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PENALIZED QUASI-LIKELIHOOD ESTIMATION
IN PARTIAL LINEAR MODELS1

By Enno Mammen and Sara van de Geer

Universität Heidelberg and University of Leiden

Consider a partial linear model, where the expectation of a random
variable Y depends on covariates �x; z� through F�θ0x +m0�z��, with θ0
an unknown parameter, and m0 an unknown function. We apply the theory
of empirical processes to derive the asymptotic properties of the penalized
quasi-likelihood estimator.

1. Introduction. Let �Y1;T1�; �Y2;T2�; : : : be independent copies of
�Y;T�, where Y is a real-valued random variable and T ∈ Rd. Denote the
distribution of �Y;T� by P0 and write

µ0�t� = E0�Y�T = t�
for the conditional expectation of Y given T = t. In this paper, we shall study
the partial linear model, where T = �X;Z�, X ∈ Rd1 , Z ∈ Rd2 , d1 + d2 = d
and

�1:1� µ0�x; z� = F�θ′0x+m0�z��;
with F x R → R a given function, θ0 ∈ Rd1 an unknown parameter, θ′0 the
transpose of θ0, and m0 an unknown function in a given class of smooth func-
tions. Model (1.1) offers a flexible approach. The inclusion of the linear com-
ponent θ′0x allows discrete covariates. The link function F may be useful in
case of a bounded variable Y (see, for instance Example 2, where binary ob-
servations are considered).

For simplicity, we shall restrict ourselves to the case d1 = d2 = 1. We shall
assume that T = �X;Z� has bounded support, say T ∈ �0;1�2, and that m0 is
in the Sobolev class �mx J�m� <∞�, where

�1:2� J2�m� =
∫ 1

0
�m�k��z��2 dz:

Here, k ≥ 1 is a fixed integer, and m�k� denotes the kth derivative of the
function m. In summary, the model is

µ0 = F�g0�;
with

g0 ∈ G = �g�x; z� = θx+m�z�x θ ∈ R; J�m� <∞�:
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For g ∈ G , g�x; z� = θx+m�z�, we shall often write J�g� = J�m�.
Define the quasi-(log-)likelihood function

�1:3� Q�yyµ� =
∫ µ
y

�y− s�
V�s� ds;

with Vx F�R� → �0;∞�. The quasi-likelihood function was first considered
by Wedderburn (1974). Properties of quasi-likelihood functions are discussed
in McCullagh (1983) and McCullagh and Nelder (1989). There, the function
V has been chosen as the conditional variance of the response Y, and it has
been assumed that V depends only on the conditional mean µ of Y, that is,
V = V�µ�. The quasi-likelihood approach is a generalization of generalized
linear models. The log-likelihood of an exponential family is replaced by a
quasi-likelihood, in which only the relation between the conditional mean and
the conditional variance has to be specified. To see the relations of the quasi-
likelihood functions with generalized linear models, note, for instance, that the
maximum likelihood estimate ϑ̂ based on an i.i.d. sample Y1; : : : ;Yn from an
exponential family with mean ϑ and variance V�ϑ� is given by

n∑
i=1

d

dϑ
Q�Yiyϑ��ϑ=ϑ̂ = 0:

In this paper we do not assume that V�µ0� is the conditional variance of Y.
The only assumptions on the distribution of Y we use in this paper concern
the form of the conditional mean [see (1.1)] and subexponential tails [see (A0)
in Section 2]. In particular, our results may be used in case of model misspec-
ification.

Let us now describe the estimation procedure. Let λn > 0 be a smoothing
parameter. The penalized quasi-likelihood estimator is defined by

�1:4� ĝn ∈ arg max
g∈G
�Q̄n�F�g�� − λ2

nJ
2�g��;

where

�1:5� Q̄n�µ� =
1
n

n∑
i=1

Q�Yiyµ�Ti��:

Write ĝn�x; z� = θ̂nx+ m̂n�z�. The estimated conditional expectation is µ̂n =
F�ĝn�.

Generalized linear models of the form (1.1) have first been considered by
Green and Yandell (1985) and Green (1987). The generalization to quasi-
likelihood models has also been studied in, for example, Chen (1988), Speck-
mann (1988) and Severini and Staniswalis (1994). These papers, however, use
different estimation procedures, such as polynomial approximation or kernel
smoothing. Local polynomial smoothing based on quasi-likelihood functions
is discussed in Fan, Heckman and Wand (1995). The model without linear
component θ0x has been considered by, for example, O’Sullivan, Yandell and
Raynor (1986), Gu (1990, 1992) and Wahba (1990). Their algorithm for calcu-
lating the penalized quasi-likelihood estimator can be adjusted to the model
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(1.1). The problem of testing a parametric hypothesis against smooth alterna-
tives is examined in, for example, Cox, Koh, Wahba and Yandell (1988) and
Xiang and Wahba (1995).

Our main aim is to obtain asymptotic normality of the penalized quasi-
likelihood estimator θ̂n of θ0, but first we derive a rate of convergence for
ĝn. Rates of convergence for related models without linear component have
also been derived by Cox and O’Sullivan (1990), but their method of proof is
different from ours. Our paper shows that rates of convergence and asymptotic
normality can be obtained by applying results from empirical process theory.

The asymptotic properties of the estimators depend of course on the behav-
ior of the smoothing parameter λn as n → ∞. It may be random (e.g., de-
termined through cross-validation). We assume λn = oP�n−1/4�, and �1/λn� =
OP�nk/�2k+1��.

The following example is an important special case.

Example 1. Let F be the identity, and V ≡ 1. Then Q�yyµ� = −�y −
µ�2/2, so that ĝn is the penalized least squares estimator. It is called a partial
smoothing spline. If λn is nonrandom, θ̂n and m̂n are linear in Y1; : : : ;Yn.
See, for example, Wahba (1984), Silverman (1985).

