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ASYMPTOTIC PROPERTIES OF THE NPMLE OF
A DISTRIBUTION FUNCTION BASED ON

RANKED SET SAMPLES

By Jian Huang

University of Iowa

We show that the nonparametric maximum likelihood estimator
(NPMLE) of a distribution function based on balanced ranked set samples
is consistent, converges weakly to a Gaussian process and is asymptoti-
cally efficient. The covariance function of the limiting process is described
in terms of the solution to a Fredholm integral equation of the second
kind.

1. Introduction. A balanced ranked set sample (RSS) consists of inde-
pendent observations �Xrj; r = 1; : : : ; kyj = 1; : : : ;m�, where, for every 1 ≤
r ≤ k, �Xrjx j = 1; : : : ;m� is an i.i.d. subsample distributed as the rth order
statistic of k independent random variables with a common distribution F0.
The total sample size is n =mk.

McIntyre (1952) first introduced a ranked set sampling procedure to esti-
mate the mean of pasture yields. Measuring yields of pasture plots is a costly
and time-consuming process, but ranking the yields visually can be done eas-
ily and accurately without measurement. In such applications, we can first
select and rank k plots, measure the smallest yield, where k is usually a
small number such as 2 or 3 so that ranking can be done visually without er-
ror. Next, select and rank another k plots, measure the second smallest yield
and so on. Repeat this process m times; the resulting measurements consti-
tute a balanced RSS. The advantage of such a sampling procedure is that its
sample mean has smaller variance than the sample mean of a simple random
sample of the same size in estimation of a population mean. This was proved
by Takahasi and Wakimoto (1968). Further applications of RSS procedure in
agriculture can be found in, for example, Cobby, Ridout, Bassett and Large
(1985). Intuitively, a RSS consists of independent order satistics; it is more
efficient than the simple random sampling procedure since the order statis-
tics of a simple random sample are correlated. Kvam and Samaniego (1994)
mentioned that RSS’s also arise in reliability applications.

In the balanced RSS, the empirical distribution function

Fn�x� = n−1
n∑
i=1

1�Xi≤x�

is a consistent estimator for F0 and is asymptotically normal as m, and
hence n, goes to infinity [see, e.g., Stokes and Sager (1988)]. However, as
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pointed out by Kvam and Samaniego (1994), Fn is not making full use of
the information provided by the data and hence is not an efficient esti-
mator of F0. Based on these considerations, Kvam and Samaniego (1994)
proposed the nonparametric maximum likelihood estimator (NPMLE) F̂n as
an alternative estimator. They demonstrated via simulation that the NPMLE
F̂n outperforms Fn in terms of mean squared error and Kolmogorov–Smirnov
distance in a number of cases. Using the EM algorithm, they also derived
self-consistency equations for F̂n and showed that, if starting from a consis-
tent initial estimator, such as Fn in balanced RSS, each iteration in the EM
algorithm yields a consistent estimator. They conjectured that the NPMLE
itself is consistent.

In this paper, we confirm their conjecture for the balanced RSS. Further-
more, we prove that the NPMLE F̂n converges weakly to a Gaussian process
and is asymptotically efficient with the assumption that F0 is continuous. We
also provide an expression for the covariance function of the limiting Gaussian
process in terms of the solution to a Fredholm integral equation with a sym-
metric and positive definite kernel. With slightly stronger conditions that F0
is continuous and strictly increasing, the integral equation can be simplified
to an equation with a known symmetric and positive definite kernel. We point
out that the asymptotic results are for m → ∞ and fixed k. Since k ≥ 1, we
will simply write n→∞ without causing confusion.

