or 1 and thej iy1

w Ž .xdesign j is supported at a finite number of points see Skibinsky 1986 . It is
Ž .also shown in Skibinsky 1986 that there is a one-to-one correspondence

w xbetween the set of probability measures on the interval y1, 1 and the set of
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canonical moment sequences. For more details about the theory of canonical
moments the reader is referred to the recent monograph of Dette and

Ž .Studden 1997 .
w x q Ž j. Ž j.If h s j = ??? = j is a product design on the cube y1, 1 , let p , p , . . .1 q 1 2

Ž .denote the canonical moments of the jth factor j , j s 1, . . . , q, and let W tj iŽ j.
denote the ith monic orthogonal polynomial with respect to the measure

Ž . Ž Ž j. Ž j. .dj t . Further, for j s 1, . . . , q, let k s p , . . . , p denote the vector ofj j 1 2 m
canonical moments of j up to the order 2m, j s 1, . . . , q, and define k sj

Ž . Ž .k , . . . , k . Applying 1.4 and Lemmas 4.3 and 5.1 of Lim and Studden1 q
Ž .1988 we obtain, for l s 1, . . . , m,

q Nl qy 2, ly i1 2d h s W t dj tŽ . Ž . Ž .Ł Ł Hl iŽ j. j
y1js1 is1

2.7Ž .
Nq qy 2, ly il i

Ž j. Ž j. Ž j. Ž j.s C q p q p \ d k ,Ž .Ł Ł Łl , q 2 ky2 2 ky1 2 ky1 2 k l
js1 is1 ks1

where qŽ j. s 1, j s 1, . . . , q, and qŽ j. s 1 y pŽ j., j s 1, . . . , q, i G 1. Note that0 i i
Ž .N s 0, 1 F j F m, N s 1 and that the constant in 2.7 is given byy1, j y1, 0

2.8 C s 2 qÝ is 1
l 2 i Nqy 2, ly i , l s 1, . . . , m.Ž . l , q

Ž . Ž .Observing 2.7 it follows that the function F h depends on h s j = ??? = jp 1 q

only through the canonical moments of j , . . . , j up to the order 2m.1 q
Ž j. Ž .Moreover, an optimal product design must satisfy p g 0, 1 , j s 1, . . . , q,i

i s 1, . . . , 2m y 1. Because of the one-to-one correspondence between proba-
w xbility measures on the interval y1, 1 and canonical moment sequences we

can now consider the optimality criterion F as a concave function on thep
�Ž .2 my1 w x4 q Ž .convex set BB s 0, 1 = 0, 1 . If k s k , . . . , k g BB is a vector of1 q

Ž .canonical moment sequences each component of length 2m corresponding to
w Ž Ž j. Ž j. .a product design h s j = ??? = j i.e., k s p , . . . , p are the first 2m1 q j 1 2 m

xcanonical moments of the factor j , j s 1, . . . , q , then a permutation p on Jj
induces an obvious permutation on BB. More precisely, if h s j = ??? = j ,p p p1 q

Ž .then we define k s k , . . . , k , which means that we are permuting thep p p1 q

canonical moment sequences k with their corresponding factors j , j sj j
1, . . . , q.

THEOREM 2.1. The F -optimal product design h is invariant with respectp p
to permutations of its factors, that is, h s j = ??? = j , where j is a designp p p p

w xon the interval y1, 1 .

PROOF. Let y` - p - 0. By the preceding discussion the maximization of
F in J is equivalent to the minimization of the functionp

m
psl2.9 H k s g d k s F hŽ . Ž . Ž . Ž .Ý l l p

ls1
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Ž . Ž .ys lon the cube BB. Observing 2.7 it is easy to see that the function d k isl
strictly logarithmic concave. By taking second derivatives it therefore follows

Ž . sl Ž .that d k is strictly convex on BB. Thus the function H k is strictly convexl
w Ž .x Ž . Ž . Ž .on BB and satisfies by 2.6 H k s H k for any permutation p of 1, . . . , q .p