Denote the conditional expectation of X given Z = z by h1�z�, z ∈ �0;1�. If
J�h1� <∞ and �λn� is of the order given above and nonrandom, then the bias
of θ̂n is O�λ2

n� = o�n−1/2�, whereas its variance is O�1/n�. This is a result of
Rice (1986). It indicates that the smoothness imposed on m̂n (in terms of the
number of derivatives k) should not exceed the smoothness of h1. In Theorem
4.1, we shall prove

√
n-consistency and asymptotic normality of θ̂n under the

condition J�h1� < ∞. In Remark 4.2, we show that in case of rough func-
tions h1,

√
n-consistency of θ̂n can be guaranteed by undersmoothing. More

precisely, there we allow that h1 depends on n and that J�h1� → ∞. We show
that θ̂n is

√
n-consistent and asymptotically normal, as long as λn is chosen

small enough. Even for the optimal choice λn ∼ n−k/�2k+1�, J�h1� may tend to
infinity. This shows that much less smoothness is needed for h1 than for m0.

Theorem 4.1 presents conditions for asymptotic normality of θ̂n in the gen-
eral model. The theory for general penalized quasi-likelihood estimators es-
sentially boils down to that for Example 1, provided one can properly linearize
in a neighborhood of the true parameters. For this purpose, we first need to
prove consistency, which is not too difficult if V�s� stays away from zero. Un-
fortunately, this is frequently not the case, as we see in Examples 2 and 3
below. In Section 7, we shall employ an ad hoc method to handle Example
2. In general, one can say that given consistency, the further conditions for
asymptotic normality are relatively innocent, but proving consistency can be
somewhat involved.

Example 2. Let Y ∈ �0;1�, P0�Y = 1�T = t� = F�g0�t��, and let V�s� =
s�1− s�, s ∈ �0;1�. In this case, the quasi-likelihood is the exact likelihood, so
that ĝn is the penalized maximum likelihood estimator.
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Example 3. Let Y∈ �0;∞�, and V�s�= s2, s>0. Then Q�yyµ� is the log-
likelihood corresponding to the exponential distribution with parameter 1/µ.

This paper can be seen as a statistical application of empirical process
theory as considered in Dudley (1984), Giné and Zinn (1984), Pollard (1984,
1990), Ossiander (1987), and others. Some concepts and results in this field
are presented in Section 2. In Section 3, rates of convergence are obtained,
and Section 4 uses the rates to establish asymptotic normality. In Section 5,
we discuss bootstrapping the distribution of θ̂n. Examples 1–3 are studied in
Section 6, and Section 7 revisits Example 2.

2. Main assumptions, notation and technical tools. In this section,
we present an overview of results from empirical process theory, that will be
used in subsequent sections. Furthermore, in the next subsection we collect
the conditions that are imposed throughout.

2.1. Main assumptions. We recall the assumption �X;Z� ∈ �0;1�2, and

�2:1� λn = oP�n−1/4�; 1/λn = OP�nk/�2k+1��:
We also suppose throughout that f�ξ� = dF�ξ�/dξ exists for all ξ ∈ R.

Write W = Y − µ0�T� (Wi = Yi − µ0�Ti�, i = 1;2; : : :). The following
condition is essential in Section 3: for some constant 0 < C0 <∞,

�A0� E0�exp���W�/C0���T� ≤ C0 almost surely:

Let φj�x; z� = zj−1, j = 1; : : : ; k and φk+1�x; z� = x. We assume that the
matrix

A =
∫
φφ′ dP0

is nonsingular. Here, φ′ denotes the transpose of φ.

2.2. Notation. By the Sobolev-embedding theorem, one can write

m�z� =m1�z� +m2�z�;
with

m1�z� =
k∑
j=1

βjz
j−1;

and �m2�z�� ≤ J�m2� = J�m� [see, e.g., Oden and Reddy (1976)]. So for
g�x; z� = θx+m�z�,

g�x; z� = g1�x; z� + g2�x; z�;
with

g1�x; z� =
k+1∑
j=1

βjφj�x; z�; θ = βk+1;

that is, g1 = β′φ, and g2�x; z� =m2�z�, �g2�x; z�� ≤ J�g2� = J�m�.
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For a measurable function axR×�0;1�2 → R,E0�a�Y;T�� =
∫
adP0 denotes

the expectation of a�Y;T� (whenever it exists) and

� a �2= E0a
2�Y;T�; � a �2n=

1
n

n∑
i=1

a2�Yi;Ti�:

With a slight abuse of notation, we also write for ax �0;1�2 → R depending
only on t ∈ �0;1�2,

� a �2= E0a
2�T�; � a �2n=

1
n

n∑
i=1

a2�Ti�:

Moreover,

�a�∞ = sup
t∈�0;1�2

�a�t��;

and for β ∈ Rk+1, � β �2= β′β.
Let A be a subset of a (pseudo-)metric space �L ; ρ� of real-valued functions.

Definition. The δ-covering number N�δ;A ; ρ� of A is the smallest value
ofN for which there exist functions a1; : : : ; aN in L , such that for each a ∈ A ,
ρ�a; aj� ≤ δ for some j ∈ �1; : : : ;N�. The δ-covering number with bracketing
NB�δ;A ; ρ� is the smallest value of N for which there exist pairs of functions
��aLj ; aUj ��Nj=1 ⊂ L , with ρ�aLj ; aUj � ≤ δ, j = 1; : : : ;N, such that for each a ∈ A

there is a j ∈ �1; : : : ;N� such that aLj ≤ a ≤ aUj . The δ-entropy (δ-entropy
with bracketing) is defined as H�δ;A ; ρ� = logN�δ;A ; ρ� (HB�δ;A ; ρ� =
logNB�δ;A ; ρ�).

2.3. Technical tools.

Theorem 2.1. For each 0 < C <∞ we have

sup
δ>0

δ1/kH�δ; �g ∈ G x �g�∞ ≤ C; J�g� ≤ C�; � · �∞� <∞:

For the proof, see Birman and Solomjak (1967).