2. Main results. Let Frk be the distribution function of the rth order
statistic from an i.i.d. sample of size k. It can be expressed in terms of the
underlying distribution function F0 as

dFrk�x� = r
(
k
r

)
Fr−1

0 �x��1−F0�x��k−r dF0�x�:

The likelihood function of a balanced ranked set sample X1; : : : ;Xn is pro-
portional to

n∏
i=1

Fri−1�Xi��1−F�Xi��k−ri dF�Xi�:

So the log-likelihood function is, up to an additive constant,

ln�F� =
n∑
i=1

��ri − 1� logF�Xi� + �k− ri� log�1−F�Xi�� + log dF�Xi��;(1)

where dF�x� = F�x� −F�x−� is the mass that F puts at x. The NPMLE is
the F̂n that maximizes ln�F� in the class of distribution functions. Kvam and
Samaniego (1994) showed that this optimization problem is well defined and
has a unique solution for every fixed sample size.

Let H be a class of uniformly bounded functions. For s close to zero, define
a one-dimensional curve through F̂n by

dF̂s�x� =
(

1+ s
(
h�x� −

∫
hdF̂n

))
dF̂n�x�; h ∈ H :
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It is clear that, for s close to zero, F̂s is a distribution function with F̂0 = F̂n,
because its derivative with respect to dF̂n is nonnegative and integrates to 1.
Since F̂n maximizes ln�F�, it must satisfy

∂

∂s
ln�F̂s�

∣∣∣∣
s=0
= 0:(2)

Let h�x� = 1�x≤t�, the above equation can be written as

F̂n�t� =
1
n

n∑
i=1

1�Xi≤t�

+ 1
n

n∑
i=1

{[
ri − 1

F̂n�Xi�
− k− ri

1− F̂n�Xi�

]
�F̂n�Xi ∧ t�− F̂n�Xi�F̂n�t��

}
:

(3)

It can be verified that (3) agrees with the self-consistency equation (15) of
Kvam and Samaniego (1994) derived via the EM algorithm, provided that both
F�1� and F�0� are replaced by F̂n. However, notice that the term in the first
line of their equation (15) is misprinted asZi+�k−Zi�a�Wi; tyF�0��I�Wi ≤ t�;
it should be �Zi + �k−Zi�a�Wi; tyF�0���I�Wi ≤ t�.

Theorem 2.1 (Strong consistency).

sup
−∞<t<∞

�F̂n�t� −F0�t�� → 0 a.s. as n→∞:

Assume our sample consists of nonnegative random variables, that is,
sup�tx F0�t� = 0� = 0. Let τ = inf�tx F0�t� = 1�; τ can be ∞. This restriction
is for definiteness, the results below hold for other types of supports. Only
obvious minor modifications are needed in the proofs.

Let D�0; τ� be the space of functions on �0; τ� that are right continuous
and have left limits, endowed with the supremum norm ��f�� = sup0≤x≤τ �f�x��
for any f ∈ D�0; τ�. The convergence in distribution below is according to
Hoffmann-Jørgensen (1984); see, for example, van der Vaart and Wellner
(1996) for a description.

Theorem 2.2 (Convergence in distribution and efficiency). Suppose F0�x�
is continuous. Then the following hold:

(i)
√
n�F̂n −F0� ⇒D Z as n→∞;(4)

where Z is a Gaussian process in D�0; τ� with mean zero and covariance func-
tion

Cov�Z�s�;Z�t�� =
∫
ν�x; t�ν�x; s�dF0�x�

+ �k− 1�
∫ ∫ x

0 ν�u; t�dF0�u�
∫ x

0 ν�u; s�dF0�u�
F0�x��1−F0�x��

dF0�x�;
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where, for any 0 ≤ x ≤ τ, ν�x; t� as a function of t is the unique solution to the
integral equation

h�t� + �k− 1�
∫ F0�s ∧ t� −F0�s�F0�t�

F0�s��1−F0�s��
h�s�dF0�s� = 1�x≤t� −F0�t�y(5)

(ii) F̂n is regular and asymptotically efficient.

Remark 2.1. When k = 1, ν�x; t� = 1�x≤t� −F0�t�, the theorem reduces to
the familiar results on the empirical distribution functions of simple random
samples.

