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ABSTRACT TUBES, IMPROVED INCLUSION–EXCLUSION
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Numerous statistical applications require the evaluation of the proba-
bility content of a convex polyhedron. We demonstrate for a given polyhe-
dron in Rd that there is a depth d inclusion]exclusion identity for its
indicator function, which is a linear combination of indicator functions of
intersections of at most d half-spaces. Terms in the identity are deter-
mined by the incidence of the facets of the polyhedron, which can be found
using linear programming. This identity can be truncated at any depth to
give a lower or upper bound. In addition, the resulting inequalities lead to
importance sampling schemes for evaluating the probability content, and
these methods tend to be more efficient than the naive hit-or-miss Monte
Carlo method.

These results arise in a more general setting which we introduce. An
Ž . � 4abstract tube consists of a pair AA, SS where AA s A , . . . , A is a collec-1 n

tion of sets, SS is a simplicial complex, and where each subcomplex
Ž . � 4 nSS x s F g SS : x g F A is contractible whenever x g D A . Thei g F i is1 i

notion presented here is stronger than the one introduced earlier by
Naiman and Wynn. Several examples are given and key consequences are
demonstrated. In particular, arrangements of points and half-spaces in
Rd give rise to abstract tubes via Voronoi decompositions and their
associated Delauney dual complexes. Every abstract tube is shown to give
rise to an inclusion]exclusion identity for I n , and upper and lowerD Ais1 i

bounds are obtained by truncating the identity at an even or an odd depth.
This property is analogous to the truncation inequality property of the
classical inclusion]exclusion identity, which may be viewed as a special
case. The notion of an abstract subtube is introduced, and it is shown that

Ž . Ž .if AA, SS is a subtube of AA, SS then the truncation inequality gotten1 2
Ž .from the depth m truncation for AA, SS is at least as sharp as the1

Ž .corresponding inequality from AA, SS . As a consequence, the generalized2
inclusion]exclusion inequalities are always at least as sharp as their
classical counterparts.

Ž .1. Background. In Naiman and Wynn 1992 , the authors introduced
and discussed inclusion]exclusion identities for indicator functions of unions
of Euclidean balls and spherical caps based on Voronoi decompositions. As in
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w Ž .xthe case of the classical inclusion]exclusion identity see Takacs 1967 ,´
these identities express the indicator function of a union as a linear combina-
tion of indicator functions of intersections. Except for very special cases, the
identities are simpler in complexity than their classical inclusion]exclusion

Židentity counterparts: under general position assumptions described in Sec-
.tion 2.2.1 , the depth of the identity, that is, the maximum number of

intersections to consider, is d q 1, where d is the dimension of the ambient
Ž .space. Naiman and Wynn 1992 described applications of these identities to

multiple comparisons. Since then close connections have been exhibited with
the theory of independence number and, through a point-set duality, to

w Ž .xVapnik]Chervonenkis dimension see Naiman and Wynn 1993a, c . In this
paper, we present a general framework in which the above examples arise as
special cases, and we present some new developments which are critical for
applying the resulting geometric methods to certain statistical problems.

In Section 2 we introduce the notion of an abstract tube and we present
several examples. Briefly, an abstract tube consists of an indexed collection of

Ž .sets and a simplicial complex see Section 2 for the definition . Associated to
any abstract tube is a generalized inclusion]exclusion identity for the indica-
tor function of the union of the sets in the collection. For some of the

Ž .examples of abstract tubes, for example, those in Naiman and Wynn 1992 ,
where the sets are balls, the simplicial complex is based on a Voronoi
decomposition. We present a new example of an abstract tube where the sets
are half-spaces and the simplicial complex is obtained from a different
Voronoi decomposition. In addition, we describe an example of an abstract
tube associated with any finite collection of half-spaces, where the simplicial
complex is obtained from the face incidence for the resulting polyhedron. This
leads to inequalities for the probability content of the polyhedron and to a
family of importance sampling schemes for this content.