A standard argument in decision theory now shows that there exists a unique
Ž . Ž .minimum of H at some point k#, . . . , k# g BB. The function H k is de-

Ž .creasing in d , l s 1, . . . , m. Therefore we obtain from 2.7 that the 2mthl
Ž . w Ž .xentry of k# s p , . . . , p has to be p s 1 in order to maximize d h ,1 2 m 2 m m

which means that the design j corresponding to k# is unique and supportedp
w Ž .xat m q 1 points including y1 and 1 see Skibinsky 1986 . Consequently the

optimal product design is unique and of the form j = ??? = j , which provesp p
Ž .the assertion for y` - p - 0. The cases p s 0 follows directly from 2.7

while the case p s y` is obtained by the same reasoning, observing that the
function

H k s F h s min eff D1 h ¬ b ) 0Ž . Ž . Ž .� 4y` y` l l

is logarithmic concave on the set BB. I

wREMARK 2.2. Note that p-means are usually defined for y` F p F 1 see
Ž .xPukelsheim 1993 and it is natural to ask if there is a similar invariance

property in the case 0 - p F 1. Unfortunately this question cannot be an-
w Ž .x1r p Ž . Žswered in general. The reason is that the functions H k or H k which

.has to be maximized for 0 - p F 1 is not necessarily concave on the
2mq-dimensional cube BB. Therefore the argument used in the proof of
Theorem 2.1 does not work any longer. As an example consider the case

Ž Ž .. x Ž x x .m s 2, where s s prq, s s 2 pr q q q 1 . Define k s k , . . . , k g1 2 1 q

w x4 q x Ž . Ž . w Ž .x1r p0, 1 , where k s 1r2, x, 1r2, 1 , j s 1, . . . , q, and x g 0, 1 . If H kj

w x4 qwere concave on 0, 1 , then it follows that the function

1rpŽ .1rp 2 pr qq1x p 2 p qrŽqq1.h x s H k s g x q g x 1 y xŽ . Ž . Ž .1 2

Ž . Žwould also be concave on 0, 1 . But this is not true in general e.g., g s 1 y1
.g s 0.1, q s 5, p s 3r4 .2

The discussion of the previous paragraph reduced the discrimination de-
w x qsign problem in the class of all product designs on the cube y1, 1 to the

problem of maximizing a function in the set PP of all designs on the interval
w xy1, 1 . Consequently, we can now restrict ourselves to product designs of the

Ž .form h s j = ??? = j , where j g PP. Let D j denote the information matrixj l
of a design j g PP in a univariate polynomial regression of degree l, that is,

1 Tl lD j s 1, t , . . . , t 1, t , . . . , t dj t , l s 1, . . . , m.Ž . Ž . Ž . Ž .Hl
y1
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Ž . Ž .It follows from Lemma 4.3 and formula 4.5 in Lim and Studden 1988 that

idet D jŽ .1 i j2 2 i Ž j. Ž j. Ž j. Ž j.2.10 W t dj t s s 2 q p q pŽ . Ž . Ž . Ž .ŁH iŽ j. j 2 ky2 2 ky1 2 ky1 2 kdet D jŽ .y1 ks1iy1 j

Ž .and for designs h s j = ??? = j the optimality criterion F h can be rewrit-j p
w Ž .xten as using the representation 2.7

1rpm
sl

F h s g d hŽ . Ž .Ýp j l l jž /
ls1

1rpqs Nl qy2, ly im l det D jŽ .i gs g \ F j .Ž .Ý Łl pž /det D jŽ .is1 iy1ls1

2.11Ž .