Remark 2.2. Notice that the solution h�t� of (5) satisfies the boundary
conditions h�0� = h�τ� = 0. Let g�t� = h�t�/

√
F0�t��1−F0�t��. Equation (5)

can be rewritten as

g�t� + �k− 1�
∫
k∗F0
�s; t�g�s�dF0�s� =

1�x≤t� −F0�t�√
F0�t��1−F0�t��

;

where

k∗F0
�s; t� = F0�s ∧ t� −F0�s�F0�t�√

F0�s��1−F0�s��F0�t��1−F0�t��
is a symmetric and positive definite kernel. Suppose F0 is continuous and
strictly increasing. Denote its inverse by F−1

0 . Let g∗�t� = g�F−1
0 �t��. The

above equation can be further reduced to

g∗�t� + �k− 1�
∫ 1

0

s ∧ t− st√
s�1− s�t�1− t�

g∗�s�ds =
1�F0�x�≤t� − t√

t�1− t�
:

This is an integral equation with a known symmetric and positive definite
kernel

k∗�s; t� =
s ∧ t− st√

s�1− s�t�1− t�
:

Remark 2.3. The definition of an efficient regular estimator sequence in
a Banach space can be found in Bickel, Klaassen, Ritov and Wellner [(1993),
pages 180–182].

3. Proofs.

Proof of Theorem 2.1. By Helly’s selection theorem, there exists a non-
decreasing function F∗ such that any subsequence of F̂n�t� has a further sub-
sequence converging to F∗�t� for every t [Chung (1974), Excercise 5, page 86].
If we can show that F∗�t� = F0�t�, then the whole sequence converges to F0

pointwise. Without loss of generality, we assume that F̂n�t� converges to F∗�t�
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for every t. Write the right-hand side of (3) as the sum of three terms II1n�t�,
II2n�t� and −II3n�t�, where II1n�t� = �1/n�

∑n
i=1 1�Xi≤t�,

II2n�t� = k−1
k∑
r=1

m−1
m∑
j=1

{
�r− 1�F̂n�Xrj ∧ t� − F̂n�Xrj�F̂n�t�

F̂n�Xrj�

}

and

II3n�t� = k−1
k∑
r=1

m−1
m∑
j=1

{
�k− r�F̂n�Xrj ∧ t� − F̂n�Xrj�F̂n�t�

1− F̂n�Xrj�

}
:

The first term II1n is simply the empirical distribution function of a balanced
ranked set sample; hence it converges to F0. Since

F̂n�x ∧ t� − F̂n�x�F̂n�t�
F̂n�x�

= 1�x≤t� − F̂n�t� +
F̂n�t�
F̂n�x�

1�x>t�;

and �F̂n�t�/F̂n�x��1�x>t� (as a function of x) has total variation bounded by 2,

by uniform convergence of empirical distribution functions, and F̂n�t� → F∗�t�
for every t, it follows that II2n�t� converges to

k−1
k∑
r=1

∫ F∗�x ∧ t� −F∗�x�F∗�t�
F∗�x�

�r− 1�dFr;k�x�

= k−1
∫ F∗�x ∧ t� −F∗�x�F∗�t�

F∗�x�
k∑
r=1

�r− 1�dFr;k�x�

= �k− 1�
∫ F∗�x ∧ t� −F∗�x�F∗�t�

F∗�x�
F0�x�dF0�x�;

(6)

where the last equation follows from

k∑
r=1

dFr; k�x�=kdF0�x� and
k∑
r=1

rdFr; k�x�=k�1+�k−1�F0�x��dF0�x�:

These two identities are equations (A.10) and (A.11) of Kvam and Samaniego
(1994). They follow from the binomial expansion. Similarly, the third term
II3n�t� converges to

�k− 1�
∫ F∗�x ∧ t� −F∗�x�F∗�t�

1−F∗�x�
�1−F0�x��dF0�x�:(7)