Theorem 2.2. Write (AA0) for the assumption that given T, W is (uni-
formly) sub-Gaussian, that is, for some constant 0 < C0 <∞,

�AA0� E0�exp��W2/C0���T� ≤ C0 almost surely:

Let A be a uniformly bounded class of functions ax �0;1�2 → R depending only
on t ∈ �0;1�2. Let 0 < ν < 2. Suppose that either (A0) holds and

�2:2� lim sup
n→∞

sup
δ>0

δνHB�δ;A ; � · �n� <∞ almost surely;

or that (AA0) holds and

�2:3� lim sup
n→∞

sup
δ>0

δνH�δ;A ; � · �n� <∞ almost surely:
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Then

�2:4� sup
a∈A

�1/n�∑n
i=1Wia�Ti�

�� a �n ∨n−1/2+ν�1−ν/2 = OP�n−1/2�:

Proof. It is shown in van de Geer (1990) that (AA0) and (2.3) imply (2.4).
Similar arguments as there, combined with, for example, a result of Birgé and
Massart [(1991), Theorem 4], show that (AA0) can be relaxed to (A0), provided
(2.3) is strengthened to (2.2) [see also van de Geer (1995)]. 2

The following theorem gives conditions under which the rates for the � · �n-
norm and � · �-norm coincide.

Theorem 2.3. Suppose A is uniformly bounded and that for some 0<ν<2,

�2:5� sup
δ>0

δνHB�δ;A ; � · �� <∞:

Then for all η > 0 there exists a 0 < C <∞ such that

�2:6� lim sup
n→∞

P
(

sup
a∈A ; �a�>Cn−1/�2+ν�

∣∣∣∣
� a �n
� a � − 1

∣∣∣∣ > η
)
= 0:

For the proof, see van de Geer (1988), Lemma 6.3.4.

Theorem 2.4. Suppose that for some 0 < ν < 2,

�2:7� sup
δ>0

δνHB�δ;A ; � · �� <∞:

Then for all η > 0 there is a δ > 0 such that

�2:8� lim sup
n→∞

P
(

sup
a∈A ; �a�≤δ

∣∣∣∣
1√
n

n∑
i=1

�a�Yi;Ti� −E0�a��
∣∣∣∣ > η

)
< η:

Proof. Condition (2.7) ensures that A is a Donsker class, and (2.8) is
the implied asymptotic equicontinuity of the empirical process. See, for ex-
ample, Pollard (1990) and the references there for general theory on Donsker
classes. 2

3. Rates of convergence. We now return to the model (1.1) and prove a
rate of convergence for the penalized quasi-likelihood estimator.

Define for ξ ∈ R,

l�ξ� = f�ξ�
V�F�ξ�� ;

where f�ξ� = dF�ξ�/dξ. Consider the following assumptions: for some con-
stants 0 < C1;C2 <∞,

�A1� V�s� ≥ 1/C1 for all s ∈ F�R�;
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and

�A2� 1
C2
≤ �l�ξ�� ≤ C2 for all ξ ∈ R:

Clearly, (A1) and (A2) hold in Example 1, where f = V�F� ≡ 1. In fact, under
(A1) and (A2), the rates problem essentially reduces to the one of Example 1.
It is possible to avoid these assumptions, as we shall illustrate in Section 7.

Lemma 3.1. Suppose (A1) and (A2) are met. Then

�3:1� � ĝn − g0 �n= OP�λn�
and

�3:2� J�ĝn� = OP�1�:

Proof. For a fixed y0, we write

γg =
∫ F�g�
y0

1
V�s� ds;g ∈ G

and γ̂n = γĝn , γ0 = γg0
. Using definitions (1.3) and (1.5), we get

Q̄n�µ̂n� − Q̄n�µ0� =
1
n

n∑
i=1

Wi�γ̂n�Ti� − γ0�Ti�� −
1
n

n∑
i=1

∫ µ̂n�Ti�
µ0�Ti�

�s− µ0�Ti��
V�s� ds:

Now, for γ =
∫ µ
y0
V�s�−1 ds, we find

d

dγ

∫ µ
µ0

s− µ0

V�s� ds = µ− µ0;
d2

dγ2

∫ µ
µ0

s− µ0

V�s� ds = V�µ�:

So, by the Cauchy–Schwarz inequality and (A1),

�3:3�
Q̄n�µ̂n� − Q̄n�µ0� ≤

1
n

n∑
i=1

Wi�γ̂n�Ti� − γ0�Ti�� −
1

2C1
� γ̂n − γ0 �2n

≤
(

1
n

n∑
i=1

W2
i

)1/2

� γ̂n − γ0 �n −
1

2C1
� γ̂n − γ0 �2n :

Note that �1/n�∑n
i=1W

2
i = O�1� almost surely [by (A0)]. On the other hand,

because µ̂n = F�ĝn� maximizes Q̄n�F�g�� − λ2
nJ

2�g�, we have

�3:4� Q̄n�µ̂n� − Q̄n�µ0� ≥ λ2
n�J2�ĝn� −J2�g0�� ≥ oP�1�:

The combination of (3.3) and (3.4) gives

� γ̂n − γ0 �2n≤� γ̂n − γ0 �n O�1� + oP�1�;
which implies � γ̂n − γ0 �n= OP�1�.

In view of (A2),

�3:5� 1
C2
�g�t� − g̃�t�� ≤ �γg�t� − γg̃�t�� ≤ C2�g�t� − g̃�t��;
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for all t ∈ �0;1�2 and all g; g̃ ∈ G . So also � ĝn − g0 �n= OP�1�, so that
� ĝn �n= OP�1�.

We shall now show that �ĝn�∞/�1+J�ĝn�� = OP�1�. As in Section 2.2, write

ĝn = ĝ1n + ĝ2n;

with ĝ1n = β̂′nφ, and �ĝ2n�∞ ≤ J�ĝn�. Then

�3:6� � ĝ1n �n
1+J�ĝn�

≤ � ĝn �n
1+J�ĝn�

+ � ĝ2n �n
1+J�ĝn�

= OP�1�:

Now, A =
∫
φφ′ dP0 is assumed to be nonsingular, and

1
n

n∑
i=1

φ�Ti�φ′�Ti� → A almost surely:

Thus, (3.6) implies that � β̂n � /�1+J�ĝn�� = OP�1�. BecauseT is in a bounded
set, also �ĝ1n�∞/�1+J�ĝn�� = OP�1�. So �ĝn�∞/�1+J�ĝn�� = OP�1�.

