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GOOD EXACT CONFIDENCE SETS FOR
A MULTIVARIATE NORMAL MEAN

BY YU-LING TSENG1 AND LAWRENCE D. BROWN2

Academia Sinica, Taipei and University of Pennsylvania

A class of confidence sets with constant coverage probability for the
mean of a p-variate normal distribution is proposed through a pseudo-
empirical-Bayes construction. When the dimension is greater than 2, by
combining analytical results with some exact numerical calculations the
proposed sets are proved to have a uniformly smaller volume than the
usual confidence region. Sufficient conditions for the connectedness of the
proposed confidence sets are also derived. In addition, our confidence sets
could be used to construct tests for point null hypotheses. The resultant
tests have convex acceptance regions and hence are admissible by Birn-
baum. Tabular results of the comparison between the proposed region and
other confidence sets are also given.

1. Introduction. One of the most frequently used statistical techniques
is the linear model, which includes both the analysis of variance and linear
regression as special cases. In the usual formulation of a linear model, the
estimation problem can be reduced to that of estimating a multivariate

w Ž . xnormal mean. See, e.g., Hwang and Chen 1986 . In such a situation, the
Ž . Ž .results of Stein 1956 and James and Stein 1961 lead immediately to a

uniform, appreciable improvement in mean squared error over the least
squares estimator when there are at least three parameters. Surprisingly,

Ž .this phenomenon is not exceptional. Brown 1966 showed the same inadmis-
sibility result for the best invariant estimator of location for a very wide
variety of distributions and loss functions. In particular, his results implied
that when the dimension is at least 3 the usual confidence region for the
parameters in a linear model is inadmissible too. Since then considerable
research has aimed at explicit constructions of dominating estimators and
improved confidence sets for the mean vector of a multivariate normal
distribution.

Ž .Let X s X , . . . , X 9 have a p-variate normal distribution with mean1 p
Ž .vector u s u , . . . , u 9 and identity covariance matrix I. There have been1 p

many breakthroughs in the theory of estimating u . References to related
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Ž . Ž .works can be found in, for example, Faith 1976 , Berger 1985 and Tseng
Ž .1994 . In contrast to the rich development in point estimation, until recently
there has been comparatively little research on finding improved confidence
sets for u .

The usual confidence set for u is

0 5 5 21 C X s u : X y u F c ,� 4Ž . Ž .
Ž .where c is the 100 1 y a th percentile of the chi-squared distribution with p

5 5degrees of freedom and ? is the Euclidean norm. It is an exact 1 y a
confidence set for u , that is,

P u g C 0 X s 1 y a ; u ,Ž .Ž .u

and it is a good confidence set estimator under several criteria. When p s 1
Ž . Ž .or 2, Brown 1966 and Joshi 1969 independently showed that under

Ž . Ž . 0Ž .criterion 6 see below C X is strongly admissible among all 1 y a confi-
Ž . 0Ž .dence sets. Stein 1962 showed that for all dimensions C X has the

minimum volume among all 1 y a level confidence sets which are invariant
under the group of translations in R p, and it is minimax, that is, it satisfies

0sup E Vol C X s inf sup E Vol C X ,Ž . Ž .Ž .Ž .u u
CgCCu u

Ž .where CC is the class of all 1 y a confidence sets and Vol C for any set C in
R p is defined as

Vol C s I t g C m dtŽ . Ž . Ž .H
pR

p Ž .with m the Lebesgue measure in R . Stein 1962 also proved that the usual
confidence set cannot be uniformly dominated in false coverage probability by
any 1 y a confidence sets.

Ž .However, Stein 1962 also gave heuristic arguments claiming that the
confidence sets associated with the now well known James]Stein estimators

0Ž .improve upon C X for large dimensions and conjectured that the same
Ž .result holds for all p G 3. It was independently proved in Brown 1966 and

Ž .Joshi 1967 that, where the dimension is 3 or more, confidence spheres
0Ž .centered at a Stein-type estimator and having the same volume as C x for

0Ž .all x can have higher coverage probability than C X for all u . They did not,
however, provide the explicit form of better confidence regions.

Ž . Ž .For about a decade since the work of Brown 1966 and Joshi 1967 , no
significant progress was made in finding specific improved confidence sets for
a multivariate normal mean. This is not because the problem is not statisti-
cally important, but rather because it involves great technical difficulty.
Fortunately, better understanding of Stein phenomena and far greater com-
puter facilities in the past two decades have made some significant break-
throughs in set estimation possible. The literature on this development

Ž . Ž . Ž . Žincludes Faith 1976 , Stein 1981 , Berger 1980 , Hwang and Casella 1982,
. Ž . Ž .1984 , Casella and Hwang 1983, 1986 and Shinozaki 1989 .
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Ž .Faith 1976 developed Bayesian confidence regions and gave convincing
0Ž .numerical and theoretical arguments that they improve upon C X when

the dimension is 3 or 5. Unfortunately, his regions had complicated shapes
Ž .due to their Bayesian derivation. Stein 1981 gave basic formulas for unbi-

ased estimation of the risk of an arbitrary point estimator and utilized them
to suggest some approximate confidence sets. However, the validity of the
approximate confidence regions and their properties were not further studied.

Ž .Berger 1980 considered confidence ellipsoids associated with an admissible
generalized Bayes estimator for the mean vector. He derived necessary and
sufficient conditions under which his sets have uniformly smaller volume
than the usual confidence region. Although uniform dominance results in
coverage probability were not obtained, he gave asymptotic theorems and
convincing numerical evidence that his sets maintain satisfactory coverage
probabilities. A major problem with this confidence set estimation is in its
implementation. It involves complicated calculations for the generalized Bayes
estimator and the inverse of a posterior covariance matrix.

Ž . Ž .Following in the spirit of Stein 1962 , Hwang and Casella 1982, 1984
successfully showed that recentering the usual confidence set to the positive
part of a Stein estimator results in uniform improvement in coverage proba-
bility. The recentered sets have the same volume as the usual one, though.

Ž .Casella and Hwang 1983, 1986 considered recentered sets with variable
radii by empirical Bayes arguments. Although they provided strong numeri-
cal results to support the superiority of their sets, analytical dominance

Ž .results were not obtained. Shinozaki 1989 provided a class of confidence sets
0Ž .and showed that some of them have smaller volume than C X and have the

0Ž .same confidence coefficient as C X . The sets were constructed by shrinking
0Ž .the boundary points of C X toward the origin according to some functions

which were not explicitly defined. The implicit functions used in the construc-
tion made the study concerning the geometry of the confidence sets and their
associated acceptance regions extremely difficult and related questions re-
main unsettled. These are relevant because understanding the geometry of
the associated acceptance regions of confidence sets is very important if the
primary interest is in hypothesis testing.

Our principal goal here is to construct confidence regions which have
0Ž .smaller volume than C X while retaining the constant coverage probabil-

ity. Besides their theoretical importance, these kinds of improved confidence
sets are more desirable in practice. Intuitively, smaller sets cover fewer
points and, hence, are less likely to include false values. In other words, with
the same preset acceptable confidence coefficient, sets with smaller volume

Ž .provide higher precision for the practitioners. In fact, Ghosh 1961 and Pratt
Ž .1961 showed that the expected volume of a confidence region is equal to an
integrated sum of its false coverage probabilities, now known as the
Ghosh]Pratt identity. This identity was used in Cohen and Strawderman
Ž . Ž .1973 and Brown, Casella and Hwang 1995 in establishing volume optimal-
ity results for certain problems.
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Ž .In Section 2 a class of exact confidence sets, denoted by C* X , for u is
proposed through a pseudo-empirical-Bayes construction. The sets have an

Ž .unfamiliar shape, somewhat like an egg see Figure 1, in Section 4. Never-
theless they give spherical, hence, convex acceptance regions. As a result,
they are associated with admissible tests. By its construction, the volume of

Ž . 5 5C* X depends on X only through its Euclidean norm X . In Section 3 we
5 5calculate the asymptotic volume difference, as x tends to infinity, between

0Ž . Ž . Ž .C x and C* x and give conditions such that C* x has a smaller asymp-
Ž .totic volume. In Section 4 we derive sufficient conditions under which C* x

is connected for all x. Theorem 5.3 in Section 5 analytically establishes a
5 5 Ž .value of x after which the volume of C* x is always smaller than that of

0Ž .C x . With this theorem and with help from Section 4, we are able to
provide, in Section 5, a computer-aided proof for the uniform dominance of

Ž . 0Ž . Ž .C* X over C X . Finally, tabular results of the comparison between C* X
and other confidence sets are given in Section 6.