In Section 3 we show that just as in the case of the classical inclusion]
exclusion identity, there is a series of bounds that can be obtained from the
basic Voronoi identity by truncating the identity at some depth. These
alternate between being lower and upper bounds, depending on whether the
truncation depth is odd or even. Furthermore, these inequalities are sharper
than their classical counterparts. The proofs of these results rely on some
simple techniques from algebraic topology. Notably, we use a purely algebraic
topological result about chain complexes which forms the basis for the Morse
inequalities of differential geometry.

Many statistical applications require inequalities for or evaluation of the
Gaussian probability content of a convex polyhedron. Naiman and Wynn
Ž .1992 , Section 5, describe how this problem arises in constructing simultane-

Ž .ous confidence intervals in ANOVA. Tong 1980 gives an extensive overview
of probability bounds for the multivariate Gaussian probability of various
types of sets. One consequence of the results in Section 3 is that we obtain
new bounds for

P X , . . . , X g PP ,Ž .1 d
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where PP : Rd is a convex polyhedron. These bounds are of the form
m

k c1 1 y y1 P X , . . . , X g H ,Ž . Ž . Ž .Ý Ý F1 d i
kks0 igFFgFF

where the H are the half-spaces defining the facets of PP, and where FF k
i

denotes the collection of index sets F of size k q 1 for which the bounding
hyperplanes H , i g F meet at a common point of the boundary of PP. Fori
even m we get a lower bound and for odd m we get an upper bound. In

Ž .particular, under a general position assumption if X , . . . , X has a Gauss-1 d
ian distribution, then the term

cP X , . . . , X g HŽ . F1 d i
igF

Ž .involves the evaluations of an at most a F -variate multivariate normal
Ž .distribution function, where a F denotes the number of indices in F. For

k ) 0 the number of terms to evaluate at depth k q 1, that is, the number of
k nk q 1-tuples in FF , is typically smaller than the corresponding number ž /k q 1

that is required by the classical inclusion]exclusion identity, where n s
Ž 0.a FF is the number of facets of PP.
In Section 4 we describe how the inclusion]exclusion inequalities can be

used to define importance sampling schemes. We describe in detail how these
results can be used to evaluate the probability content of a polyhedron under
a Gaussian distribution, and we compare these procedures numerically in
some examples.

2. Abstract tubes.

2.1. Terminology. We proceed to introduce some relevant terminology
and present a general framework in which all of our results apply. Many
standard definitions from algebraic topology will be required, and some are

w Ž .xgiven below. Standard algebraic topology texts e.g., Rotman 1988 can be
consulted for further details.

Since this framework is somewhat abstract, the reader will probably
benefit from a review of the classical inclusion]exclusion identity viewed as
an indicator function identity, bearing in mind that our goal is generalization
of it.

� 4Given a finite collection of sets AA s A , . . . , A , the classical1 n
inclusion]exclusion formula states

Ž .a J y1
n2 I s y1 I ,Ž . Ž .ÝD A F Ais 1 i i g J i

� 4B/J: 1, . . . , n

where I denotes the indicator function of the set A. In addition, when theA
right-hand side is truncated at some depth, a lower or upper bound is
obtained, depending on whether truncation is at an odd or an even depth. A
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concise version of this statement is

m m Ž .a J y1
n3 y1 I F y1 y1 I ,Ž . Ž . Ž . Ž .ÝD A F Ais 1 i i g J i

� 4 Ž .J: 1, . . . , n , a J Fmq1

for m s 0, 1, 2, . . . .
Ž .The right-hand side in 2 is a sum over collections of subsets of the index

� 4set 1, . . . , n and it is natural to ask whether there are smaller collections for
which these same properties hold. For example, it is obvious that one need
only sum over index sets J for which F A / B. However, we areig J i
interested in more subtle improvements that arise from geometric structure
of sets in the collection AA. Geometric considerations lead to our ability to
make use of algebraic]topological tools, and in order to make use of these
tools, we must restrict the collections of index sets to have the structure of a
simplicial complex.

DEFINITION 1. A simplicial complex SS is a collection of nonempty subsets
� 4of 1, . . . , n with the property that F g SS whenever B / F : E and E g SS .