Combine equations (6) and (7) and II1n�t� → F0�t� a.s., to get

F∗�t� = F0�t� + �k− 1�
∫
kF∗�x; t��F0�x� −F∗�x��dF0�x�;(8)

where

kF�x; t� =
F�x ∧ t� −F�x�F�t�
F�x��1−F�x��



NPMLE BASED ON RSS 1041

for any distribution function F. It is proved in the Appendix (Lemma A.1)
that F∗ satisfies equation (8) if and only if F∗�t� = F0�t� for all t. So, for
every t, F̂n�t� → F0�t� almost surely. By the lemma following Theorem 5.5
of Chung [(1974), page 133], to prove uniform convergence, it suffices to show
that F̂n�t� ≡ F̂n�t� − F̂n�t−� → F0�t� −F0�t−� ≡ F0�t�. Take h�x� = 1�x=t�
in (2),

F̂n�t� =
1
n

n∑
i=1

1�Xi=t� + F̂n�t�Bn�t�;

where

Bn�t� =
1
n

n∑
i=1

{[
ri − 1

F̂n�Xi�
− k− ri

1− F̂n�Xi�

][
1�Xi≤t� − F̂n�Xi�

]}
:

Since F̂n�t� converges to F0�t� almost surely for every t, it can be shown ex-
actly the same way as the verification of (8) that Bn�t� → 0 a.s., for every t.
Finally, since the empirical distribution of a balanced ranked set sample con-
verges to F0 uniformly with probability 1, �1/n�∑n

i=1 1�Xi=t� → F0�t� a.s. It

follows that F̂n�t� → F0�t� a.s. This completes the proof. 2

We now prepare for the proof of Theorem 2.2. Let

ψF�r; xy t� = 1�x≤t� −F0�t� +
[
r− 1
F�x� −

k− r
1−F�x�

]
�F�x ∧ t� −F�x�F�t��:

By (3), F̂n satisfies the score equation Sn�F̂n� = 0, where for any distribution
function F we define

Sn�F� ≡ F�t� −F0�t� −
1
n

n∑
i=1

ψF�ri;Xiy t�:(9)

As in the verification of (8), it can be shown that the limiting version of Sn�F�,
S�F� ≡ E�Sn�F��

= F�t� −F0�t� − �k− 1�
∫
kF�x; t��F0�x� −F�x��dF0�x�:

(10)

Following the general theorem of van der Vaart (1995) on asymptotics of
infinite-dimensional M-estimators, suppose we can prove that the following
hold:

(a)
√
n�Sn −S��F0� ⇒D Z0; where Z0 is a tight random map in D�0; τ�;

(b) �√n�Sn −S��F̂n� −
√
n�Sn −S��F0�� = op�1��1+ ��F̂n −F0���y

(c) there exists a continuously invertible linear map Ṡ0 such that

�S�F� −S�F0� − Ṡ0�F−F0�� = o�1����F−F0��� as �F−F0� → 0:

Then
√
n�F̂n −F0� = Ṡ−1

0

√
n�Sn −S��F0� + op�1� ⇒D −Ṡ−1

0 Z0:
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This general approach has been used by several authors to establish conver-
gence in distribution in several difficult estimation problems. See, for exam-
ple, Murphy (1995) and van der Vaart (1994) for asymptotics of the maximum
likelihood estimators of the frailty model and partially censored data model,
respectively.

To prove part (i) of Theorem 2.2, it suffices to prove (a)–(c) and then identify
the covariance function of the limiting process. We now prove (b) and (c) in
the following two lemmas. In the remainder of this section, it is assumed that
F0 is continuous.

Lemma 3.1. For Sn and S defined above,

�√n�Sn −S��F̂n� −
√
n�Sn −S��F0�� = op�1�:

Notice that this implies (b).

Proof. Let Prm be the empirical measure of random variables Xr1; : : : ;
Xrm that are i.i.d. Frk, and let Pr be the probability measure induced by Frk,
r = 1; : : : ; k. Then we can write

�Sn −S��F̂n� − �Sn −S��F0� =
1
k

k∑
r=1

�Prm −Pr��ψF̂n
�r; xy t� − ψF0

�r; xy t��:

It suffices to show that

sup
0≤t≤τ

��Prm −Pr��ψF̂n
�r; xy t� − ψF0

�r; xy t��� = op�n−1/2�

for r = 1; : : : ; k. After some algebraic manipulations, we can write

�Prm −Pr��ψF̂n
�r; xy t� − ψF0

�r; xy t��

= �r− 1��Prm −Pr�
[
F̂n�t�
F̂n�x�

− F0�t�
F0�x�

1�x>t�

]