2. Proposed confidence sets. If an improved confidence region is con-
0Ž .structed by recentering C X at a Stein-type estimator, hence keeping the

same volume, one can view the improvement as due to the effect of moving
the usual confidence set toward the origin. This results in a uniform improve-
ment in coverage probability with largest improvement near the origin in the
parameter space. In order to maintain the same constant coverage probability
while decreasing the volume, the same idea of a shrinkage effect is intro-
duced, however, in a different fashion.

Ž .For convenience, we first present the form of our confidence sets, C* X .
Ž .Some immediate properties of C* X and the motivation for its construction

are given in Sections 2.1 and 2.2, respectively.
Ž . Ž .For any nonnegative number d , let c d be the 100 1 y a th percentile of a

noncentral chi-squared distribution with p degrees of freedom and noncen-
trality parameter d . The proposed class of confidence sets for u is

2
2 C* X s u : X y u 1 q g t F c l ,Ž . Ž . Ž . Ž .Ž .½ 5

Ž . Ž .y1 5 5 2 2Ž .where g t s A q Bt , t s u , l s tg t and A, B are positive con-
stants whose values will be specified later.

2.1. Coverage probability and associated acceptance regions. With this def-
inition, automatically we have

P u g C* X s 1 y a ; u ;Ž .Ž .u

0Ž . Ž .that is, like C X , C* X is also an exact 1 y a confidence set for u .
Ž .Another important feature of C* X is the level-a acceptance regions,

Ž .denoted by A* u , for testing the hypotheses0

H : u s u versus H : u / u0 0 1 0
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as given through the usual correspondence

u g C* x iff x g A* u .Ž . Ž .0 0

For any fixed u

5 5 2A* u s x : x y u 1 q g t F c l ,Ž . Ž . Ž .Ž .� 4
Ž Ž ..which is a p-dimensional ball which is centered at u 1 q g t and with

Ž .radius c l , hence a convex set.
Ž .The results of Birnbaum 1955 showed that for this testing problem a

necessary and sufficient condition for a test to be admissible is that it have a
convex acceptance region. Hence we have the following theorem.

THEOREM 2.1. Fix u . For testing H : u s u versus H : u / u , the level-a0 0 0 1 0
Ž .test with A* u as its acceptance region is admissible.0

2.2. Motivation, the pseudo-empirical-Bayes construction. The following
Ž .theorem in Brown, Casella and Hwang 1995 motivates the construction of

the improved confidence sets to be considered. It should be noticed that the
proof of the Brown]Casella]Hwang theorem is essentially based on the

w Ž . Ž .xGhosh]Pratt identity Ghosh 1961 ; Pratt 1961 .

w Ž .x Ž < .THEOREM 2.2 Brown, Casella and Hwang 1995 . Let X ; f x u , u ;
Ž . Ž .p u and define the set C x to bep

m xŽ .p
C x s u : F k u ,Ž . Ž .p ½ 5<f x uŽ .

Ž . Ž < . Ž . Ž .where m x s H f x u p u du and k u is chosen such thatp Q

P u g C X s 1 y a .Ž .Ž .u p

Ž .Then C x minimizes the expected Bayesian volume among all 1 y a confi-p

dence sets.

Notice from their proof that the 1 y a confidence set with smallest ex-
pected volume under the chosen prior p is found by inverting a class of most
powerful tests of

<3 H : X ; f x u versus H : X ; m x ,Ž . Ž . Ž .0 1 p

Ž .where m x is the marginal distribution of X under the prior p .p

Ž . Ž 2 .For the normal case X ; N u , I consider u ; N 0, t I with some posi-p p
tive constant t ; that is,

pr21 1 2< 5 5f x u s exp y x y uŽ . ž / ž /2p 2

and
pr21 1 25 5p u s exp y u .Ž . 2 2ž / ž /2pt 2t



GOOD EXACT CONFIDENCE SETS 2233

Ž . Ž Ž 2 . .The marginal distribution m x of X is N 0, t q 1 I . Most powerfulp p
Ž .tests of 3 accept H iff0

m xŽ .p F some constant
<f x uŽ .

pr2 22 2 5 51r 2p t q 1 exp y 1r 2 t q 1 xŽ . Ž .Ž . Ž .
m F some constantpr2 21 5 51r 2p exp y x y uŽ .Ž . Ž .2

2 22 5 51 q t u
m x y u F c .2 4ž / ž /t t

Hence the confidence set which minimizes the expected Bayesian volume
under p is

2 22 5 51 q t u
4 C x s u : x y u F c .Ž . Ž .p 2 4ž / ž /½ 5t t

2 Ž .We have been treating t as a constant so far, but to utilize 4 to produce
0Ž .confidence sets which have the potential to improve upon C X in terms of

Ž . 26 , t needs to vary with either x or u . Since we are aiming at constructing
confidence sets which have coverage probability exactly 1 y a and smaller
volume than the usual confidence set, we need to replace t 2 by some function
of u instead of a function of x.

In the usual empirical Bayes approach, hyperparameters are typically
estimated from the observation x. As noted above we will instead use a
function of the parameter u to replace the hyperparameter t . We call this
kind of approach a pseudo-empirical-Bayes construction. An intuitive justifi-
cation for this type of approach is that u is more directly related to t 2 than
x. Earlier examples in which replacement of a nuisance parameter by a
function of key parameters leads to better confidence sets than those using a

Ž . Ž .function of x can be found in Hwang 1995 and Huwang 1991, 1995 .
0Ž .Since C X is minimax in terms of expected volume, any 1 y a confi-

0Ž .dence set having smaller volume than C x for all x is minimax itself. A
minimax procedure tries to do as well as possible in the worst case. One
might expect that minimax procedures would be Bayes with least favorable
prior distributions. Along this line, to find reasonable functions of u to

Ž .replace t , let us revisit the previous testing problem 3 . Note that, under H ,0
Ž .X ; N u , I hencep

5 5 2 5 5 2 5 5 2x f E X s p q uŽ .
Ž Ž 2 . .and, under H , X ; N 0, t q 1 I hence1 p

5 5 2 5 5 2 2x f E X s p q pr .Ž .
5 5 2 2For fixed u , if we equate p q u and p q pt we make the hypotheses of

Ž .3 the most difficult to be distinguished, hence the resulting p close to being
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the least favorable distribution. This motivates the choice

5 5 2 2p q u s p q pt ,

which is equivalent to

5 5 2u
25 t s .Ž .

p

5 5 2 2As an added motivation, note that u rp is an unbiased ‘‘estimator’’ of t
Ž 2 .since u ; N 0, t I .p
Ž . 5 5 2Equation 5 motivates a particular linear function of u as a reasonable

replacement for t 2. In this work, we obtain added flexibility by using A q
5 5 2 2 Ž .B u with some positive constants A and B to replace t in 4 ; note that

Ž .5 corresponds to A s 0, B s 1rp. This defines our new class of confidence
sets for u .

3. Asymptotic domination theorems. We consider one confidence set
to be better than another if it has higher coverage probability at the same
time it has no larger volume for every given observation. It was pointed out

Ž .by Joshi 1969 , however, that there is a technical difficulty to be avoided: by
adding measure-zero sets to any confidence set C it is possible to increase its
coverage probability without any increment in its volume. We should, there-
fore, compare confidence set estimators across different equivalence classes.