Ž .Elements F g SS with a F s k q 1 are called k-dimensional faces or sim-
plices. Zero-dimensional faces are called vertices, one-dimensional faces are
called edges, and two-dimensional faces are called triangles. A subset of a
simplicial complex that is itself a simplicial complex is called a subsimplicial
complex.

A simplicial complex SS is a combinatoric object, its simplices being finite
sets. Such an object can be represented geometrically as a subset of Eu-
clidean space by something called a geometric realization, constructed by
identifying vertices of SS with distinct points in a Euclidean space, connecting
pairs of points corresponding to edges of SS , filling in triangles defined by
triangles of SS , and so on. Thus, every face of SS corresponds to an open
geometric simplex in the geometric realization. Some care has to be taken in
choosing the points that represent vertices in order to ensure that unwanted
intersections do not occur. One device for doing this is to take the points
corresponding to vertices of SS to be the vertices of a sufficiently high-
dimensional geometric simplex; however, these realizations are difficult to
represent pictorially.

< <We will use the notation SS to denote a geometric realization of SS . There
is a slight problem with notation because there is a large set of geometric
realizations associated with any particular SS . However, whatever we say

< <about SS will be true about any particular realization.

EXAMPLE 1. By the defining property, a simplicial complex can be speci-
fied by giving its maximal faces. Figure 1 shows a geometric realization of the

� 4 � 4 � 4 � 4simplicial complex whose maximal faces are 1, 2, 3 , 3, 4 , 4, 5 , 4, 6 and
� 45, 6 .
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FIG. 1. Geometric realization of a simplicial complex.

� 4EXAMPLE 2. The set of all nonempty subsets of 1, . . . , n , that is, the index
Ž .set summed over in 2 forms a simplicial complex that is geometrically

realized by an n y 1-dimensional geometric simplex.

We now introduce the notion of an abstract tube, which is a modification of
Ž .the original definition in Naiman and Wynn 1992 . To proceed we need to

discuss contractibility for a topological space. The formal definition says that
a space is contractible if it is homotopy equivalent to a space consisting of a
single point. Informally, homotopy equivalence between a pair of spaces
means that the two spaces can be deformed continuously from one to the
other. For example, a doughnut is homotopy equivalent to a coffee mug. In
particular, contractibility of a space says that it can be squashed to a point by
a continuous deformation, so that the space cannot contain any holes.

For example, a geometric simplex of any dimension is contractible. The
boundary of a geometric simplex of positive dimension is not contractible. The
geometric realization in Figure 1 is not contractible because of the hole

� 4enclosed by the edges of the 4, 5, 6 triangle. Adding the interior of the
� 44, 5, 6 triangle to the complex or removing one of its edges makes the space
contractible. The geometric realization in Figure 2 is contractible.

We can refer to simplicial complexes as being homotopy equivalent if their
geometric realizations are homotopy equivalent and we refer to a simplicial
complex SS as contractible if it has a contractible geometric realization.

Ž .DEFINITION 2. A pair AA, SS consisting of simplicial complex SS whose
� 4 � 4 � 4vertices are among 1 , . . . , n and an indexed collection AA s A , i s 1, . . . , ni

of subsets of some set X is an abstract tube, provided that for every
x g D n A the subcomplexis1 i

SS x s F g SS : x g AŽ . F i½ 5
igF

is contractible.
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FIG. 2. A contractible simplicial complex.

EXAMPLE 3. Figure 3 gives an abstract tube formed by five disks A , . . . , A1 5
and a simplicial complex SS . Each portion of D 5 A is labeled by the indicesis1 i
corresponding to the sets A that contain it. To check the abstract tubei
property, it is necessary to check contractibility of a subsimplicial complex

�corresponding to each piece. For example, for the point x , we have i:1
4 � 4 Ž .x g A s 2, 3, 4, 5 . The subsimplicial complex SS x , which consists of all1 i 1

� 4of the faces of SS formed from the index set 2, 3, 4, 5 , is shown in Figure 4,
Ž .and is clearly contractible. Similarly, SS x is a union of edges 12 and 24 in2

Figure 4 and is contractible. Note that every one of the regions labeled ij
must correspond to an edge of SS , since otherwise the subsimplicial complex
would be a two-point set, which is not contractible. The reader is invited to
check the contractibility condition for the simplicial complex corresponding to
each region in Figure 3.