In view of (3.5), we now have �γ̂n�∞/�1 + J�ĝn�� = OP�1�. Moreover, �γg −
γg̃�∞ ≤ C2�g − g̃�∞, g; g̃ ∈ G . So by Theorem 2.1, because of (3.5),

sup
δ>0

δ1/kH

(
δ;

{
γg − γg0

1+J�g� x g ∈ G ;
�γg�∞

1+J�g� ≤ C
}
; � · �∞

)
<∞:

Using Theorem 2.2, assumption (A0) and the fact that � γ̂n − γ0 �n≥ �1/C2�×
� ĝn − g0 �n, we find

�3:7�
�1/n�∑n

i=1Wi�γ̂n�Ti� − γ0�Ti��
� ĝn − g0 �

1−1/�2k�
n �1+J�ĝn��1/�2k� ∨ �1+J�ĝn��n−�2k−1�/2�2k+1�

= OP�n−1/2�:

Invoke this in (3.3) and apply (3.4):

�3:8�

λ2
n�J2�ĝn� −J2�g0�� ≤ Q̄n�µ̂n� − Q̄n�µ0�

≤ 1
n

n∑
i=1

Wi�γ̂n�Ti� − γ0�Ti�� −
1

2C1
� γ̂n − γ0 �2n

≤
[
� ĝn − g0 �1−1/2k

n �1+J�ĝn��1/2k

∨ �1+J�ĝn��n−�2k−1�/2�2k+1�]OP�n−1/2�

− 1

2C1C
2
2

� ĝn − g0 �2n :

Thus,

λ2
nJ

2�ĝn� ≤ λ2
nJ

2�g0� +
[
� ĝn − g0 �1−1/2k

n �1+J�ĝn��1/2k

∨ �1+J�ĝn��n−�2k−1�/2�2k+1�]OP�n−1/2�;
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as well as

� ĝn − g0 �2n ≤ λ2
nJ

2�g0� +
[
� ĝn − g0 �1−1/2k

n �1+J�ĝn��1/2k

∨ �1+J�ĝn��n−�2k−1�/2�2k+1�]OP�n−1/2�:
Solve these two inequalities to find that

� ĝn − g0 �2n +λ2
nJ

2�ĝn� = OP�λ2
n + λ−1/k

n n−1 + λ−2
n n

−4k/�2k+1��:
Because we assumed λ−1

n = OP�nk/�2k+1��, this completes the proof. 2

Corollary 3.2. Suppose (A1) and (A2) are met and that the density of T
w.r.t. Lebesgue measure exists, and stays away from zero and infinity. Then
for 0 ≤ q ≤ k,

�3:9�
∥∥ ĝ�q�n − g�q�0

∥∥ = OP�λ
�k−q�/k
n �:

For a choice of λn that is of order n−k/�2k+1� we get from Corollary 3.2 that
ĝ
�q�
n achieves the optimal rate OP�n�k−q�/�2k+1��.

Proof. For q = 0, (3.9) follows from �ĝn�∞ = OP�1� [see the proof of
Lemma 3.1] and Theorem 2.3. For q = 0, it follows from J�g0� < ∞ and
(3.2). For 1 < q < k we apply the interpolation inequality [see Agmon (1965)]:
There exists a constant C such that for 0 ≤ q ≤ k, for all 0 < ρ < 1 and for all
functions δx R→ R with � δ�q� �<∞,

� δ �2≤ Cρ−2q � δ �2 +Cρ2k−2q � δ�k� �2 :

Application of the interpolation inequality with ρ = λ1/k
n and δ = ĝn−g0 gives

(3.9). A similiar application of the interpolation inequality can be found in
Utreras (1985). 2

Remark 3.1. The situation can be adjusted to the case of triangular ar-
rays. Let �Y1; n;T1; n�; : : : ; �Yn;n;Tn;n� be independent copies of �Y0; n;T0; n�,
and suppose that the conditional expectation of Y0; n given T0; n is equal to
F�g0; n�T0; n��, with g0; n ∈ G , n = 1;2; : : : : Assume that (A0) holds for
W0; n = Y0; n − F�g0; n�T0; n�� and T0; n, with constant C0 not depending on
n. Assume moreover that for A0; n =

∫
φφ′dP0; n, P0; n being the distribution

of T0; n, we have

β′A0; nβ ≥ c0β
′β for all β ∈ Rk+1;

where c0 > 0 is independent of n. Then one finds under (A1) and (A2), for
1/λn = OP�nk/�2k+1��1+J�g0; n��2k/�2k+1��,

�ĝn − g0; n�n = OP�λn�1+J�g0; n���
and

J�ĝn� = OP�1+J�g0; n��:
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4. Asymptotic normality. Theorem 4.1 below gives conditions for
asymptotic normality of θ̂n. If in addition the conditional distribution of Y
belongs to an exponential family with mean µ and variance V�µ�, then it
follows that θ̂n is asymptotically efficient; see Remark 4.1.

Recall now that

f�ξ� = dF�ξ�
dξ

; l�ξ� = f�ξ�
V�F�ξ�� ; ξ ∈ R:

We shall use the assumptions: for some constants 0 < η0, C3;C4 <∞, and for
all t ∈ �0;1�2, we have for ξ0 = g0�t�,
�A3� �l�ξ0�� ≤ C3 and �l�ξ� − l�ξ0�� ≤ C3�ξ − ξ0� for all �ξ − ξ0� ≤ η0

and

�A4� �f�ξ0�� ≤ C4 and �f�ξ� − f�ξ0�� ≤ C4�ξ − ξ0� for all �ξ − ξ0� ≤ η0:

Write l0 = l�g0� and f0 = f�g0�, and take

h1�z� =
E0�Xf0�T�l0�T��Z = z�
E0�f0�T�l0�T��Z = z�

;

and

h2�x; z� = x− h1�z�:
Also define

h̃1�z� = E0�X�Z = z�
and

h̃2�x; z� = x− h̃1�z�:

Theorem 4.1. Suppose (A3) and (A4) are met. Assume moreover that

� ĝn − g0 �n = oP�n−1/4�;(4.1)

J�ĝn� = OP�1�;(4.2)

� h̃2 � > 0;(4.3)

�4:4� Z has density bounded away from 0 on its support;

�4:5� J�h1� <∞
and

�4:6� � �f0l0�1/2h2 �> 0:

Then,

√
n�θ̂n − θ0� =

1/
√
n
∑n
i=1Wil0�Ti�h2�Ti�
� �f0l0�1/2h2 �2

+ oP�1�:



1024 E. MAMMEN AND S. VAN DE GEER

Proof. We shall apply Theorem 2.3, to conclude from (4.1) that � ĝn −
g0 �= oP�1�. Because Theorem 2.3 is on uniformly bounded classes, we first
verify that �ĝn�∞ = OP�1�. This follows by the same arguments as used in
Lemma 3.1. Because (4.2) holds, also �ĝ2n�∞ = OP�1�. So � ĝ1n �n= OP�1�.
Again, because of the assumed nonsingularity of A, this implies �ĝ1n�∞ =
OP�1�, so �ĝn�∞ = OP�1�.