Ž .In the case p s 0, 2.11 gives

g gj jjm mdet D jŽ .jg2.12 F j s s q p q p ,Ž . Ž . Ł Ł Ł0 2 iy2 2 iy1 2 iy1 2 iž /ž /det D jŽ .js1 js1 is1jy1

where
m Nqy2, lyj

2.13 g s q g , j s 1, . . . , m,Ž . Ýj lNqy1, llsj

and p , p , . . . are the canonical moments of j . This allows an elementary1 2
maximization in terms of canonical moments. For example, the design h s

Ž .j = ??? = j maximizing d h is obtained by setting g s ??? s g s 0,m 1 my1
g ) 0 and satisfiesm

q y 1 q m y i
1p s , p s , i s 1, . . . , m2 iy1 2 i2 q y 1 q 2 m y iŽ .

w Ž .x w Ž . Ž .xsee Lim and Studden 1988 . This gives observing 2.7 and 2.8

d U s max d m s max d hŽ . Ž .m , q m m j
mgJ jgPP

qNqy 1, my1q y 2 q m
s ž /q y 3 q 2m2.14Ž .

=

qNqy 1, mykm m y k q 1 q y 1 q m y kŽ . Ž .
.Ł ž /q q 1 q 2 m y k q y 1 q 2 m y kŽ . Ž .Ž . Ž .ks2

The maximization of F in the general case is complicated, and morep
sophisticated tools are required for that purpose. The following result is the

Ž .main tool for deriving optimal product designs for the criterion 2.6 . The
Ž .proof is obtained by an application of results in Pukelsheim 1993 and can be

Ž .found in a technical report by Dette and Roder 1995 .¨
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w xTHEOREM 2.3. For y` - p F 1 a design j on the interval y1, 1 maxi-
g g U U Ž U U .mizes F if and only if it maximizes F for the weights g s g , . . . , g ,p 0 1 m

where g U is proportional tol

qs Nl qy2, ly jl det D jŽ .j
2.15 g , l s 1, . . . , m.Ž . Łl ž /det D jŽ .js1 jy1

Let

1rN ,qy 1 lqNqy 2, ly j¡ l1 det D jŽ .j~NN j s l ¬ b ) 0,Ž . Łl U ž /d det D j¢ Ž .js1l , q jy1

1rNqy 1, iqNqy 2, iy j ¦il 1 det D jŽ .j ¥s min ,ŁU ž /d det D j §is1 Ž .js1i , q jy1

U Ž .where d is defined by 2.14 . A design j maximizes F if and only if therei, q y`
U Ž U U . U Ž .exist weights g s g , . . . , g with g s 0 if j f NN j such that j maxi-1 m j

mizes FgU

.0

3. F -optimal discrimination and model robust designs. In thisp
section we determine the optimal product designs with respect to the crite-

Ž . Ž .rion defined in 2.1 . Note that the maximization of 2.1 is equivalent to the
Ž .maximization of 2.5 . This optimization problem was reduced by an invari-

ance argument to a maximization problem in the class of all probability
w xmeasures on the compact interval y1, 1 .

U Ž . Ž .THEOREM 3.1. Let s and d be given by 2.3 and 2.14 , respectively,l l, q
l s 1, . . . , m. If y` - p F 0, then the F -optimal discrimination design isp

w xgiven by h s j = ??? = j ; j is a symmetric design on the interval y1, 1p p p p

uniquely determined by its canonical moments p , . . . , p , p s 1, where1 2 my1 2 m

Ž . Ž .my 1p s 1r2, j s 1, . . . , m, and p , . . . , p g 0, 1 is the unique so-2 jy1 2 2 my2

lution of the system of m y 1 equations

q y 1jmyl jqly1l q 1 Ý y1 Ł q rp 1 y q rpŽ . Ž . Ž . Ž .js0 is1 2 i 2 i 2Ž jql . 2Ž jql .ž /j

q y 1jmyly1 jqlq q l Ý y1 Ł q rp 1 y q rpŽ . Ž . Ž . Ž .js0 is1 2 i 2 i 2Ž jqlq1. 2Ž jqlq1.3.1 ž /Ž . j
slq 1U lq1b dŽ .l lq1, q yj pN rNqy 2, ly jq1 q , ls q p ,Ž .Łq 2 jy2 2 jlUb d js1Ž .lq1 l , q
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l s 1, . . . , m y 1, such that
lqjy1myl q qq y 1 2 i 2Ž lqj.j3.2 y1 1 y G 0, l s 1, . . . , m y 1.Ž . Ž .Ý Ł ž /ž /j p pis1 2 i 2Ž lqj.js0