+ �k− r��Prm −Pr�
[(

1− F̂n�t��
1− F̂n�x�

− 1−F0�t�
1−F0�x�

)
1�x≤t�

]

≡ �r− 1�An�t� + �k− r�Bn�t�:
Since An�t� and Bn�t� can be dealt with similarly, we will only prove that

sup0≤t≤τ �An�t�� = op�n−1/2�. For a sequence of numbers εn ↘ 0 sufficiently
slowly, define the class of functions

Hn =
{
h�x�x h�x� =

[
F�t�
F�x� −

F0�t�
F0�x�

]
1�x>t�; �F−F0� ≤ εn; t ∈ �0; τ�

}
:

Since every function of Hn has total variation bounded above by 4, Hn is a
subclass of the class of uniformly bounded variation functions. It follows that
for any probability measure Q, the L2�Q� δ-covering entropy for Hn is of order
1/δ [see, e.g., van de Geer (1993)]. This implies Hn is manageable in the sense
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of Pollard (1989). Since �F̂n −F0� → 0, a.s., F̂n ∈ Hn for n sufficiently large.
Furthermore, it can be verified that

sup
Hn

Pr�h� → 0 as n→∞:

This can be done by a truncation argument: consider the integral separately
on the intervals �t; t + η� and �t + η; τ� for a small η > 0. It follows from
Theorem 4.4 of Pollard (1989) that

sup
Hn

��Prm −Pr�h� = op�n−1/2�:

This implies the assertion of the lemma. 2

Recall kF0
�x; t� is defined in (8). Define integral operator K on D�0; τ� by

Kf =
∫
kF0
�x; t�f�x�dF0�x�. Let Ṡ0 = I + �k − 1�K, where I is the identity

operator. Notice that Ṡ0x D�0; τ� → D�0; τ� is a Fredholm integral operator
of the second kind. The Fredholm integral equation has also been used by
Chang (1990) in showing weak convergence of a self-consistent estimator of a
survival function with doubly censored data.

Lemma 3.2.

�S�F� −S�F0� − Ṡ0�F−F0�� = o��F−F0�� as �F−F0� → 0:

Furthermore, Ṡ0 is continuously invertible.

Proof. The proof of the differentiability of S�F� can be based on the fact
that the kernel kF is bounded and the assumption that F0 is continuous. It
is omitted. We prove that Ṡ0 is continuously invertible. First, similarly to the
proof of Lemma A.1, it can be shown that

Ṡ0h�t� ≡ h�t� + �k− 1�Kh�t� = 0

if and only if h�t� = 0 for every t. So by the Fredholm theory [see, e.g., Kress
(1989), Theorem 3.4], it suffices to show that K is compact. Write

Kh�t� =
∫
x>t

F0�t�
F0�x�

h�x�dF0�x� +
∫
x≤t

1−F0�t�
1−F0�x�

h�x�dF0�x�

≡K1h�t� +K2h�t�:
We first show that K1 is compact. For any bounded h ∈ D�0; τ�x �h� ≤ C and
s, t,

�K1h�t� −K1h�s�� ≤
∫ �F0�t�1�x>t� −F0�s�1�x>s��

F0�x�
�h�x��dF0�x�

≤ 2C
∫ �
√
F0�t�1�x>t� −

√
F0�s�1�x>s��√

F0�x�
dF0�x�

≤ 4C
(∣∣∣∣
√
F0�t� −

√
F0�s�

∣∣∣∣+ �F0�t� −F0�s��
)
:
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Hence K1h�t� is equicontinuous by (uniform) continuity of F0. So K1 is com-
pact by the Arzelà-Ascoli theorem. Similarly, K2 is compact. It follows that K
is compact. 2

For the proof of regularity and efficiency of F̂n, we will apply the general
theorems of Bickel, Klaassen, Ritov and Wellner [(1993), Chapter 3] or van der
Vaart (1995). We need to define the tangent space. This in turn requires the
definition of the score operator of the model considered. To identify the covari-
ance function of the limiting Gaussian process of F̂n, we also need the second
derivatives of the likelihood function.