� 4EXAMPLE 4. Let AA s A , i s 1, . . . , n be any finite collection of sets andi
� 4let SS denote the set of all subsets of 1, . . . , n . As mentioned in Example 2,

this simplicial complex is geometrically realized as an n y 1, dimensional
n Ž .simplex. For x g D A the subcomplex SS x consists of all subsets of theis1 i
� 4 Ž .nonempty set J s j: x g A , which is geometrically realized as a a J yx j x

1-dimensional simplex, so contractibility, and hence the abstract tube prop-
erty, follows.

For convenience, we use SS k to denote the set of faces of SS of dimension k.
The Euler characteristic of a simplicial complex SS is defined by

k kx SS s y1 a SS .Ž . Ž . Ž .Ý
k
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FIG. 3. The five disks together with the simplicial complex shown form an abstract tube.

This quantity is a topological invariant: if two simplicial complexes have
homotopy equivalent geometric realizations, then they have the same Euler

Ž .characteristic. In particular, if SS is contractible, then x SS s 1.
Ž� 4 .It follows that for an abstract tube A , . . . , A , SS we have1 n

Ž .a F y1
n4 I s y1 I .Ž . Ž .ÝD A F Ais 1 i i g F i

FgSS

To see this, observe that the right-hand side, evaluated at some x g D n Ais1 i
Ž Ž ..coincides with x SS x , which is unity.

Ž .For the abstract tube of Example 4 from identity 4 , we recover the
Ž .classical inclusion]exclusion identity 2 .

For completeness, we also mention that, in the context of Example 4, there
Ž . � c 4is a dual abstract tube AA*, SS where AA* s A , i s 1, . . . , n so that each Ai i

Ž .is replaced by its complement. For this case, 4 becomes

Ž .a J y1
n c c5 I s y1 I ;Ž . Ž .ÝD A F Ais 1 i i g J i

� 4B/J: 1, . . . , n

alternatively,

Ž .a J y1
n6 I s y1 I .Ž . Ž .ÝF A D Ais 1 i i g J i

� 4B/J: 1, . . . , n
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FIG. 4. The subsimplicial complexes of Example 2.

Ž . Ž .Identity 4 appears in Naiman and Wynn 1992 as Theorem 2.1. There
the contractibility requirement does not appear in the definition of an ab-

Ž Ž ..stract tube; only the weaker condition x SS x s 1 was used. The stronger
contractibility assumption will be used in Section 3 to prove inequalities, and

Ž . Ž .identity 4 arises as a special case see Theorem 4 .

REMARK 1. The definition of an abstract tube can be weakened by requir-
Ž .ing contractibility of SS x for almost every x with respect to some dominat-

Ž .ing measure m on X. In this case, the pair AA, SS might be referred to as a
weak abstract tube with respect to m. For every weak abstract tube, we obtain

Ž .an identity 4 which holds almost everywhere with respect to m.

Ž .DEFINITION 3. An abstract tube AA , SS is a subtube of the abstract tube1 1
Ž .AA , SS provided that SS is a subsimplicial complex of SS and AA s AA .2 2 1 2 1 2

Ž .REMARK 2. In some cases of interest see Sections 2.2.1 and 2.2.2 there is
Ž .an indexed family of abstract tubes AA , SS where the same simplicial com-t
� Ž . 4plex appears while the collection AA s A t , i s 1, . . . , n of sets varies witht i

the index t. This observation has an important statistical motivation. A
typical goal is the determination of critical points for some procedure, and
this may translate into determining a critical value for the parameter t so

n Ž .that the probability content of D A t is bounded above or below by someis1 i
prescribed value. The procedure for finding this critical value is much simpli-

Ž .fied if the simplicial complex giving identity 4 or a related inequality
remains fixed for all values of t.