If p s y`, then the F -optimal discrimination design is given by h sy` y`

w xj = ??? = j ; j is a symmetric design on the interval y1, 1 uniquelyy` y` y`

determined by its canonical moments p , . . . , p , p s 1, where p s1 2 my1 2 m 2 jy1
Ž . Ž .my 11r2, j s 1, . . . , m, and p , . . . , p g 0, 1 is the unique solution of2 2 my2

the system of m y 1 equations
1rNU qy 1, lq1lq1 dŽ .lq1, qjN rNqy 2, ly jq1 q , l3.3 q p s ,Ž . Ž .Ł 2 jy2 2 j 1rNU qy 1, ljs1 dŽ .l , q

Ž .l s 1, . . . , m y 1, such that 3.2 is satisfied.
Ž . Ž .Whenever b s 0, the corresponding equation in 3.1 and 3.3 has to belq1

replaced by the equation
jqlmyly1 q qq y 1 2 i 2Ž lqjq1.j3.4 y1 1 y s 0.Ž . Ž .Ý Ł ž /ž /j p pis1 2 i 2Ž lqjq1.js0

PROOF. By Theorem 2.1 the F -optimal product design is of the formp
w xh s j = ??? = j where j is the design on the interval y1, 1 whichp p p p

g Ž . Ž . Ž .maximizes the function F in 2.11 with weights g , . . . , g defined by 2.4 .p 1 m

Ž .Let p , p , . . . denote the canonical moments of j . It follows from 2.11 and1 2 p
Ž .2.10 that the odd canonical moments appear only in terms of the form
Ž . g Ž . Ž .x 1 y x in F , which is an increasing function of det D j rdet D j .p i iy1

Consequently the canonical moments of j satisfy p s 1r2, j s 1, . . . , m;p 2 jy1

Ž .p s 1. By a result of Lau and Studden 1985 this means that j is2 m p
symmetric and supported at m q 1 points including the boundary points y1
and 1.

Ž .Consider at first the case y` - p F 0. Dette 1994 proved that the
Ž .symmetric design j maximizes the weighted geometric mean 2.12 over thep

w xset PP of all probability measures on the interval y1, 1 if and only if
ly1 q q2 j 2 l

g s 1 y , l s 1, . . . , m ,Łl ž /p pjs1 2 j 2 l

where p , . . . , p , p s 1 denote the canonical moments of even order of2 2 my2 2 m
g̃Ž .j . An inversion of 2.13 now yields that j maximizes F , where thep p 0

Ž .weights g s g , . . . , g are given by˜ ˜ ˜1 m

lqjy1mylN q qq y 1qy1, l 2 i 2 lqjŽ .jŽ .g s y1 1 y ,˜ Ý Łl ž /ž /jq p pis1 2 i 2 lqjŽ .js0
Ž .3.5 l s 1, . . . , m.
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Ž .On the other hand, Theorem 2.3 and 2.10 prove that the g must be˜l
proportional to

s qNl qy2, ly jl ldet D jŽ .j p s qNl qy1, ly j3.6 a s g s g q p .Ž . Ž .Ł Łl l l 2 jy2 2 jž /det D jŽ .js1 js1jy1 p

Ž .Note that this proportionality shows that the g in 3.5 are nonnegative and˜l
consequently the canonical moments of the optimal design have to satisfy
Ž . w Ž .x3.2 . Moreover, because b s 0 implies g s 0 by definition 2.4 , welq1 lq1