Because

� ĝn − g0�2 = �θ̂n − θ0�2�h̃2�2 + ��θ̂n − θ0�h̃1 + m̂n −m0�2;
the result � ĝn−g0 �= oP�1� together with the assumption � h̃2 �> 0, implies
�θ̂n − θ0� = oP�1�. Hence, also

� m̂n −m0 �≤ �ĝn − g0� + �θ̂n − θ0�E1/2
0 X2 = oP�1�:

Assumption (4.4) ensures that

sup
z∈ support �Z�

�m̂n�z� −m0�z�� = oP�1�:

Therefore, we may, without loss of generality, assume that

�4:7� �ĝn − g0�∞ ≤ η0;

so that we can use (A3) and (A4).
Because of (4.5), we have that

ĝns�x; z� = ĝn�x; z� + sh2�x; z�
= �θ̂n + s�x+ �m̂n�z� − sh1�z�� ∈ G ;

for all s ∈ R. Thus,

�4:8� d

ds
�Q̄n�F�ĝns�� − λ2

nJ
2�ĝns���s=0 = 0:

Clearly, for l̂n = l�ĝn�, f̂n = f�ĝn�,
d

ds
Q̄n�F�ĝns���s=0 =

1
n

n∑
i=1

Wil̂n�Ti�h2�Ti�

− 1
n

n∑
i=1

�µ̂n�Ti� − µ0�Ti��l̂n�Ti�h2�Ti� = I− II:

The class

��y− µ0�t��l�g�t��h2�t�x g ∈ G ; �g − g0�∞ ≤ η0; J�g� ≤ C�
satisfies (2.7) of Theorem 2.4 with ν = 1/k. To see this, note that by (A3), the
entropy result of Theorem 2.1 is true for the class

�l�g�t��x g ∈ G ; �g − g0�∞ ≤ η0; J�g� ≤ C�;
and furthermore, y−µ0�t� is a fixed P0-square integrable function, and h2�t�
is a fixed bounded function.
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Since, also by (A3), � ĝn−g0 �= oP�1� implies � l̂n− l0 �= oP�1�, we obtain

�4:9� I = 1
n

n∑
i=1

Wil0�Ti�h2�Ti� + oP�n−1/2�:

Let us write

II = 1
n

n∑
i=1

��ĝn�Ti� − g0�Ti��f0�Ti��l0�Ti�h2�Ti�

+ 1
n

n∑
i=1

�µ̂n�Ti� − µ0�Ti� − �ĝn�Ti� − g0�Ti��f0�Ti��l0�Ti�h2�Ti�

+ 1
n

n∑
i=1

�µ̂n�Ti� − µ0�Ti���l̂n�Ti� − l0�Ti��h2�Ti�

= III+ IV+V:

Observe that

ĝn�x; z� − g0�x; z� = �θ̂n − θ0�x+ m̂n�z� −m0�z�
= �θ̂n − θ0�h2�x; z� + ân�z� − a0�z�;

where ân�z� − a0�z� = �θ̂n − θ0�h1�z� + m̂n�z� −m0�z�. Hence,

�4:10�
III = �θ̂n − θ0�

1
n

n∑
i=1

f0�Ti�l0�Ti�h2
2�Ti�

+ 1
n

n∑
i=1

�ân�Zi� − a0�Zi��f0�Ti�l0�Ti�h2�Ti�:

Because �θ̂n−θ0� = oP�1� and � m̂n−m0 �= oP�1�, also � ân−a0 �= oP�1�. More-
over, for any measurable function ax �0;1� → R, E0�a�Z�f0�T�l0�T�h2�T�� =
0. So, according to Theorem 2.1, combined with Theorem 2.4, the second sum-
mand at the right-hand side of (4.10) is oP�n−1/2�. This, and the law of large
numbers, yields

III = �θ̂n − θ0��� �f0l0�1/2h2 � +o�1�� + oP�n−1/2�:

Invoke (A3) and (A4) to conclude, by the mean value theorem, that, under
(4.7),

�IV� ≤ C4
1
n

n∑
i=1

�ĝn�Ti� − g0�Ti��2�l0�Ti�h2�Ti��

≤ C3C4 � ĝn − g0 �2n= oP�n−1/2�;

and similarly,

�V� ≤ C3C4 � ĝn − g0 �2n= oP�n−1/2�:
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Thus,

�4:11� II = �θ̂n − θ0��� �f0l0�1/2h2 �2 +o�1�� + oP�n−1/2�:
Finally, we note that (4.2), (4.5) and the condition λn = oP�n−1/4� give

�4:12� d

ds
λ2
nJ

2�ĝns��s=0 ≤ 2λ2
nJ�ĝn�J�h1� = oP�n−1/2�:

Combine (4.8), (4.9), (4.11) and (4.12) to obtain

0 = 1
n

n∑
i=1

Wil0�Ti�h2�Ti� + �θ̂n − θ0��� �f0l0�1/2h2 �2 +o�1�� + oP�n−1/2�:

Apply condition (4.6) to complete the proof. 2

Remark 4.1. Consider the parametric model

�4:13� E�Yi�Ti� = F�θXi + βh1�Zi� +m0�Zi��
with parameters θ and β. In this parametric model the quasi-likelihood esti-
mate θ̃n of θ has the same asymptotic linear expansion [and the same Gaussian
limiting distribution] as the estimate θ̂n for θ = θ0 and β = 0. This follows
by simple calculations. Under assumption (4.5), model (4.13) is a submodel
of model (1.1). Therefore, if the conditional distribution of Y belongs to an
exponential family with mean µ and variance V�µ�, then it follows that θ̂n is
asymptotically efficient.