Denote X = �X1k; : : : ;Xkk�, where X1k; : : : ;Xkk are independent and Xrk

is distributed as the rth order statistic from k independent random variables
with common distribution F0. A ranked set sample of size n = mk is the
same as the collection of m random vectors X1; : : : ;Xm that are independent
and identically distributed as X. The joint density of X is

dPF0
�x� = C

k∏
r=1

F0�xrk�r−1�1−F0�xrk��k−r dF0�xrk�;

where C is the normalizing constant. For real numbers s and t close to zero
and a; b ∈ BL0

2�F0� ≡ �hx
∫
hdF0 = 0 and h ∈ L2�F0�, and �h� ≤ M�, where

M < ∞, define a two-dimensional curve �F�s; t�� through F0 by dFs; t�x� =
�1+ sa�x� + tb�x��dF0�x�: Denote the score operator by

�l̇a��x� = ∂

∂s
log dPF�s; t��x�

∣∣∣
s=0; t=0

=
k∑
r=1

{
a�xrk� +

[
r− 1
F0�xrk�

− k− r
1−F0�xrk�

] ∫ xrk
0

a�u�dF0�u�
}
:

Denote the second derivative of the log-likelihood function by

l̈�a; b��x� = ∂2

∂s∂t
log dPF�s;t��x�

∣∣∣
�s=0; t=0�

= −
k∑
r=1

{
a�xrk�b�xrk� +

[
r− 1

F2
0�xrk�

− k− r
�1−F0�xrk��2

]

×
[∫ xrk

0
a�u�dF0�u�

][∫ xrk
0

b�u�dF0�u�
]}
:

Let L0
2�F0� = �hx

∫
hdF0 = 0; h ∈ L2�F0��. Since BL0

2�F0� is a dense subset
of L0

2�F0�, we can extend the domain of l̇ and l̈ to any a, b ∈ L0
2�F0�. So for

any a, b ∈ L0
2�F0�, l̇a and l̈�a; b� are well defined. The closure of the linear

span of �l̇ax a ∈ L0
2�F0�� is called the tangent space.

It can be verified that

E�l̈�a; b��X�� = −k
∫
a�x�b�x�dF0�x�

− k�k− 1�
∫ ∫ x

0 a�u�dF0�u�
∫ x

0 b�u�dF0�u�
F0�x��1−F0�x��

dF0�x�:
(11)
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Since a, b ∈ L0
2�F0�, by the Cauchy–Schwarz inequality, it can be shown

that the second integral on the right-hand side of (11) is bounded. This also
implies that E��l̇a��X��2 < ∞. Actually, since a ranked set sample can be
considered as incomplete observation of all the underlying random variables
[see Kvam and Samaniego (1994)] for a detailed description], l̇a can be ex-
pressed as a conditional expectation of a given the observed data [see, e.g.,
Bickel, Klassen, Ritov and Wellner (1993), pages 271–272]. This implies that
E��l̇a��X��2 ≤

∫
a2 dF0 < ∞, since a ∈ L0

2�F0�. Furthermore, as in the finite
dimensional parametric model case, we have

E��l̇a��X��l̇b��X�� = −E�l̈�a; b��X��:(12)

Proof of Theorem 2.2(i). Let a∗t �x� = 1�x≤t� −F0�t�. Since �l̇a∗t ��x� =∑k
r=1ψF0

�r; xrky t� and S�F0� ≡ 0, we have

√
n�Sn�F0� −S�F0���t� =

√
nSn�F0��t� =

√
m

k
Pml̇a

∗
t ;

where Pm is the empirical measure of X1; : : : ;Xm. It can be verified that
functions l̇a∗t , t ∈ �0; τ� are in the uniformly bounded variation class, so√
nSn�F0��t�, which are empirical processes indexed by l̇a∗t , t ∈ �0; τ�, converge

in distribution to a Gaussian process in D�0; τ�. Since S−1
0 is a continuous lin-

ear operator, by the continuous mapping theorem [see, e.g., Pollard (1984),
Theorem 12, page 70, or Wellner (1989)],