Ž .obtain 3.4 from g s a s 0. If b ) 0, it follows from the above˜lq1 lq1 lq1
Ž .discussion that a ra s g rg , which gives observing s s prN˜ ˜l lq1 l lq1 l qy1, l

s qNl l qy1, ly jg g P q pŽ .˜l l js1 2 jy2 2 js s qNlq1 lq 1 qy1, ly jq1g g˜ Ł q pŽ .lq1 lq1 js1 2 jy2 2 j

lq1g l yj pN rNqy 2, ly jq1 q , ls q p .Ž .Ł 2 jy2 2 jg js1lq1

Ž . Ž . Ž .From 2.4 , 2.14 and 3.5 it is now easy to see that this system of equations
Ž .is precisely 3.1 . This means that the canonical moments of the F -optimalp

Ž . Ž .discrimination design j have to satisfy 3.1 and 3.2 . Reversing thesep
Ž . Ž .arguments shows that any solution of 3.1 subject to 3.2 yields a F -optimalp

discrimination design for the class FF with respect to the prior b. More-m , q
Ž .over, there exists a unique solution of the maximization problem 2.11

Ž g .1r qbecause of the strict concavity of F , and for this reason therep
Ž . Ž .my 1 Ž .exists a unique solution p , . . . , p g 0, 1 of the m y 1 equations2 2 my2

Ž . Ž .in 3.1 satisfying 3.2 . This proves the case p ) y`. The remaining case
Ž .p s y` is obtained from 3.1 considering the limit p ª y`. I

Note that Theorem 3.1 extends recent findings for the univariate case
Ž . Ž .q s 1 of Dette 1994, 1995 to the present multivariate case. The optimal
discrimination design is completely determined by the solution of the system

Ž .of equations in 3.1 , which usually has to be solved numerically. The factor jp

of the optimal design h s j = ??? = j can be found by standard methodsp p p

w Ž . Ž . xsee, e.g., Lim and Studden 1988 , Lemma 4.4, or Dette 1994 , Lemma 3.1
and some examples are presented in Section 4. However, if a design of this
type is used for model discrimination and an appropriate model has been
identified using Anderson’s procedure, then the next step in the regression
analysis is a statistical inference in the identified model. For this reason it is
natural to investigate how our discrimination designs behave for estimating

Ž . Ž .the parameters in the multivariate regression models h x , . . . , h x . Some1 m
numerical results in this direction are presented in Section 4, a theoretical
result will be given in the remaining part of this section.
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Ž .Following Dette and Studden 1995 a model robust design for the class
FF should yield reasonable D-efficiencies in all multivariate polynomials upm ,q

to degree m. Thus we call a product design h s j = ??? = j C -optimal for1 q p
Ž .the class FF with respect to the prior b s b , . . . , b if h maximizes them , q 1 m

function

1rpm
pD3.7 C h s b eff h ,Ž . Ž . Ž .� 4Ýp l l

ls1

which is a weighted p-mean of the D-efficiencies

1rNq , ldet M hŽ .lD3.8 eff h s , l s 1, . . . , m.Ž . Ž .l ½ 5max det M mŽ .mg J l

The following result shows that C -optimal designs can be obtained from thep
optimal discrimination designs determined in Theorem 3.1. More precisely,
the factors of a F -optimal discrimination design for a regression in q G 2p
variables are the factors of a C -optimal design for the class FF of modelsp m , qy1

Ž .with q y 1 variables with respect to the same prior but for a different value
of p.

THEOREM 3.2. Let y` F p F 0, q G 1. Then the factor j of the C -opti-C p
mal product design h s j = ??? = j for the class FF with respect to theC C C m , q

Ž . Xprior b s b , . . . , b coincides with the factor j of the F -optimal discrim-1 m F p
Žination design h s j = ??? = j for the class FF of models up to degreeF F F m , qq1

.m with q q 1 independent variables with respect to the prior b, where
X Ž .p s qpr q q 1 .