Remark 4.2. Theorem 4.1 can be generalized to the situation as described
in Remark 3.1. Let us suppose the assumptions given there are met, and that
in addition (A3) and (A4) hold, with constants η0, C3 and C4 not depending
on n. Suppose that also (4.3), (4.4) and (4.6) hold uniformly in n. Replace (4.1)
and (4.2) by the condition

λn�1+J�g0; n�� = oP�n−1/4�;
and replace (4.5) by

�4:14� λ2
n�1+J�g0; n��J�h1; n� = oP�n−1/2�:

Then the conclusion of Theorem 4.1 is valid, provided that we can apply The-
orem 2.3 to conclude that �ĝn − g0; n� = oP�1�. For this purpose, we assume
in addition to the above that

�1+J�g0; n�� = O�nk/�2k+1��:
For bounded J�g0; n�, condition (4.14) holds if J�h1; n� is bounded. This fol-

lows from our assumption λn = OP�n−1/4�. For optimal choices λn ∼ n−k/�2k+1�,
for (4.14) it suffices that J�h1; n� = o�n�2k−1�/�4k+2��, that is, J�h1; n� may con-
verge to infinity. This means that weaker conditions on the smoothness of h1; n

are needed than on g0; n. Furthermore, if J�h1; n� → ∞,
√
n-consistency of θ̂n

can always be guaranteed by choosing λn small (i.e., undersmoothing).
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5. Estimating the distribution of the parametric component using
Wild Bootstrap. Inference on the parametric component θ of the model
could be based on our asymptotic result in Theorem 4.1. There it is stated
that the distribution of θ̂n is not affected by the nonparametric nature of the
other component of the model, at least asymptotically. This statement may be
misleading for small sample sizes. An approach which reflects more carefully
the influence of the nonparametric component is bootstrap. We discuss here
three versions of bootstrap. The first version is Wild Bootstrap which is related
to proposals of Wu (1986) [see also Beran (1986) and Mammen (1992)] and
which was first proposed by Härdle and Mammen (1993) in nonparametric set-
ups. Note that in our model the conditional distribution of Y is not specified
besides (1.1) and (A0).

The Wild Bootstrap procedure works as follows.

Step 1. Calculate residuals Ŵi = Yi − µ̂n�Ti�.

Step 2. Generate n i.i.d. random variables ε∗1; : : : ; ε
∗
n with mean 0, vari-

ance 1 and which fulfill for a constant C that �ε∗i � ≤ C (a.s.) for i = 1; : : : ; n:

Step 3. Put Y∗i = µ̂n�Ti� + Ŵiε
∗
i for i = 1; : : : ; n.

Step 4. Use the (pseudo)sample ��Y∗1;T1�; : : : ; �Y∗n;Tn�� for the calcula-
tion of the parametric estimate θ̂∗n.

Step 5. The distribution Ln of θ̂n − θ0 is estimated by the (conditional)
distribution L ∗

n [given �Y1;T1�; : : : ; �Yn;Tn�], of θ̂∗n − θ̂n.

Under the additional model assumption

var0�Y�T = t� = V�µ0�t��
we propose the following modification of the resampling. In Step 3 put Y∗i =
µ̂n�Ti� +V�µ̂n�Ti��ε∗i for i = 1; : : : ; n. In this case the condition that �ε∗i � is
bounded can be weakened to the assumption that ε∗i has subexponential tails,
that is, for a constant C it holds that E�exp���ε∗i �/C��� ≤ C for i = 1; : : : ; n
[compare (A0)].

In the special situation that Q�yyµ� is the log-likelihood (a semiparamet-
ric generalized linear model), the conditional distribution of Yi is specified
by µ�Ti�. Then we recommend generating n independent Y1; : : : ;Yn with
distributions defined by µ̂n�T1�; : : : ; µ̂n�Tn�, respectively. This is a version of
parametric bootstrap. The following theorem states that these three bootstrap
procedures work (for their corresponding models).

Theorem 5.1. Assume that conditions (A0)–(A4) are met. In case of ap-
plication of the second or third version of bootstrap, assume that the just-
mentioned additional model assumptions hold. Then

dK�Ln;L
∗
n � → 0
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in probability. Here dK denotes the Kolmogorov distance (i.e., the supnorm of
the corresponding distribution functions).

Proof. We will give only a sketch of the proof for the first version of
resampling (Wild Bootstrap).The proof for the other versions is simpler and
follows similarly.

We have to go again through the proofs of Lemma 3.1 and Theorem 4.1. We
start with proving

�5:1� �ĝ∗n − ĝn�n = OP�λn�
and

�5:2� J�ĝ∗n� = OP�1�:
We write first for W∗i = Y∗i − µ̂n�Ti�

W∗i =Wiε
∗
i + �µ0�Ti� − µ̂n�Ti��ε∗i

=W∗i;1 +W∗i;2:
In the proof of Lemma 3.1 the main ingredient from empirical process the-
ory was formula (2.4) [see (3.7)]. We argue now that the following analogue
formulas hold for j = 1 and j = 2:

�5:3� sup
a∈A

�1/n�∑n
i=1W

∗
i; ja�Ti�

�a�1−ν/2n

= OP�n−1/2�:

For j = 1, (5.3) follows from the fact that because of the boundedness of ε∗i
for i = 1; : : : ; n, we have that there exists a constant C′ with

E0�exp���W∗i;1�/C′���T1; : : : ;Tn� ≤ C′;
almost surely.

For j = 2 we have for every constant C′′ that on the event An = ��µ0�Ti�−
µ̂n�Ti�� ≤ C′′x i = 1; : : : ; n� the following holds

E0�exp���W∗i;2�/�CC′′����T1; : : : ;Tn� ≤ e;
almost surely. Because the probability of An tends to one, we arrive at (5.3).