2.2. Abstract tubes via nerves. For the more interesting abstract tubes
described below, the simplicial complex arises as a nerve, and the proof of the
abstract tube property makes use of a remarkable duality theorem of Borsuk
Ž .1948 . We review the relevant concepts here. In the following, we consider
coverings of a subset of Euclidean space by polyhedra, where a polyhedron is
defined as an intersection of closed half-spaces. Borsuk’s theorem concerns



D. Q. NAIMAN AND H. P. WYNN1962

FIG. 5. Borsuk ’s theorem: the nerve of a covering is homotopy equivalent to the space covered.

coverings of a space having the regularity property that each intersection of
sets in the covering is either empty or what is called an absolute retract,
which is more general than what we need, so we state a simpler version of
this theorem that applies in all of the cases considered below.

� 4 nLet C s Q , . . . , Q be a covering of a set X; that is, X s D Q . The1 n is1 i
nerve defined by C is the simplicial complex

� 4NN C s J : 1, . . . , n : J / B and Q / B .Ž . F i½ 5
igJ

w Ž .x � 4THEOREM 1 Borsuk 1948 . If C s Q , . . . , Q is a covering of X by1 n
d < Ž . <polyhedra in R then X and NN C are homotopy equivalent.

EXAMPLE 5. Figure 5 gives an example to illustrate nerves and Borsuk’s
theorem. Here the union of Q , Q and Q forms a space that is homotopy1 2 3
equivalent to the simplicial complex NN shown, which is the nerve defined by
the Q .i

2.2.1. Abstract tube associated with a polyhedron. This example, which is
Ž .inspired by an observation of Edelsbrunner 1993 , Section 5, leads to an

inclusion]exclusion identity for the indicator function of a polyhedron which
will be used in Section 4.3.

Let PP be a d-dimensional convex polyhedron in Rd with exactly n facets
Ž . Ž .the dimension of a facet is d y 1 denoted F , . . . , F . See Figure 6 . Let H1 n i
be the closed half-space with F : H and for which the bounding hyperplanei i
is a support hyperplane to PP corresponding to F so that F s PP l H andi i i
PP s F n H .is1 i

Let FF be the simplicial complex defined by the nerve of the covering
� 4F , . . . , F of the boundary of PP. That is,1 n

� 4FF s J : 1, . . . , n : J / B and F / B ,F i½ 5
igJ
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FIG. 6. The simplicial complex associated with a polyhedron.

so that this simplicial complex encodes the facet incidences for PP. In addi-
tion, we take

HH s H c : i s 1, . . . , n .� 4i

Ž .THEOREM 2. The pair HH, FF forms an abstract tube.

n c c Ž .PROOF. Fix x g D H s PP . We must show FF x , is contractible. Inis1 i
Ž . Ž . Žfact, Edelsbrunner 1993 notes that FF x consists of all of the faces includ-

.ing lower-dimensional ones that are visible from x, and he proves by an
induction that this subcomplex has Euler characteristic. It is not difficult to
strengthen this conclusion and give an alternative proof of his result.

� c4 � 4Let J s i: x g H . Then F , i g J is the set of facets of PP visible fromx i i x
x. The union of these facets U s D F forms the portion of the boundaryig J ix

of PP that is visible from x. For example, for the point x shown in Figure 6,
the facets visible from x are F and F , so U s F j F , which is a union of3 4 3 4
two line segments having one common end point. In general, the set U is
contractible by the following argument.

Let K be a hyperplane separating x from PP. Let p :  PP ª K map each
y g PP to the intersection of the ray xy with K. The restriction of p to U

Ž . Ž .defines a homeomorphism between U and p U , and p U is easily seen to be
Ž . �convex, hence contractible. On the other hand, FF x is the nerve of F ,i

4 Ž .i g J which is a covering of U by polyhedra, so by Theorem 1, FF x and Ux
Ž .are homotopy equivalent, and we conclude that FF x is contractible. I

We say a d-dimensional polyhedron PP is in general position if the
corresponding simplicial complex FF is at most d-dimensional; that is, if there
are no collections of d q 1 incident facets. If PP fails to be in general position,
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Ž .it can be perturbed slightly in possibly several different ways , as shown in
˜Lemma 1, to give a polyhedron PP that is in general position. In addition, it

will be shown in Corollary 1 that the pair consisting of the collection of
complementary half-spaces for the original polyhedron PP, and the simplicial

˜complex associated with the perturbed polyhedron PP, forms a weak abstract
tube.