PROOF. By reasoning similar to that in Section 2, it follows that the
C -optimal product design for the class FF is invariant with respect top m , q
permutations of the factors, which means that we can restrict the optimiza-
tion to permutation-invariant product designs of the form h s j = ??? = j . Byj

Ž . Ž .Lemma 5.1 in Lim and Studden 1988 and 2.10 we thus obtain, for
l s 1, . . . , m,

qNl qy 1, ly i1 2det M h s W t dj tŽ . Ž . Ž .Ł Hl j iž /y1is1
3.9Ž . qNqy 1, ly il det D jŽ .is Ł ž /det D jŽ .is1 iy1

w Ž .xnote that there is a mistake in the formulation of Lim and Studden 1988 .
Ž .Lemma 4.3 and Theorem 5.1 in the same reference and 2.14 yield the
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Ž .following for the denominator in 3.8 :

n s max det M mŽ .l , q l
mgJ

qNqN q , lykq , ly1 lq q l y 1 l y k q 1 q q l y kŽ . Ž .
s Łž / ž /q q 2 l y 2 q q 2 l y k q 1 q q 2 l y kŽ . Ž .Ž . Ž .ks2

Ž .qr qq1Us d .Ž .l , qq1

Ž . Ž .Now, observing 3.9 , the maximization of the function C in 3.7 can bep
performed by a maximization of the function

1rpprNq , lqNqy 1, ly im l det D jŽ .Ž . iyqr qq1Ub dŽ .Ý Łl l , qq1½ 5ž /det D jŽ .is1 iy1ls1

X 1rpŽ .qq1 s Nl qy1, ly im lX det D jŽ .ys ilUs b d ,Ž .Ý Łl l , qq1 ž /det D jŽ .is1 iy1ls1

where

pq
Xs s .l q q 1 NŽ . q , l

Ž . g Ž .By 2.4 this is equivalent to the maximization of the function F in 2.11 ,p
Ž .where q and p have to be replaced by q q 1 and pqr q q 1 , respectively.

g X Ž .XThe discussion in Section 2 shows that maximizing F with p s qpr q q 1p

Ž . Ž U .ys l
X

and g s g , . . . , g , g s b d in the class of all probability measures1 m l l l, qq1

w x Xon the interval y1, 1 yields the F -optimal discrimination design for thep
class FF , and the assertion follows. Im , qq1

Theorem 3.2 indicates that the optimal discrimination designs should also
have good efficiencies for estimating the parameters in the identified model.
Two cases of this result are worth mentioning here. First, consider the prior

Ž . Ž . Ž .b s 0, . . . , 0, 1 . Then 2.1 and 3.7 reduce to the D - and D-optimality1
criteria and Theorem 3.2 shows that the D-optimal product design in a
multivariate polynomial regression with q G 1 independent variables can be
obtained from the D -optimal product design for a regression in q q 11
variables. Second, the same relationship holds for the F - and C -optimalityp p

criterion in the case p s 0 and p s y`, independently of the prior b.

4. Numerical results. Tables 1 and 2 show the F -optimal discrimina-p

tion designs for the class of polynomial models up to degree m s 2, 3 with
respect to a uniform prior for various values of the dimension q and the



OPTIMAL DISCRIMINATION DESIGNS 1173

TABLE 1
Support points and weights of the factor j of the F -optimal discrimination designp p

h s j = ??? = j for the class FF with respect to a uniform priorp p p 2, q

m s 2

p_ q 2 3 4

0 y1 0 1 y1 0 1 y1 0 1
0.3889 0.222 0.3889 0.4167 0.1666 0.4167 0.4334 0.1332 0.4334

y1 y1 0 1 y1 0 1 y1 0 1
0.3948 0.2104 0.3948 0.4201 0.1598 0.4201 0.4356 0.1288 0.4356

y2 y1 0 1 y1 0 1 y1 0 1
0.3990 0.2020 0.3990 0.4228 0.1544 0.4228 0.4374 0.1252 0.4374

y10 y1 0 1 y1 0 1 y1 0 1
0.4111 0.1778 0.4111 0.4322 0.1356 0.4322 0.4449 0.1102 0.4449

y` y1 0 1 y1 0 1 y1 0 1
0.4191 0.1618 0.4191 0.4401 0.1198 0.4401 0.4524 0.0952 0.4524

parameter p. The canonical moments of the optimal discrimination designs
were obtained by solving the system of equations in Theorem 3.1 numerically.
The corresponding designs were calculated by Lemma 4.4 in Lim and Stud-