√
nS−1

0 Sn�F0� converges weakly to
a stochastic process Z in D�0; τ�. That Z is also a Gaussian process follows
from the fact that Ṡ−1

0 is a linear operator. In view of Lemmas 3.1 and 3.2 and
the general theorem of van der Vaart (1995) described earlier, convergence in
distribution of

√
n�F̂n −F0� in D�0; τ� is proved.

We now identify the covariance function of Z. By Fubini’s theorem,

S−1
0

∫ :
0
a∗t �u�dF0�u� =

∫ :
0
S−1

0 a∗t �u�dF0�u�;

we have
√
nS−1

0 Sn�F0��t� =
√
m

k
Pml̇ν�·; t�;

where ν�·; t� = S−1
0 a∗t , that is, ν�x; t� satisfies integral equation (5). Since

�a∗t �x�� ≤ 2 and
∫
a∗t �x�dF0�x� = 0, by (5) and continuous invertibility of S0,

∫
ν2�x; t�dF0�x� <∞ and

∫
ν�x; t�dF0�x� = 0:(13)

It remains to prove that for X with density dPF0
�x� and for any a�x�; b�x� ∈

L2�F0�,

E��l̇a��X��l̇b��X�� = k
∫
a�x�b�x�dF0�x�

+ k�k− 1�
∫ ∫ x

0 a�u�dF0�u�
∫ x

0 b�u�dF0�u�
F0�x��1−F0�x��

dF0�x�:
(14)

However, this follows from (12) and (11). 2
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Proof of Theorem 2.2(ii). First, by considering the present problem as a
missing data problem, it follows from Proposition A.12 of van der Vaart (1988)
that

∫ [dP1/2
F�s;0�
�x� − dP1/2

F0
�x�

s
− 1

2
�l̇a��x�dP1/2

F0
�x�

]2

→ 0:(15)

Furthermore, since F̂n is asymptotically linear and (12) and (15) hold, the
proof that F̂n is regular follows almost line by line from the proof of Theorem
3.1 of van der Vaart (1995).

Let Ṗ denote the closed linear span of Ṗ0 ≡ ��l̇a�x a ∈ L0
2�F0�� in L2�F0�; Ṗ

is the tangent space. Equation (13) implies that for every t, ν�·; t� ∈ L0
2�F0�, so

l̇�·; t� ∈ Ṗ0 and hence l̇�·; t� ∈ Ṗ. By Corollary 1(A) of Bickel, Klaassen, Ritov
and Wellner [(1993), page 183] or Proposition 3.3. of van der Vaart (1995), F̂n

is efficient. 2

APPENDIX

Lemma A.1. F∗ satisfies (8) if and only if F∗�t� = F0�t� for every t.

Proof. Let h�t� = F∗�t� −F0�t�. Then if F∗ satisfies (8),

h�t� = −�k− 1�
∫
kF∗�x; t�h�x�dF0�x�:

If k = 1, then h�t� ≡ 0. So it suffices to consider the cases when k ≥ 2. The
above equation can be rewritten as

h�t� = −�k− 1�
∫
x≤t

1−F∗�t�
1−F∗�x�

h�x�dF0�x�

− �k− 1�
∫
x>t

F∗�t�
F∗�x�

h�x�dF0�x�:
(16)

First, for any t, it is true that

if F∗�t� = 1 or 0; then h�t� = 0:(17)

Since if F∗�t� = 1, (16) implies

1−F0�t� = −�k− 1�
∫
x>t
�1−F0�x��dF0�x�:

This equation forcesF0�t� = 1. So h�t� = 0. Similarly, it holds that ifF∗�t� = 0,
then h�t� = 0.