Ž . Ž .Two confidence sets C X and C X are said to be equivalent if1 2

Vol C x D C x s 0 ; x ,Ž . Ž .Ž .1 2

Ž . Ž . Ž . Ž .where C x D C x is the symmetric difference set of C x and C x . Let1 2 1 2
0 0Ž .CC be the equivalence class containing the usual confidence set C X . We

Ž . 0Ž . Ž . 0say a confidence set C X dominates C X if C X f CC and the following
conditions are satisfied:

i P u g C X G P u g C 0 X ;uŽ . Ž . Ž .Ž . Ž .u u
6Ž .

ii Vol C x F Vol C 0 x ; x ,Ž . Ž . Ž .Ž . Ž .
Ž .Ž . Ž .Ž .with strict inequality either in 6 i for some u or in 6 ii for all x in some

set with positive Lebesgue measure.
0Ž . Ž .Since C X and C* X have the same constant coverage probability, to

Ž . 0Ž .see if, for some choices of A and B, C* X dominates C X under criteria
Ž . Ž .6 , we need to calculate the volume of C* x for all x. In this section we

0Ž . Ž .calculate the asymptotic volume difference between C x and C* x , and we
Ž .give the range for choosing A and B such that C* x has a smaller asymp-

totic volume.
Ž .To understand better the nature of C* X and the results of the asymp-

totic theorems to be presented, we first provide the following remark to
Ž .clarify the relationship between C* X and the usual James]Stein estimator.
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5 5 Ž .REMARK 3.1. For large x , C* x can be related to the recentered set

5 5 2u : d * x y u F c ,Ž .� 4
where

a 1
d * x s 1 y x and a s ,Ž . 2ž / B5 5Aa q x

by the following approximating arguments. First note that

x y u 1 q g s x y g u y x q x y uŽ . Ž .
s 1 y g x y u q g x y uŽ . Ž .
f d * x y uŽ .

5 5since, as x ª `,
1

g f and g x y u f 0.Ž .25 5A q B x

Also it is obvious that
lim c l s c.Ž .

5 5x ª`

Hence
5 5 2C* x f u : d * x y u F cŽ . Ž .� 4

5 5for large x .
It is interesting to note that

1
B G ) 0 m 0 - a F 2 p y 2 .Ž .

2 p y 2Ž .
Since the condition on a is necessary and sufficient for the domination of

Ž .d * X over X as point estimators, it is not surprising to see in the following
theorems that this same condition on B implies asymptotic dominance of

Ž . 0Ž .C* X over C X .

The following lemma is useful in proving the asymptotic theorems and
several other proofs in this paper. For its proof readers are referred to Tseng
Ž .1994 .

Ž . Ž .LEMMA 3.1. For any given 0 - a - 1, let c l be the 100 1 y a th per-
centile of a noncentral chi-squared distribution with p degrees of freedom and
noncentrality parameter l. Then

d f c lŽ .Ž .pq2, l
7 c l sŽ . Ž .

dl f c lŽ .Ž .p , l

c lŽ .
8 F ,Ž .

p

Ž .where f ? is the p.d. f. of a noncentral chi-squared distribution with mm , l

degrees of freedom and noncentrality parameter l.
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The following two theorems state ways to select the positive constants A
Ž .and B in the proposed confidence set C* X such that it dominates the usual

one in volume asymptotically. The proof for Theorem 3.1 is given in the
Appendix and that for Theorem 3.2 is similar and hence omitted.

Ž . Ž 0Ž .. Ž Ž ..For simplicity, let = x s Vol C x y Vol C* x and define constants
py3

p p
j py2k s 2p sin b db and k s sin b dbŽ . Ž .Ł H H0 p

0 0js1

in our presentation hereafter.

Ž .THEOREM 3.1. Suppose A ) 0 and B ) 0 in C* X . Then

Vol C 0 xŽ .Ž .25 5 5 5x = x s 2 B p y 2 y 1 q o 1 as x ª `,� 4Ž . Ž . Ž .22 B

Ž 0Ž .. pr2where Vol C x s k k c rp, which is independent of x.0 p
Ž . Ž .If in addition p G 3 and B ) 1r2 p y 2 , then C* x has an asymptoti-

0Ž .cally smaller volume than that of C x in the sense that
25 5lim x = x ) 0.Ž .

5 5x ª`

Ž .THEOREM 3.2. If A ) 0 and B ) 0 in C* X , then

Vol C 0 xŽ .Ž .25 5A q B x = x s 2 B p y 2 y 1 q o 1� 4Ž . Ž . Ž .Ž .
2 B

5 5 2as A q B x ª `.

Ž .If in addition p G 3 and B ) 1r2 p y 2 , then
25 5lim A q B x = x ) 0.Ž .Ž .

25 5AqB x ª`

REMARK 3.2. The second theorem says that if B is fixed such that
Ž .B ) 1r2 p y 2 , we can find a constant A large enough that the proposed0

Ž . 0Ž . 5 5confidence set C* X dominates the set C X in volume, uniformly in x , if
A ) A . In what follows we construct a moderate value of A under which0

Ž . 0Ž . Ž .C* X dominates C X . In this way C* X is significantly smaller than
0Ž . 5 5 Ž .C X when X is not large. See Section 6.

( )4. The geometry of C* x . In the normality setting, one property that
should reasonably be required of a confidence region is that it be connected.

Ž .In this section, a sufficient condition under which C* x is connected for all x
is derived. We are aware of the possibility of improvement upon the sufficient
conditions to be presented below. However, numerical results show that they
are reasonably good in practice, so we do not pursue further in this direction.

Ž .The following theorem gives conditions under which C* x is a connected
set for all x. The proof for this theorem is long and is given in the Appendix.
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Ž .THEOREM 4.1. The set C* X is connected if A and B are chosen such that
A G 0.5, B ) 0 and

2A A q 3B q 1Ž .'c b F p c min B 3 A q B y 1 , ,Ž . Ž .½ 5B

Ž .where b s 1r 4 AB .

Ž .To understand the geometry of C* X better, we present in the following
some interesting properties concerning its shape. It is clear that the shape of

Ž . 5 5 Ž .C* x depends on x only through x . Thus, to graph the shape of C* x at a
given x, we identify the x-axis with the observation x and vary b, the angle

Ž . Ž .between x and u y x from 0 to p ; then 9 will give a sector of C* x . The
rest of the set is then generated by rotating the sector about the x-axis. Let
PP be the two-dimensional plane with x as one of its axes. The intersection of

Ž . 0Ž .PP and the boundary of C* x , and also that of C x , is graphed in Figure 1
5 5for various values of x when p s 3 and a s 0.05 with A s 1 and B s 0.5.

Ž .Note that in this case b s 0.5, c s 7.8147 and c b s 8.4509. It is then easy
Ž .to see that conditions for the connectedness of C* x for all x hold for this

Ž .choice of A and B. In fact, C* x appears to also be convex in Figure 1.
Ž . 0Ž .Note that when x s 0, C* x is a smaller p-sphere contained in C x ,

5 5and for small to moderate values of x they are more like ‘‘egg-shaped’’ sets.
5 5 Ž . 5 5As x gets large C* x becomes more like a p-sphere again; in fact as x

Ž . 0Ž .tends to infinity C* x and C x tend to coincide. It is interesting to see
Ž . 0Ž .that, in the direction of x, C* x is wider than C x , while it is narrower

0Ž .than C x in the direction which is perpendicular to x. This is a desirable
property for a confidence region of multivariate normal means, as is ex-

wŽ . xplained in Berger 1980 , page 735 .
Ž .Another important result we have on the geometry of C* x is the follow-

Ž .ing lemma, which is used in proving the uniform dominance of C* X over
0Ž . Ž .C X in Section 5. The lemma shows that the radius of the set C* x

increases as the angle b between x and u y x increases from 0 to p . For
w x Ž .fixed b g 0, p , let w b denote this radius; that is, w solves

9 w 2 q l q 2gw w q D cos b s c l .Ž . Ž . Ž .Ž .

LEMMA 4.1. For p G 3, suppose A and B are selected such that B G
Ž .1r2 p y 2 , A G 1, b F c and the following inequalities hold:

1 'A q 1 G Bc b q q 2 B bc b ,Ž . Ž .
4 A
c bŽ .

A q 1 G Bc b q ,Ž .
p

c b 1Ž . 'A q 3 G Bc b q q q 2 B bc bŽ . Ž .
p 4 A
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Ž . Ž . 0Ž . Ž .FIG. 1. The boundaries of C* x solid line and C x dashed line on the two-dimensional
Ž .plane with x as one of its axes, when p s 3 and a s 0.05 with A s 1 and B s 0.5 in C* X .

and

c p p y b p q 2Ž . Ž .
A y 1 q G c b .Ž .ž /p bc q Bp p y b p q 2Ž . Ž .