Ž .den 1988 . The first line in Tables 1 and 2 contains the support points, the
second line the weights of the factor j of the F -optimal discriminationp p
design h s j = ??? = j .p p p

Theorem 3.2 shows that the F -optimal discrimination designs give alsop
C U-optimal designs for the class FF with respect to the same prior,p m , qy1

U Ž .where p s qpr q y 1 . For example, the C -optimal design for the classy3
FF is given by j U = j U, where the design j U has masses 0.4228, 0.1544 and2, 2

TABLE 2
Support points and weights of the factor j of the F -optimal discrimination designp p

h s j = ??? = j for the class FF with respect to a uniform priorp p p 3, q

m s 3

p_ q 2 3 4

0 "1 "0.4010 "1 "0.3648 "1 "0.3366
0.3195 0.1805 0.3583 0.1417 0.3833 0.1167

y1 "1 "0.4005 "1 "0.3662 "1 "0.3382
0.3271 0.1729 0.3631 0.1369 0.3865 0.1135

y2 "1 "0.4009 "1 "0.3682 "1 "0.3403
0.3330 0.1670 0.3671 0.1329 0.3893 0.1107

y10 "1 "0.4092 "1 "0.3888 "1 "0.3622
0.3528 0.1472 0.3822 0.1178 0.4010 0.0990

y` "1 "0.4270 "1 "0.5367 "1 "0.5404
0.3663 0.1337 0.3761 0.1239 0.4017 0.0975
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TABLE 3
D-efficiencies of the F -optimal discrimination design for the class FF withp 2, q

respect to the uniform prior in the linear and quadratic model

m s 2

2 3 4
D D D D D Dp_ q eff eff eff eff eff eff1 2 1 2 1 2

0 0.8457 0.9971 0.8722 0.9943 0.8918 0.9928
y1 0.8542 0.9940 0.8756 0.9916 0.8955 0.9906
y2 0.8603 0.9910 0.8818 0.9890 0.8985 0.9885

y10 0.8777 0.9785 0.8965 0.9765 0.9108 0.9774
y` 0.8890 0.9667 0.9087 0.9616 0.9231 0.9611

0.4228 at the points y1, 0 and 1, respectively. The D-efficiencies of the
optimal discrimination designs in the different models up to degree m are
given in Tables 3 and 4. The results show that the discrimination designs
have reasonable D-efficiencies for estimating the parameters in all models of
the class FF . For example, assume that m s 3, q s 4 and that the experi-m , q

Žmenter uses the F -optimal discrimination design h with respect to they2 y2
.uniform prior in order to identify the appropriate model in the class FF . In3, 4

this case h allows the estimation of the parameters in the identified modely2
Ž .with at least 84% D-efficiency which corresponds to the linear model . If

Anderson’s procedure decides for the quadratic or cubic regression, the
efficiencies are 95.5% and 97.9%, respectively. These results indicate that the
proposed discrimination designs are very efficient for two important purposes
of statistical inference in a multivariate regression: the identification of the
model and the estimation of the parameters in the identified model.

TABLE 4
D-efficiencies of the F -optimal discrimination design for the class FF withp 3, q

respect to the uniform prior in the linear, quadratic and cubic models

m s 3

2 3 4
D D D D D D D D Dp_ q eff eff eff eff eff eff eff eff eff1 2 3 1 2 3 1 2 3

0 0.7861 0.9079 0.9953 0.8094 0.9351 0.9899 0.8307 0.9518 0.9862
y1 0.7955 0.9135 0.9909 0.8162 0.9380 0.9855 0.8356 0.9537 0.9826
y2 0.8031 0.9164 0.9864 0.8221 0.9399 0.9811 0.8400 0.9551 0.9789

y10 0.8290 0.9197 0.9636 0.8458 0.9391 0.9567 0.8598 0.9549 0.9568
y` 0.8484 0.9185 0.9388 0.8645 0.9059 0.9169 0.8656 0.8915 0.8955
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