We now show that, for t ∈ �tx 0 < F∗�t� < 1�, h�t� = 0. By (16),

dh�t� = �k− 1�g�t−�dF∗�t�;(18)
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where dF∗�t� = F∗�t� −F∗�t−� and dh�t� = h�t� − h�t−�, and

g�t� =
∫
x≤t

h�x�
1−F∗�x�

dF0�x� −
∫
x>t

h�x�
F∗�x�

dF0�x�:(19)

Notice that F∗�t� may not be right continuous. Hence h�t� may also not be
right continuous. However, we can still define dF∗�t� = F∗�t� − F∗�t−� and
dh�t� = h�t� − h�t−�. We show that if h�t0� > 0 and 0 < F∗�t0� < 1, it will
lead to a contradiction. The proof is similar to the proof of Lemma 1 of Gu and
Zhang (1993). Define

t1 = sup�t ≤ t0x h�t� ≤ 0�; t2 = inf�t ≥ t0x h�t� ≤ 0�:
J = �tx h�t� > 0; t1 ≤ t ≤ t2�:

Then t0 ∈ J and �t1; t2� ⊂ J ⊂ �t1; t2�.
We first show that g�t� = g�t−� = 0 on J. By (19), g is a right continuous

function with

dg�t� = h�t�
{
dF0�t�

1−F∗�t�
+ dF0�t�

F∗�t�

}
≥ 0 on J:(20)

We show that g�t� ≥ 0 and g�t−� ≥ 0. The proof of the cases that g�t� ≤ 0
and g�t−� ≤ 0 is similar and is omitted.

Case 1. t1 = −∞ or F∗�t1� = 0. By (17), h�t1� = 0. This implies
∫
x≤t
�1−F∗�x��−1h�x�dF0�x� ≥ 0

in J. So
∫
x>t�h�x�/F∗�x��dF0�x� ≤ 0 by (16). Since t1 6∈ J, g�t� ≥ 0 and

g�t−� ≥ 0 by (19).
For Cases 2 and 3, we show that g�t1−� ≥ 0 for t1 ∈ J and that g�t1� ≥ 0

for t1 6∈ J, which will imply g�t� ≥ 0 and g�t−� ≥ 0 on J by (20).

Case 2. h�t1� > 0; t1 ∈ J. In this case, dh�t1� > 0 by the definition of t1.
Thus g�t1−� > 0 by (18).

Case 3. h�t1� ≤ 0, t1 6∈ J. Since t1 < t0, there exists �tn� ⊂ J with tn ↓ t1
and dh�tn� > 0. Therefore, g�tn−� ≥ 0 by (18), and hence g�tn� ≥ 0 by (20).
This implies g�t1� ≥ 0 by the right continuity of g.

So we have proved that g�t� = 0 in J. By (18), this implies

h�t� = h�t0� > 0 in J and t0 ∈ J = �t1; t2�:(21)

Case 1. F∗�t2� < 1. by (21), h�t2� ≤ 0 and h�t2−� = h�t0� > 0, so by (18),
g�t2−� < 0, which is a contradiction of Step 1.

Case 2. t1 = −∞ and F∗�t2� = 1. Then also F0�t2� = 1 by (17). In this
case, the right-hand side of (16) is nonpositive for all t. However, the left-hand
side of (16), h�t�, is positive in J, which is again a contradiction.
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Case 3. −∞ < t1 < ∞ and F∗�t2� = 1. (21) implies that h�t1� ≤ 0 and
h�t1+� = h�t0� > 0. So h�t� is not right continuous at t1. Evaluate (16) at t1+
and take the difference between h�t1+� and h�t1� to get

h�t1+� − h�t1� = �k− 1�
[∫
x≤t1

h�x�
1−F∗�x�

dF0�x� −
∫
x>t

h�x�
F∗�x�

dF0�x�
]

× �F∗�t+� −F∗�t��:
Since F∗�t1+� −F∗�t1� = h�t1+� − h�t1� > 0, this and (21) imply

1 = �k− 1�
∫
x≤t1

h�x�
1−F∗�x�

dF0�x�:

However, by the definition of t1, the right-hand side of the this equation is
less than or equal to 0, which is a contradiction. 2
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