Ž .Then w B is a nondecreasing function of b.

Ž . Ž .See Tseng and Brown 1995 for the proof, which also shows that w b is
increasing when A s 1.

Table 1 gives the values of A and B satisfying the conditions of Theorem
4.1 and Lemma 4.1 for given p and a .

More remarks about the conditions are in order before we leave this
section.
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TABLE 1
vŽ . Ž . Ž .Values of A satisfying conditions of Theorem 4.1 ) and Lemma 4.1 for B s 1r p y 2

Ž Ž ..and B s 1r 2 p y 2

( ) ( ( ))B s 1 rrrrr p I 2 B s 1 rrrrr 2 p I 2

a s 0.05 a s 0.1 a s 0.05 a s 0.1

v v v vp * * * )))))

3 0.50 9.52 0.50 7.43 0.93 5.71 0.86 4.42
4 0.78 6.27 0.73 4.99 1.49 4.06 1.39 3.22
5 1.01 5.09 0.95 4.20 1.87 3.45 1.75 2.80
6 1.17 4.46 1.11 3.79 2.16 3.12 2.03 2.57
7 1.31 4.05 1.24 3.54 2.40 2.90 2.27 2.43
8 1.42 3.77 1.35 3.36 2.61 2.75 2.47 2.33
9 1.51 3.56 1.44 3.24 2.79 2.63 2.64 2.27

10 1.60 3.44 1.52 3.14 2.96 2.54 2.81 2.22
11 1.68 3.33 1.60 3.06 3.11 2.46 2.95 2.19
12 1.75 3.25 1.67 3.00 3.25 2.40 3.09 2.16
13 1.82 3.18 1.74 2.95 3.37 2.35 3.22 2.13
14 1.88 3.12 1.80 2.90 3.49 2.30 3.33 2.11
15 1.94 3.07 1.86 2.86 3.61 2.26 3.45 2.09
16 1.99 3.03 1.91 2.83 3.72 2.22 3.55 2.07
17 2.05 2.99 1.97 2.80 3.82 2.19 3.66 2.06
18 2.10 2.96 2.02 2.77 3.92 2.16 3.76 2.04
19 2.15 2.93 2.06 2.75 4.01 2.14 3.85 2.03
20 2.19 2.90 2.11 2.73 4.11 2.11 3.94 2.02
21 2.24 2.87 2.15 2.71 4.19 2.10 4.03 2.01
22 2.28 2.85 2.20 2.69 4.28 2.09 4.11 2.00

REMARK 4.1. To understand the conditions of Theorem 4.1 and Lemma 4.1
better, note that for fixed p, a and B these conditions hold for all A G A if2 1
they hold when A s A .1

Ž .To see why, note that when B is fixed b s 1r 4 AB is a decreasing
Ž .function of A. Hence c b is also decreasing in A. However,

2A A q 3B q 1Ž .'p c min B 3 A q B y 1 ,Ž .½ 5B

is an increasing function of A. Also note that all the left-hand sides of the
four inequalities in Lemma 4.1 increase with A, while the right-hand sides
decrease with A.

Ž .REMARK 4.2. It is interesting to see how the volume of C* x changes
with various choices for the constants A and B. In Figure 2 plots of the

Ž . 0Ž .volume of C* x against that of C x are given for p s 3 with several
5 5different values of A and B. The improvement in volume for small x is

substantial when both A and B are small. The largest improvement in
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Ž . Ž . 0Ž . Ž .FIG. 2. Plot of the volume of C* x solid line and that of C x dashed line when a s 0.05
Ž .and p s 3, with various choices of A and B in C* X .

Ž .volume is when x s 0 for all A and B. It is easy to see that, for a fixed A B ,
Ž . 5 5smaller B A gives better performance for small x , at the minor price of

5 5slightly worse performance for large x . In fact, this is as expected if we
recall that the variance parameter t 2 in the normal prior we used was

5 5 2 Ž .replaced by A q B u in the construction of C* X .
Ž .In the graph having B s 0.4, which is smaller than 1r2 p y 2 s 0.5, it is

interesting to see that, even though the improvement at x s 0 is larger than
Ž . 0Ž .that when B s 0.5, C* x has larger volume than C x at moderate values

5 5of x . This is not surprising in view of Theorem 3.1 or Corollary 5.1.

From the two remarks above, for fixed B we will choose the smallest value
of A which satisfies the required conditions in Theorem 4.1 and Lemma 4.1
in later development of this paper.



GOOD EXACT CONFIDENCE SETS 2241

REMARK 4.3. Easy calculations show that the conditions of Theorem 4.1
Ž .imply the set C* x is a p-sphere, a convex set, when x s 0.

REMARK 4.4. It is interesting to note that the condition b F c implies that
Ž .x g C* x for all x. Hence, for given p and a , if the constants A and B are

Ž . Ž .chosen such that b s 1r 4 AB F c, then for all x the set C* x is not an
empty set.

Ž .5. Uniform domination. We have seen in Section 2 that C* X has a
constant coverage probability 1 y a at any given value u . To show it domi-

0Ž . Ž . Ž .nates C X under 6 one needs to prove that C* x has smaller volume
0Ž .than C x for all x in some set with positive Lebesgue measure. In this

Ž .section, we present an algorithm for a computer aided proof that C* x has
0Ž .uniformly smaller volume than C x .

First we describe the analytical results which are needed in the algorithm.
w x 5 5To simplify the presentation hereafter, for given b g 0, p and D s x G 0

we use the following notation in this section:

V# x s Vol C* x ,Ž . Ž .Ž .
V s Vol C 0 x ,Ž .Ž .0

d
J D s Vol C* x ,Ž . Ž .Ž .

dD

V# x s the computer output for Vol C* xŽ . Ž .Ž ., c

s V# x q « ,Ž .
V s the computer output for Vol C 0 xŽ .Ž .0, c

s V q « ,0

where « denotes the generic error term due to numerical integrations. Also
Ž < .let w b D be the w solving the equality

10 w 2 q l q 2gw w q D cos b s c lŽ . Ž . Ž .
and

d
< <c b D s w b D .Ž . Ž .

dD

Ž .We use the following results to prove the uniform dominance of C* X
0Ž .over C X :

Ž . Ž Ž .. Ž 0Ž .. Ž .i at x s 0, Vol C* 0 - Vol C 0 see Theorem 5.1 ;
Ž . Ž . Ž .ii a uniform upper bound U for J D see Theorem 5.2 .

Ž .This number U gives, by the mean value theorem, the worst V# x in a
neighborhood of any given x one can possibly have; that is, we have0

V# x F V# x q U D y D ,Ž . Ž . Ž .0 0
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5 5 5 5 Ž . Ž .where D s x and D s x . Hence the worst value for V# x is V# x q0 0 0
Ž . Ž . Ž .U D y D . So if we know that V# x - V , we can be sure that V# x - V0 0 0 0

for those x ’s such that

V y V# xŽ .0, c , c 0
D F D q0 U

Ž . Ž .by controlling the numerical errors such that V y V# x - V y V# x .0, c , c 0 0 0
Ž . Ž . Ž .see Remark 5.1. However, from i we know that V# 0 - V ; so we begin0

Ž .with x s 0, that is, D s 0, and we need to calculate V# x for the0 0 , c
sequence of x ’s with Euclidean norms 0, D , D , . . . , where1 2

V y V# xŽ .0, c , c iy1
D s D q for i s 1, 2, . . . ,i iy1 U

5 5and for any x with x smaller than the maximum D value we have
Ž . Ž .calculated for V# x we then know that V# x F V ., c 0

To complete the proof for the uniform dominance, however, we need to be
Ž .able to stop calculating for V# x at some point:, c

Ž . Ž . 5 5 Žiii a value D# such that V y V# x G 0 for all x with x G D# see0
.Theorem 5.3.

Ž .Hence the maximum value of D for which we have to calculate V# x, c
is D#.