Let PP : Rd be a d-dimensional polyhedron. Assume the origin is in the
Ž . ninterior of PP which may require a translation so that we have PP s F H ,is1 i

where
H s x g Rd : ut x F 1 ,� 4i i

d � 4for some u g R _ 0 , and each H intersects PP in a distinct facet. Let FFi i
denote the simplicial complex associated with PP.

For « g Rn and d g R, let PP« , d s F n H « , d denote the perturbed polyhe-is1 i
dron, with bounding half-spaces

H « , d s x g Rd : ut x F 1 q d« .� 4i i i

Ž . d � 4 Ž .LEMMA 1. a For any « g R _ 0 , there exists D s D « ) 0 such that
Ž .for d g 0, D we have the following.

Ž . « , d « , di Each of the sets PP l H , i s 1, . . . , n, is a facet of the polyhedroni
PP« , d, so that the associated simplicial complex FF « , d has the same vertex set
� 41, . . . , n as FF;

Ž . « , dii The simplicial complex FF is a subcomplex of FF;
Ž . « , d * « , d Ž .iii FF s FF for all d * g 0, d .

Ž . nb There exists a set E : R , which is a union of at most finitely many linear
subspaces of dimension less than n, with the property that for any « g Rn _ E

« , d Ž Ž ..the polyhedron PP is in general position, for d g 0, D « .

The proof of Lemma 1 is somewhat long and appears in the Appendix.

� c c4 Ž « , d .COROLLARY 1. If HH s H , . . . , H , then the pair HH, FF forms a weak1 n
Ž .abstract tube with respect to Lebesgue measure, that is, a subtube of HH, FF ,

« , d n Ž Ž ..with FF at most d-dimensional, provided « g R _ E, and d g 0, D « ,
Ž .where E and D « are as given in Lemma 1.

« , d �Ž « , d .c Ž « , d .c4 Ž « , d « , d .PROOF. Let HH s H , . . . , H , so that the pair HH , FF is1 n
« , d Ž « , d .the abstract tube associated with the polyhedron PP . The fact that HH, FF

Ž . Ž .Ž .is a subtube of HH, FF follows from Lemma 1 a ii , and the dimensionality
Ž .bound follows from b , so we only need to verify the weak abstract tube

Ž « , d . n cproperty for HH, FF . To this end, define B s D H , which is a set ofis1 i
Lebesgue measure 0 in Rd. Fix x g D n H c _ B. We proceed to demonstrateis1 i

� « , d c4contractibility of the subcomplex J g FF : x g F H . For d sufficientlyig J i
� c4 � Ž « , d .c4 n Ž « , d .csmall we have i: x g H s i: x g H , so that x g D H andi i is1 i

c« , d « , d« , d cJ g FF : x g H s J g FF : x g H .Ž .F Fi i½ 5½ 5
igJ igJ
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Ž « , d « , d .Using the fact that HH , PP is an abstract tube, the desired contractibil-
ity property follows. I

If PP is in general position then the corresponding inclusion]exclusion
Ž .identity 4 has the attractive feature that there are no terms in the sum on

the right-hand side involving more than d-fold intersections, and the total
nnumber of terms is at most , which is a polynomial in n. This is in contrastž /d

Ž .with the classical inclusion]exclusion identity 2 , which has exponentially
Ž n .many 2 y 1 terms.