We would like to make here the following remark for two random variables
Un and Vn. If Un fulfils Un = OP�cn� for a sequence cn then this implies that
for every 0 < δ < 1 there exists a set Bn and a constant C with

P�Vn ∈ Bn� > 1− δ;
P��Un� ≤ Ccn�Vn = v� > 1− δ

for v ∈ Bn. This remark may help to understand why we can continue as in
the proof of Lemma 3.1 to show (5.1) and (5.2).

The next step is to show that

�5:4� √
n�θ̂∗n − θ̂n� =

1/
√
n
∑n
i=1W

∗
i l0�Ti�h2�Ti�

��f0l0�1/2h2�2
+ oP�1�:
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To see (5.4) our approach is similar to the proof of Theorem 4.1. In particular,
we replace ĝn; s by ĝ∗n; s = ĝ∗n + sh2.

Now one applies (5.4) for the proof of

dK�N�0; nσ̂2
n�;L ∗

n � → 0;

(in probability), where

σ̂2
n =
�1/n�∑n

i=1W
2
i l0�Ti�2h2�Ti�2

��f0l0�1/2h2�4
:

Because of σ̂2
n → ��f0l0�1/2h2�−4E0�W2

i l0�Ti�2h2�Ti�2� (in probability) we
get the statement of the theorem. 2

6. Examples. In this section, we check our conditions for the Examples
1–3 of the introduction.

Example 1. Recall that in this case,

Y = θ0X+m0�Z� +W;
where E0�W�X;T� = 0, and that ĝn�x; z� = θ̂nx+m̂n�z� is the penalized least
squares estimator. In van de Geer (1990), Lemma 3.1 has been proved under
the condition (AA0) that the error W in the regression model is sub-Gaussian,
using the same approach as in the proof of Lemma 3.1. Condition (AA0) can be
relaxed to (A0), as a consequence of Theorem 2.2. This is in accordance with
earlier results on rates of convergence (see, e.g., Rice and Rosenblatt (1981)
and Silverman (1985).

Conditions (A1)–(A4) are clearly satisfied, because V ≡ 1, f ≡ 1 and l ≡ 1.
Note further that h1 = h̃1 and h2 = h̃2. If W is normally distributed, then
according to Theorem 4.1, the partial smoothing spline estimator θ̂n is an
asymptotically efficient estimator of θ0.

Example 2. In this case, we have

P0�Y = 1�X;Z� = 1−P0�Y = 0�X;Z� = F�θ0X+m0�Z��;
and V�s� = s�1− s�, s ∈ �0;1�. Let us consider the common choice

F�ξ� = eξ

1+ eξ ; ξ ∈ R:

Then

f�ξ� = eξ

�1+ eξ�2 = V�F�ξ��; ξ ∈ R;

so that l ≡ 1. We cannot use Lemma 3.1, because (A1) is not satisfied. There-
fore, we present a separate proof of (3.1) and (3.2) in Section 7, under an
identifiability condition. Since conditions (A3) and (A4) are met, Theorem 4.1
can then be applied.
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Example 3. Let us assume that the conditional density of Y given T= t is

p0�y�t� = λ0�t� exp�−λ0�t�y�; y > 0;

with λ0�t� = 1/µ0�t�, µ0�x; z� = F�θ0x+m0�z��, and with

F�ξ� = eξ; ξ ∈ R:

Take V�s� = s2, s > 0. Then

f�ξ� = eξ;
V�F�ξ�� = e−2ξ

and

l�ξ� = e−ξ;
ξ ∈ R. Observe that (A0) is met. Again, we cannot apply Lemma 3.1, because
(A1) and (A2) only hold on a bounded set. So if we show by separate means
that the parameters are in a bounded set, then the result of Lemma 3.1 follows
immediately. Conditions (A3) and (A4) hold, so asymptotic normality would
also be implied by this. Note that fl ≡ 1, so as in Example 1, h1 = h̃1 and
h2 = h̃2.

7. Rates of convergence for Example 2. Consider the model

P0�Y = 1�X;Z� = 1−P0�Y = 0�X;Z� = F�θ0X+m0�Z�� = F�g0�T��;
with

g0 ∈ G = �g�x; z� = θx+m�z�; θ ∈ R; J�m� <∞�;
andFxR→ �0;1� given. Furthermore, takeV�s� = s�1−s�, s ∈ �0;1�. Assump-
tion (A1) is now violated. However, one can still prove the rate of convergence,
again by applying empirical process theory. Assume that for some 0 < C5 <∞,

�A5� �f�ξ�� ≤ C5 for all ξ ∈ R:

Lemma 7.1. Under condition (A5), we have

sup
n

sup
δ>0

δ1/kH

(
δ;

{
F�g�

1+J�g� x g ∈ G

}
; � · �n

)
<∞:

Proof. We can write for g ∈ G ,

g = β′φ+ g2;

with β ∈ Rk+1, and �g2�∞ ≤ J�g2� = J�g� (see Section 2.2). Now, let g̃ be a
fixed function and consider the class

�F�β′φ+ g̃�x β ∈ Rk+1�:
Since F is of bounded variation, the collection of graphs

���s; t�x 0 ≤ s ≤ F�β′φ�t� + g̃�t���x β ∈ Rk+1�
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is a Vapnik–Chervonenkis class, that is, it forms a polynomial class of sets [see
Pollard (1984), Chapter II for definitions]. Therefore [Pollard (1984), Lemma
II.25],

�7:1� N�δ; �F�β′φ+ g̃�x β ∈ Rk+1�; � · �n� ≤ Aδ−w for all δ > 0;

where the constants A and w depend on F and k, but not on g̃ and n. (Here,
we use the fact that the class is uniformly bounded by 1.)

Define for g = β′φ+ g2,

ν�g� =
[

1
�1+J�g��δ

]
δ;

where �s� denotes the integer part of s ≥ 0. Then

�ν�g�g2� ⊂ �hx �h�∞ ≤ 1; J�h� ≤ 1�;
so by Theorem 2.1,

�7:2� sup
δ>0

δ1/kH�δ; �ν�g�g2�; � · �∞� <∞:

Of course, if we replace here the � · �∞-norm by the � · �n-norm, the result
remains true and holds uniformly in n.