< Ž . < < Ž . <REMARK 5.1. To make sure that V y V# x - V y V# x , a GAUSS0, c , c 0
Ž . Ž < .program is used to calculate V# x with slightly larger radii w b D for, c

many b ’s and to calculate V with a slightly smaller c. That is,0, c

V# x s V# x y « ,Ž . Ž ., c 1

V s V q « ,0 0, c 2

where both « and « are positive error terms due to numerical integrations.1 2
Ž .Hence if at some values of x our numerical results say V# x - V , then, c 0, c

V# x s V# x y « - V y « s V y « y « - V ;Ž . Ž ., c 1 0, c 1 0 2 1 0

Ž . 0Ž .that is, at those x ’s, the volume of C* x is truly smaller than C x . A
macro called INTSIMP in GAUSS is used to calculate

pk0 py2 p <Vol C* x s sin bw b D db ,Ž . Ž .Ž . Hp 0

Ž < . Ž .using a slightly larger w b D found by a dichotomy method using 10 . The
program is run on a 486DX personal computer and the error term in
INTSIMP is set to be at the order of 10y7.

Ž . Ž .Now, we present our analytical results for i and ii . Notice that we
assume the conditions of Lemma 4.1 in the theorem and lemma below;

Ž .therefore the uniform dominance theorem holds only for C* X with properly
selected constants A and B.
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Ž .THEOREM 5.1. Assume the conditions of Lemma 4.1. Then C* 0 is a
0Ž . Ž Ž .. Ž 0Ž ..subset of C 0 , that is, Vol C* 0 - Vol C 0 .

0Ž . � 4 Ž . � Ž .2 Ž .4PROOF. At x s 0, C 0 s u : t F c and C* 0 s u : t 1 q g F c l ;
5 5 2 Ž .y1 2recall that t s u , g s A q Bt and l s tg . It suffices to show, for

t ) c,
211 t 1 q g ) c l .Ž . Ž . Ž .

Note that we need only the condition

c bŽ .
A q 1 G Bc b qŽ .

p

since it implies

2 A q 1 q 2 Bc y c b rp ) 0.Ž .
Ž . Ž . Ž . Ž . Ž .This proves 11 since c l F c q c b lrp, g t s A q Bt l and hence 11

holds if

c bŽ .
t y c q l 2 A q 2 Bt q 1 y ) 0½ 5p

for t ) c. I

Ž . Ž .Ž Ž Ž .. 5 5THEOREM 5.2. Let J D s drdD Vol C* x , where D s x . Assume
Ž .the conditions of Lemma 4.1 and A G 2 p y 2 rc. Then

pp pr2M py1
1

J D F ,Ž .
G pr2 q 1Ž .

''where m s c b q b .Ž .1

Two preliminary results are useful in proving this theorem. Their proofs
are given in the Appendix.

w xLEMMA 5.1. Assume the conditions of Lemma 4.1. For given b g 0, p
Ž < .and D G 0, let w b D be the w solving the equality

w 2 q l q 2gw w q D cos b s c l .Ž . Ž .
Then

<M F w b D F M ; b and D ,Ž .0 1

' 'where M s c y b .0

LEMMA 5.2. Assume the conditions of Lemma 4.1. If in addition A G
Ž .2 p y 2 rc, then

<c b D F 1 ; b g 0, p and D G 0,Ž .Ž .
Ž < . Ž . Ž < .where c b D s drdD w b D .
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PROOF OF THEOREM 5.2. We have

pk0 py2 p <Vol C* x s sin bw b D db ,Ž . Ž .Ž . Hp 0

Ž < .by the definition of w b D , and this implies
p

py2 py1 < <J D s k sin bw b D c b D dbŽ . Ž . Ž .H0
0

p
py1 py2 <F k M sin bc b D db by Lemma 5.1Ž .Ž .H0 1

0

F k k M py1 by Lemma 5.2Ž .0 p 1

pp pr2M py1
1s ,

G pr2 q 1Ž .
where the last equality is implied by an easy calculation for k k . I0 p

Ž .The next result we need is to find a D# such that V y V# x G 0 for all x0
5 5with x G D#. For given p and a , we use the following theoretical approach

to find a number for D#:
If we correctly bound all of the remaining terms of all the approximation

equalities we have in the proof of Theorem 3.1, we have the following
inequality:

V y V# x G Dy2 L y Dy4 L ,Ž .0 1 2

where
2 B p y 2 y 1Ž .

pr2L s k k c1 0 p 22 pB

and L is a positive constant resulting from the bound for the remaining2
terms. Therefore, to find D# such that

5 5V y V# x G 0 ; x s.t. x G D#,Ž .0

it is sufficient to find the smallest D such that

Dy2 L y Dy4 L G 0.1 2

From this, a theoretical value for D# is L rL .' 2 1
There are several untidy constants resulting from the bounds for all the

y4 Ž 0Ž .. Ž Ž ..D or for smaller order terms when calculating Vol C x y Vol C* x .
The calculations are very long and tedious. Hence, for convenience, we
present here only the consequent theorem and for the details readers are

Ž .referred to Tseng 1994 .

THEOREM 5.3. Assume the conditions of Lemma 4.1. Then
0 5 5Vol C x y Vol C* x G 0 ; x with x G D#,Ž . Ž .Ž .Ž .

where D# is a constant depending on A, B, p and a .
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Table 2 gives the values D# with A and B satisfying the conditions of
Lemma 4.1 for given p and a . It can be seen that Theorem 5.3 gives
reasonably small values for D#. This makes the described process for proving

Ž . 0Ž .the uniform dominance of C* X upon C X computationally feasible. For
example, when p s 3 and a s 0.05, D# is 49.208. This means that, for all x

5 5 Ž . 0Ž .with x G 49.208, we know that C* x has a smaller volume than C x .
Ž .Therefore, to finish the whole proof we only need to follow ii and calculate

Ž Ž .. 5 5Vol C* x at various values of x smaller than 49.208.
Ž . Ž .Notice that both the constant U in ii and D# in iii depend on the

dimension p and the confidence coefficient 1 y a . Therefore, for a given pair
Ž .of p and a we can calculate a sequence of V# x ’s in the way described in, c

Ž . Ž . Ž .ii and iii and complete the proof that C* x has uniformly smaller volume
0Ž .than C x . Thus we have the following corollary.

Ž .COROLLARY 5.1. Assume the conditions in Lemma 4.1 and A G 2 p y 2 rc.
If the procedure described above is followed completely for a given pair of

Ž . 0Ž .0 - a - 1 and p G 3. Then C* x has uniformly smaller volume than C x
for those values of a and p.

Ž .As a consequence, C* X is also minimax.

TABLE 2
Theoretical values of D#

a s 0.05 a s 0.1

p B A D##### A D#####

3 1 9.52 49.208 7.43 45.849
4 0.5 6.27 52.228 4.99 49.753
5 1r3 5.09 57.159 4.20 55.542
6 0.25 4.46 64.588 3.79 60.984
7 0.2 4.05 69.304 3.54 67.151
8 1r7 3.77 73.971 3.36 74.265
9 1r6 3.56 82.770 3.24 79.965

10 0.125 3.44 86.908 3.14 87.772
11 1r9 3.33 96.261 3.06 97.164
12 0.1 3.25 101.40 3.00 102.394
13 1r11 3.18 110.032 2.95 111.228
14 1r12 3.12 120.061 2.90 121.314
15 1r13 3.07 130.381 2.86 131.684
16 1r14 3.03 140.997 2.83 142.316
17 1r15 2.99 147.280 2.80 153.273
18 1r16 2.96 163.102 2.77 164.560
19 1r17 2.93 174.618 2.75 176.065
20 1r18 2.90 186.431 2.73 189.317
21 1r19 2.87 198.597 2.71 207.157
22 0.05 2.85 210.930 2.69 219.788

Ž .Note: B is taken to 1r p y 2 here.
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TABLE 3
0Ž . Ž . Ž .Ratio of the effective radii RER of C* x and C x at x s 0

a s 0.05 a s 0.1

p B A RER A RER

3 1 9.52 0.946 7.43 0.932
4 0.5 6.27 0.919 4.99 0.901
5 1r3 5.09 0.90 4.20 0.882
6 0.25 4.46 0.888 3.79 0.869
7 0.2 4.05 0.878 3.54 0.860
8 1r6 3.77 0.869 3.36 0.852
9 1r7 3.56 0.862 3.24 0.846

10 0.125 3.44 0.857 3.14 0.841
11 1r9 3.33 0.852 3.06 0.837
12 0.1 3.25 0.848 3.00 0.834
13 1r11 3.18 0.845 2.95 0.831
14 1r12 3.12 0.842 2.90 0.828
15 1r13 3.07 0.839 2.86 0.825
16 1r14 3.03 0.837 2.83 0.823
17 1r15 2.99 0.834 2.80 0.821
18 1r16 2.96 0.832 2.77 0.819
19 1r17 2.93 0.830 2.75 0.817
20 1r18 2.90 0.828 2.73 0.816

Ž .Note: B is taken to 1r p y 2 here.

Ž . Ž .For an illustration of using i ] iii to prove the uniform dominance of
Ž . 0Ž .C* X over C X for various values of p and a , the reader is referred to

Ž .Tseng 1994 . In short, the described algorithm is completely followed in
Ž .Tseng 1994 for a s 0.05 and p s 3, 4, 5, 9 or 10. Table 3 gives the ratio of

Ž . Ž .the effective radii this is defined in Section 6 of C* x , with A and B
0Ž .satisfying the conditions of Corollary 5.1, and C x at x s 0 for a s 0.05 or

0.1 and p s 3, . . . , 20.

6. Comparison with other confidence regions. As mentioned in the
Introduction, several other confidence regions have been proposed since the

Ž . Ž .works of Brown 1966 and Joshi 1967 . Unfortunately, it is impossible to
Ž .make the comparison of C* X with all of them. Therefore, here we compare

Ž .our confidence sets with the usual one, the ones given in Berger 1980 and
Ž .those considered by Casella and Hwang 1983 .

Comparisons between the two confidence sets are made in terms of the
ratio of the effective radii of these sets. More precisely, the ratio of the

Ž . Ž .effective radii of C x and C x is defined as1 2

1rp
Vol C xŽ .Ž .1

.
Vol C xŽ .Ž .2

Ž .This is proposed by Faith 1976 to make the comparison between confidence
sets more nearly independent of the dimension p.
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TABLE 4
0Ž . Ž .Ratio of the effective radii of C* X and C X

Norm of x

p 0 1 2 4 6 8 10 20

3 0.837 0.853 0.892 0.971 0.997 0.999 0.999 0.999
6 0.745 0.761 0.798 0.885 0.947 0.979 0.991 0.999

12 0.699 0.709 0.734 0.805 0.872 0.923 0.956 0.996

Ž ..Note: a s 0.05, A s 1 and B s 1r2 p y 2 for each p.

Ž .In Table 4 the ratio of the effective radii of C* x , with A s 1 and
Ž . 0Ž . 5 5B s 1r2 p y 2 , and C x is given for various values of x with p s 3, 6

Ž . 0Ž .and 12 and a s 0.05. It can be seen that C* x is clearly smaller than C x .
5 5In particular, the improvement can be substantial for small x and large p.

Ž . 0Ž .This suggests that C* X is superior to C X for small area estimation
problems.

Table 5 gives the comparison of our confidence sets with the ones in Berger
Ž . Ž .1980 and Casella and Hwang 1983 for p s 6 and 12 with a s 0.1. The

Ž .constant A in C* X is taken to be 1 and two choices of B are considered;
Ž . Ž .B s 1r2 p y 2 and B s 1r p y 2 . Since their confidence sets have higher

coverage probability, by trading coverage probability for volume it is not
Ž .surprising that C* x has smaller volume. Table 5 shows that, for both

Ž . Ž .B s 1r2 p y 2 and B s 1r p y 2 , this is the case. In these comparisons
we observe the following: for a fixed p, the improvement is greater for

TABLE 5
Ž . Ž . Ž .Comparison of C* X with those in Berger 1980 and Casella and Hwang 1983 :

0Ž .ratio of the effective radii with C x

Norm of x

0 1 2 4 6 8 10 20 50

p s 6
Casella and 0.881 0.881 0.881 0.943 0.978 0.989 0.993 0.998 0.999

Hwang
Berger 0.816 0.822 0.840 0.908 0.960 0.978 0.986 0.997 0.999

Ž .C* x , B s 1r8 0.717 0.736 0.780 0.879 0.947 0.980 0.992 0.999 0.999
Ž .C* x , B s 1r4 0.775 0.793 0.833 0.912 0.958 0.977 0.996 0.999 0.999

p s 12
Casella and 0.821 0.821 0.821 0.821 0.941 0.971 0.983 0.996 0.999

Hwang
Berger 0.764 0.766 0.772 0.806 0.875 0.931 0.957 0.990 0.998

Ž .C* x , B s 1r20 0.679 0.690 0.717 0.794 0.868 0.922 0.956 0.996 0.999
Ž .C* x , B s 1r10 0.729 0.741 0.769 0.840 0.898 0.935 0.957 0.989 0.998

Note: a s 0.1 and A s 1.
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TABLE 6
0Ž . Ž .Ratio of the effective radii of C* X and C X when p s 6 and a s 0.1 with A and B satisfying

the conditions of Theorem 4.1 and Lemma 4.1

Norm of x

0 1 2 4 6 8 10 20 50

Casella and 0.881 0.881 0.881 0.943 0.978 0.989 0.993 0.998 0.999
Hwang

Berger 0.816 0.822 0.840 0.908 0.960 0.978 0.986 0.997 0.999
Ž .C* x , B s 0.125

A s 2.03 0.788 0.797 0.823 0.889 0.943 0.973 0.987 0.999 0.999
A s 2.57 0.811 0.819 0.839 0.895 0.943 0.971 0.986 0.998 0.999
Ž .C* x , B s 0.25

A s 1.11 0.782 0.799 0.836 0.912 0.957 0.977 0.985 0.996 0.999
A s 3.79 0.869 0.875 0.890 0.929 0.959 0.976 0.985 0.996 0.999

5 5 5 5smaller x . When x is large, these three sets are not very different from
each other; neither are they significantly different from the usual one.

Ž .Note that, even though the numerical results show C* X is better than
0Ž .C X for the A and B used in Tables 4 and 5, we have not proved it

0Ž .dominates C X for those values since they do not satisfy the conditions of
Ž . 0Ž .Lemma 4.1. Table 6 gives the ratio of the effective radii of C* x and C x

when p s 6 and a s 0.1 with A and B satisfying the conditions of Theorem
Ž . Ž .4.1 and Lemma 4.1 see Table 1 . With these choices of A and B, C* x still

has satisfactory performance except for the case where A s 3.79 and B s
0.25. In that case, Berger’s confidence region, which has, however, a probabil-
ity of coverage smaller than 0.9 for a range of u , has smaller volume when
5 5x is small. Nevertheless, this indicates that the sufficient conditions we

Ž . 0Ž .have for the dominance of C* X over C X are not entirely satisfactory.
There appears to be room for improvement and we defer this problem for
future study.

APPENDIX

Ž .PROOF OF THEOREM 3.1. First note that both g s g t and l depend on u
5 5only through u . Then

u g C 0 x C* x iff Pu g C 0 Px C* Px ,Ž . Ž . Ž . Ž .Ž . Ž .
where P is any p = p orthogonal matrix. Therefore, without loss of general-

Ž . 5 5ity we can assume that x s x , 0, . . . , 0 9, where x G 0. Let w s u y x ,1 1
5 5 w x Ž .D s x s x , b g 0, p s.t. u y x 9x s wD cos b, and h s w q D cos b. Then1

5 5 2x y u 1 q g tŽ .Ž .
5 5 2 2 5 5 2s x y u q g t u y 2g t u 9 x y uŽ . Ž . Ž .

s w 2 q g 2 t t y 2g t u y x 9 x y u y 2g t x9 x y uŽ . Ž . Ž . Ž . Ž . Ž .
s w 2 q l q 2gwh .
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Thus, for any fixed x,

5 5 2C* x s u : x y u 1 q g t F c lŽ . Ž . Ž .Ž .� 4
s u : w , b s.t. w 2 F c l y l y 2gwh .� 4Ž .