Together, (7.1) and (7.2) give the required result. To see this, let g ∈ G ,
g = β′φ+ g2 and let νj = ν�g�. Suppose that hj is such that

� ν�g�g2 − hj �n≤ δ;
and that βj is such that

∥∥∥∥F
(
β′φ+ hj

νj

)
−F

(
β′jφ+

hj

νj

)∥∥∥∥
n

≤ δ:

Then ∥∥∥∥
F�β′φ+ g2�

1+J�g� −F�β
′
jφ+

hj

νj
�νj

∥∥∥∥
n

≤ νj
∥∥∥∥F�β

′φ+ g2� −F
(
β′φ+ hj

νj

)∥∥∥∥
n

+
∣∣∣∣

1
1+J�g� − ν�g�

∣∣∣∣

+
∥∥∥∥F

(
β′φ+ hj

νj

)
−F

(
β′jφ+

hj

νj

)∥∥∥∥
n

≤ C5δ+ δ+ δ;
since �F�ξ� −F�ξ̃�� ≤ C5�ξ − ξ̃�, by condition (A5). 2

The entropy result of Lemma 7.1 can be applied to establish a rate of con-
vergence in the same way as in Lemma 3.1. For this purpose, we need the
assumption: for some constant 0 < C6 <∞,

�A6� 1
C6
≤ F�g0�t�� ≤ 1− 1

C6
for all t ∈ �0;1�2:
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Lemma 7.2. Suppose (A5) and (A6) hold true. Then

�7:3� � F�ĝn� −F�g0� �n= OP�λn�
and

�7:4� J�ĝn� = OP�1�:

Proof. Define

F̄�g� = �F�g� +F�g0��/2; g ∈ G :

By the concavity of the log-function, and the definition of ĝn,

�7:5�

Q̄n�F̄�ĝn�� − Q̄n�F�g0�� =
1
n

n∑
i=1

Yi log
(
F̄�ĝn�Ti��
F�g0�Ti��

)

+ 1
n

n∑
i=1

�1−Yi� log
(

1− F̄�ĝn�Ti��
1−F�g0�Ti��

)

≥ 1
2
Q̄n�F�ĝn�� −

1
2
Q̄n�F�g0��

≥ 1
2
λ2
n�J2�ĝn� −J2�g0��:

On the other hand, since log�s� = 2 log�√s� ≤ 2�√s− 1�,

�7:6�

Q̄n�F̄�ĝn�� − Q̄n�F�g0��

≤ 2
n

n∑
i=1

Yi

(√
F̄�ĝn�Ti��
F�g0�Ti��

− 1

)

+ 2
n

n∑
i=1

�1−Yi�
(√

1− F̄�ĝn�Ti��
1−F�g0�Ti��

− 1

)

= 2
n

n∑
i=1

Wi√
F�g0�Ti��

(√
F̄�ĝn�Ti�� −

√
F�g0�Ti��

)

+ 2
n

n∑
i=1

Wi√
1−F�G0�Ti��

(√
1− F̄�ĝn�Ti�� −

√
1−F�g0�Ti��

)

−
∥∥∥
√
F̄�ĝn� −

√
F�g0�

∥∥∥
2

n
−
∥∥∥
√

1− F̄�ĝn� −
√

1−F�g0�
∥∥∥

2

n
:

The combination of (7.5) and (7.6) gives an inequality of the same form as
inequality (3.8) in the proof of Lemma 3.1. Moreover, we can invoke Lemma
7.1 in Theorem 2.2. First of all, condition (AA0) holds for W. Furthermore, for
each g; g̃ ∈ G we have

∣∣
√
F̄�g� −

√
F̄�g̃�

∣∣
√
F�g0�

≤ �F�g� −F�g̃��
2
√

2F�g0�
≤ C6

2
√

2
�F�g� −F�g̃��;
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by (A6). So the entropy condition (2.3) with ν = 1/k holds for the class
{ √

F̄�g� −
√
F�g0�√

F�g0��1+J�g��
x g ∈ G

}
:

Thus,

1/n
∑n
i=1Wi

(√
F̄�ĝn�Ti�� −

√
F�g0�Ti��

)
/
√
F�g0�Ti��

�
√
F̄�ĝn� −

√
F�g0� �

1−1/�2k�
n �1+J�ĝn��1/�2k�

= OP�n−1/2�:

Similar results can be derived for �
√

1− F̄�ĝn� −
√
F�g0��. So, proceeding as

in the proof of Lemma 3.1, we find J�ĝn� = OP�1�, and

�7:7�
∥∥∥
√
F̄�ĝn� −

√
F�g0�

∥∥∥
n
= OP�λn�;

as well as

�7:8�
∥∥∥
√

1− F̄�ĝn� −
√

1−F�g0�
∥∥∥
n
= OP�λn�:

Clearly, (7.7) and (7.8) yield (7.3). 2

It remains to show that the rate of convergence also holds for � ĝn −g0 �n.
We then need an identifiability condition. Assume that for some constants
0 < η0, C7 <∞ and for all t ∈ �0;1�2, we have for ξ0 = g0�t�,

�A7� �f�ξ�� ≥ 1
C7

for all �ξ − ξ0� ≤ η0:

Lemma 7.3. Suppose that

�7:9� inf
�g−g0�>η

� F�g� −F�g0� �> 0 for all η > 0:

Then, under conditions (A5), (A6), (A7), (4.3) and (4.4), we have

� ĝn − g0 �n= OP�λn�:

Proof. Due to Lemma 7.1 and a result of, for example, Pollard (1984),
Theorem II.24 on uniform laws of large numbers, we have for all 0 < C <∞,

sup
J�g�≤C

� � F�g� −F�g0� �n − � F�g� −F�g0� � � = o�1� almost surely:

So � F�ĝn� −F�g0� �= oP�1�. By (7.9), this implies

�7:10� � ĝn − g0 �= oP�1�:
As in the proof of Theorem 4.1, we see that (4.3) and (4.4), together with (7.10),
yield �ĝn − g0�∞ = oP�1�. Application of (A7) and Lemma 7.2 completes the
proof. 2
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