Ž .The idea is for any given x to approximate the term c l y l y 2gwh, for u
Ž . Ž .on the boundary of C* x , by a function of D and b, say R D, b . Then the

0Ž . Ž .difference in volume between C x and C* x can be approximated as

pk0 py2 pr2 pr2sin b c y R D , b db ,Ž . Ž .Hp 0

Ž y2 .which under the described condition is then shown to be a O D term with
positive coefficient if p G 3.

Define

A q B w 2 q 2wD cos bŽ .
W s .2 2BD q A q B w q 2wD cos bŽ .

Ž y1 .Then it is easy to see that W s O D as D ª `, since A and B are
constants and w is bounded.

Now, by the definition of g ,

1
g s 2 2A q B D q w q 2wD cos bŽ .

1
s 1 y WŽ .2BD

12Ž . 2 21 2w cos b A q Bw A q B w q 2wD cos b WŽ .Ž .
s 1 y q y2 2 2ž /DBD BD BD

1 2w cos b
y3 y1s 1 y q o D since W s O D .Ž . Ž .2 ž /DBD

This implies that

l s tg 2 t s D2 q w 2 q 2wD cos b g 2 tŽ . Ž .Ž .
1 1 w 2 q 2wD cos b 22s q W y 2W q 1 y W .Ž . Ž .2 2 2 2 2 4B D B D B D

Hence

1
y213 l s q o D .Ž . Ž .2 2B D
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Ž .Now, by 12 and easy calculations, we have

2wh
2wgh s 1 y WŽ .2BD

1 2w cos b
y3s 2wh 1 y q o D by 12Ž . Ž .2 DBD

14Ž .

2w 2 y 4w 2 cos2 b 2w cos b
y3s q q o D .Ž .2 BDBD

Ž .For the term c l , the Taylor series approximation gives

d
c l s c q c l l q o l , for l f 0Ž . Ž . Ž . Ž .

dl ls0

f c lŽ .Ž .pq2, ls c q l q o l by Lemma 3.1Ž . Ž .
f c lŽ .Ž .p , l ls0

15Ž .

c
y2s c q q o D ,Ž .2 2pB D

Ž .where the last equality is implied by 13 .
Ž . Ž . Ž . Ž .Therefore by 13 , 14 and 15 , on the boundary of C* x we have the

following equalities:

w 2 s c l y l y 2gwhŽ .
c 1 2w 2 y 4w 2 cos2 b 2w cos b

y2s c q y y y q o DŽ .2 2 2 2 2 BDpB D B D BD

2w cos b
y1s c y q o D ,Ž .

BD

which implies

2w cos b
y1w s c y q o DŽ .( BD

w cos b
y1's c y q o DŽ .'BD c

cos b
y1's c y q o D .Ž .

BD

Ž .Applying this to 14 we have

2w 2 y 4w 2 cos2 b 2w cos b
y22wgh s q q o DŽ .2 BDBD

16Ž .
22 cos b

2 y2's c q c D cos b y y 2c cos b q o D .Ž .2 ž /BBD
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Define
2 2'c y p y 2 pB c q c D cos b q 2 p cos b q 4 pBc cos bŽ .

D b s .Ž . 2 2pB D

Ž . Ž y1 .Then D b s O D .
Ž . Ž . Ž .Hence by applying 13 , 15 and 16 we have, for large D,

c l y l y 2gwh s R D , b ,Ž . Ž .
where

R D , b s c q D b q o Dy2 .Ž . Ž . Ž .
Therefore when D is large

C* x s u : w , b s.t. w 2 F R D , b� 4Ž . Ž .
s u : w , b s.t. w 2 F c q D b q o Dy2 .� 4Ž . Ž .

Note that a Taylor series approximation gives
pr2y2D b q o DŽ . Ž .

1 qž /c
2y2 y2p D b q o D 1 p p D b q o DŽ . Ž . Ž . Ž .

s 1 q q y 1ž / ž /2 c 2 2 2 C17Ž .

q o Dy2Ž .
2p D b p p y 2 D bŽ . Ž . Ž . y2s 1 q q q o D .Ž .ž /2 c 8 c

Now we can calculate the volume difference for large D as

= x s du y duŽ . H H
0� Ž .4 � Ž .4ugC x ugC* x

pk pr20 py2 pr2 y2s sin b c y c q D b q o D dbŽ . Ž . Ž .Ž .Hp 0

pr2y2
pk D b q o DŽ . Ž .0 pr2 py2s c sin b 1 y 1 q dbŽ .H ž /p c0

2
p D b p y 2 D bŽ . Ž . Ž .

pr2 py2 y2s k c sin b y y db q o DŽ . Ž .H0 22c 8c0

2
p D b p y 2 4c cos bŽ .

pr2 py2 y2s k c sin b y y db q o DŽ . Ž .H0 2 2 22c 8c B D0

k k c pr2
0 p y2s 2 B p y 2 y 1 q o D ,� 4Ž . Ž .2 22 pB D
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Ž .where the fourth equality followed from 17 and the last equality followed
from the facts that

p p kppy2 py2 2sin b cos b db s 0 and sin b cos b db s .Ž . Ž .H H p0 0

That is,

Vol C 0 xŽ .Ž .
2D = x s 2 B p y 2 y 1 q o 1 ,� 4Ž . Ž . Ž .22 B

since it is easy to see that
pr2k k c0 p0 0Vol C x s I u g C x du s .Ž . Ž .Ž . H

p pR

But for p G 3 and B ) 0

1
2 B p y 2 y 1 ) 0 iff B ) .� 4Ž .

2 p y 2Ž .
This completes the proof. I

Ž .Theorem 3.1 of Casella and Hwang 1983 is used in the proof of Theorem
4.1. The translated form of the Casella]Hwang theorem in the present
context is the following.

w Ž .x Ž .THEOREM A.1 Casella and Hwang 1983 . The set C* x is connected for
Ž .any given x iff the set C D is an interval for any given D G 0, where

<C D s t G 0: H t D F c l ,� 4Ž . Ž . Ž .
2 2t t

<H t D s t q y D and l s .Ž . 2 2ž / 2A q Bt A q BtŽ .

Ž . Ž 2 . Ž . Ž .PROOF OF THEOREM 4.1. Let g t s 1r A q Bt and g t s t q tg t .
Then

2<H t D s g t y D ,Ž . Ž .Ž .
and

d
2 2 4 2 2<H t D s 2 g t y D A q A q B t q Bt 2 A y 1 g t .Ž . Ž . Ž . Ž .

dt

Ž .An easy calculation shows that g t is strictly increasing from 0 to ` in
w . Ž .0, ` provided that A G 0.5; hence there is a unique t s t D such that0 0
Ž < .H t D s 0.0

2 Ž 2 .2Since l s t r A q Bt , we have

d y32 2l s 2t A y Bt A q Bt ,Ž . Ž .
dt

'which has zeros at 0 and t *, where t * s ArB .
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Ž 2 2 . <Also it is easy to check that d rdt l - 0. Thus we have the follow-tst *
Ž .ing facts about the noncentrality l as a function of t : 1 it is an increasing

w x Ž . w . Ž .function on 0, t * ; 2 it is a decreasing function on t *, ` ; and 3 it has its
< Ž . 'maximal value b, which is defined to be l s 1r 4 AB , at t * s ArB . Astst *

a result, and applying Lemma 3.1, we have

d d d
c l s l c lŽ . Ž .

dt dt dl

w¡) 0, on 0, t * ,.d f c lŽ .Ž .pq2, l ~s l - 0, on t *, ` ,Ž .dt f c lŽ .Ž . ¢p , l s 0, at t *,

Ž Ž .. Ž Ž ..since f c l rf c l is a positive number.pq2, l p, l

Ž .Hence the function c l behaves similarly to the function l; that is, as a
Ž . w x w .function of of t , c l increases on 0, t * , decreases on t *, ` , has its maximal

Ž . 'value c b at t * s ArB and also tends to c as t tends to 0 or ` since l
tends to 0 in both cases.

Ž .The goal is to prove the set C D is an interval for any given D G 0, where

<C D s t G 0: H t D F c l .� 4Ž . Ž . Ž .
Ž . Ž .Let the two sets C D and C D be defined as1 2

� 4C D s C D l t : t F t ,Ž . Ž .1 0

� 4C D s C D l t : t G t .Ž . Ž .2 0

Ž . Ž . Ž .Then C D s C D j C D .1 2
Note that

<H t D s 0 by the definition of t , and c l G 0 for all t G 0,Ž .Ž .0 0

which implies

t g C D l C D that is, C D l C D / B,Ž . Ž . Ž . Ž .0 1 2 1 2

and we have the following fact:

Ž . Ž . Ž .FACT A.1. C D is an interval iff C D and C D are intervals.1 2

Ž .CLAIM A.1. C D is an interval.1

Ž .PROOF OF THE CLAIM. On C D , t F t .1 0
There are two possibilities for the relationship between t * and t :0

Ž < . Ž .Case 1. t F t *. In this case, the function H t D y c l is decreasing on0
w x Ž .0, t , thus C D is an interval.0 1

Case 2. t ) t *. We have the following subcases.0
Ž < . w x Ž .Case 2.1. H t D F c for all t g 0, t . Obviously C D is an interval.0 1
Ž < . w xCase 2.2. H t D ) c for some t g 0, t . Then there is a unique number0
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Ž . Ž < . Ž < . w .t s t D such that H t D s c since H t D is strictly decreasing on 0, t1 1 1 0
Ž < .and H t D s 0.0

Ž .Case 2.2.1. t F t *. Obviously C D is an interval.1 1
Ž < . w xHence, we are left to consider the case that H t D ) c for some t in 0, t 0

and t G t ) t *.0 1
Ž . Ž < .To prove that C D is an interval for the case that H t D ) c for some1

w x Ž < .t g 0, t and t G t ) t *, it suffices to prove that the function H t D y0 0 1
Ž . w x w xc l is decreasing on 0, t ; in fact we only need to prove that on t *, t ,1 1

Ž . � Ž . w x4 w x Ž < . Ž .since we can write C D s C D l 0, t j t , t and H t D y c l is1 1 1 1 0
w .decreasing on 0, t * .

Ž . Ž . Ž < . Ž . Ž .Define W t s drdt H t D y drdt c l , for t G 0. Then we want to
Ž . w xshow that W t - 0 on t *, t if A and B are selected as described in the1

theorem.
Ž x 2Note that on t *, t , Bt y A ) 0,1

1
y2g t W tŽ . Ž .

2
2 2 4 2s g t y D A q A q B t q Bt 2 A y 1Ž . Ž .

t Bt 2 y A f c lŽ . Ž .Ž .pq2, lq 2 f c lA q Bt Ž .Ž .p , l

2t Bt y A c bŽ . Ž .
2 2 4 2- g t y D A q A q B t q Bt 2 A y 1 qŽ . Ž . 2 pA q Bt

2t Bt y A c bŽ . Ž .
2 2 4 2'- y c A q A q B t q Bt 2 A y 1 qŽ . 2 pA q Bt

1
s MM ,2p A q BtŽ .

where

MM s yAt c b q Bt 3c bŽ . Ž .
2 2 2 4 2'y p c ABt A q A q B t q Bt 2 A y 1 .Ž . Ž .

We have applied Lemma 3.1 for the first inequality, and used the fact that

' w xg t y D F y c on t *, t ,Ž . 1

by the definition of t , for the second inequality.1
Ž . w xWe want to show that MM F 0, hence W t - 0, on t *, t if A and B are1

selected as described in the theorem. Two cases are to be considered:
Case 1. t G 1. Hence t 3 F t n, ; n G 3. Thus,

3 2 3 2'MM F t Bc b y p c AB q B q B 2 A y 1Ž . Ž .� 4
'F 0 if c b F p c B 3 A q B y 1 .Ž . Ž .
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Case 2. t - 1. Hence t 3 F t n, ; n F 3. Thus
3 2 2'MM F t Bc b y p c A A q A q 2 AB y B q B A q AŽ . Ž . Ž .� 4

2A A q 3B q 1Ž .'F 0 if c b F p c .Ž .
B

Ž .This proves that C D is an interval, for all D G 0 provided that A and B1
satisfy the condition described in the theorem. By similar arguments, we can

Ž .prove that C D is an interval, for all D G 0, under the same condition, by2
proving that

w xW t ) 0 on t , t * ,Ž . 2

where
<t uniquely solves H t D s c on t , t * .Ž . Ž .2 0

Ž .Therefore, C D is an interval, for all D G 0 provided that A and B satisfy
the condition described in the theorem. Finally, applying Theorem A.1 we

Ž . phave proved that the confidence set C* x is connected for any x g R if A
and B satisfy the condition described in the theorem. I

PROOF OF LEMMA 5.1. From the proof of Lemma 4.1, we have, for all
D G 0,

<w F w b D F w ; b g 0, p ,Ž .Ž .0 1

Ž < . Ž < .where w s w 0 D and w s w p D .0 1
Hence if we show that

w G M and w F M ,0 0 1 1

then we prove this lemma.
5 5 2 2 2First note that, when b s p , t s u s D q w q 2w D cos b s1 1

Ž .2 Ž .y1 Ž Ž .2 .y1w y D , h s w y D and g s A q Bt s A q B w y D . By the1 1 1
definition of w we have1

w 2 q tg 2 q 2gw w y D s c tg 2 .Ž . Ž .1 1 1

Ž 2 . Ž .However, c F c tg F c b for all D G 0, we then have

w 2 q tg 2 q 2gw w y D F c b ,Ž . Ž .1 1 1

which implies

'c b G w q g w y DŽ . Ž .1 1

s
G w q inf1 2A q BssgRR

's w y b1

since it is easy to show that
s 'inf s y b2A q BssgRR

Hence we have proved the inequality that

''w F c b s b s M .Ž .1 1
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5 5 2 2 2 Ž .2Now, when b s 0, t s u s D q w q 2w D cos b s w q D , h s w q0 0 0 0
Ž .y1 Ž Ž .2 .y1D and g s A q Bt s A q B w q D . Then similarly we have0

c F w 2 q tg 2 q 2gw w q D ,Ž .0 0 0

which implies

'c F w q g w q DŽ .0 0

s
F w q sup0 2A q BssG0

's w q b ,0

since it is equally easy to show that
s 'sup s b .2A q BssG0

Thus we have proved the other inequality that

' 'w G c y b s M .0 0

This completes the proof for Lemma 5.1. I

PROOF OF LEMMA 5.2. We will use the same notation as in Lemma 5.1.
Straightforward calculations show that

yKKD y g q KK w cos bŽ .
<c b D s ,Ž .

w q gw q h g q KKŽ .
3Ž Ž . Ž ..Ž . 2 Ž < .where KK s g 1 y drdl c l A y Bt y 2 Bwg h and w s w b D .

The conditions of Lemma 4.1 imply that

w q gw q h g q KK ) 0 and g q KK ) 0.Ž .
Then we have

<c b D F 1Ž .
m wqgwqh gqKK qKKDq gqKK w cos b G 0Ž . Ž .18Ž .
m wqgwq gqKK w 1qcos b qKKDq gqKK D cos b G 0.Ž . Ž . Ž .

Note that since 1 q cos b G 0 and g q KK ) 0, we have

w q gw q g q KK w 1 q cos b q KKD q g q KK D cos bŽ . Ž . Ž .
19Ž .

G w q gw q KKD y g q KK D s w q g w y D .Ž . Ž .
Note that, when w - D, we have

1y1
g s A q Bt FŽ . 2A q B w y DŽ .

w y D '« g w y D G G y b ,Ž . 2A q B w y DŽ .
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where the last inequality was proved in Lemma 5.1. Also w G M by Lemma0
5.1; hence

M G 0, if w G D ,0
w q g w y D GŽ . ½ 'M y b G 0, if w - D ,0

where

2 p y 2Ž .' ' 'M y b s c y 2 b G 0 since A G by the assumption.0 c

Ž . Ž .Then, by 18 and 19 , we have proved Lemma 5.2. I
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