If PP is not in general position, any one of the weak abstract tubes
Ž « , d . Ž .HH, FF from Corollary 1 gives rise to an inclusion]exclusion identity 4 for
I that holds a.e. with respect to Lebesgue measure, and whose complexity isPP

the same as what is obtained for a polyhedron in general position. In
addition, Theorem 5 and the subtube property guarantee that the abstract

Ž « , d .tube HH, FF gives rise to truncation inequalities that are at least as sharp
Ž .as those obtained from HH, FF .

Whether or not PP is in general position, an algorithm to determine
� 4whether a given index J : 1, . . . , n is in the associated simplicial complex FF

� dis easy to construct using linear programming. Again, assume H s x g R :i
t 4u x F 1 , where each u is a nonzero d-vector. Then F F / B is equiva-i i ig J i

lent to the feasibility of the following linear system:

ut x s 1 for i g J ,i
7Ž .

ut x F 1 for i f J .i

wA standard technique for deciding this feasibility question see Murty
Ž .x1983 is to solve the following linear program:

minimize z
t tsubject to u x yu y q zs 1 for i g J ,i i
t tu x yu y q zF 1 for i f J ,i i8Ž .

x G 0
y G 0
z G 0.

Here, inequality is taken to be componentwise. This system is feasible since
Ž .we can take z s 1, x s 0 and y s 0. The system 7 is feasible if and only if

Ž . Ž .the optimal solution x, y, z to the system 8 satisfies z s 0.
The results in Sections 3 and 4 give inequalities that can be derived from

skeletons of FF of various dimensions. Here, the q-skeleton FF of FF is definedq
as the subsimplicial complex of FF consisting of those faces whose dimension
is at most q. Calculation of FF is computationally simpler than calculation ofq
FF for small values of q, since one need only check feasibility of each system

nn nŽ . Ž . Ž . Ž .7 where J ranges throughout the set of all q q ??? q subsets ofq q 11 2

� 41, . . . , n of cardinality at most q q 1. In particular, determining the pairs of
Ž 2 . Ž .incidence faces in FF involves checking feasibility for O n systems 7 .
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2.2.2. Arrangements of balls. This example is a review and slight gener-
Ž .alization of the result in Naiman and Wynn 1992 . See also Edelsbrunner

Ž .1993 .

DEFINITION 4. An arrangement of balls is an indexed collection of sets
� Ž . 4BB s B t , i s 1, . . . , n for some fixed t g R, wheret i

d 5 5 2B t s x g R : x y x F s q tŽ . � 4i i i

for distinct points x g Rd and constants s .i i

The term arrangement of balls actually refers here to a family of collec-
tions of sets indexed by t. It might seem more natural to define an arrange-
ment of balls as above, taking t s 0. However, it turns out that when we use
Definition 4, we can introduce a single simplicial complex that makes every
BB , t g R into an abstract tube, so Remark 2 becomes relevant. This acknowl-t
edges the possibility that some of the balls in an arrangement for a particular
value of t might be empty. On the other hand, each ball will be nonempty for
t sufficiently large.

An arrangement BB leads to a decomposition of Rd into a union of Voronoit
polyhedra meeting only on their boundaries. These polyhedra are defined by

d 5 5 2 5 5 29 V s x g R : x y x y s s min x y x y s .Ž . ½ 5j j j i i
1FiFn

Ž . Ž . 5 5 2Edelsbrunner 1993 refers to d x [ x y x y s as the power distancej j j
Ž .from x to the ball B 0 .j

To define a simplicial complex, we use the nerve construction to yield the
so-called Delauney dual simplicial complex. Thus, the vertices of DD are taken

� 4to be the j for which V / B, and the faces of DD are the nonempty index setsj
J for which F V / B. Observe that the vertex set of DD may be a properjg J j

� 4subset of 1, . . . , n . Properties of the Voronoi decomposition and Delauney
Ž . Ždual are discussed in Naiman and Wynn 1992 and Edelsbrunner 1986,

.1987, 1993 .
Ž .To prove that BB , DD forms an abstract tube, we follow the same argu-t

ment as in the proof of Lemma 3.1 and Theorem 3.1 of Naiman and Wynn
Ž . n Ž . � Ž .41992 . Fix a point x g D B t and define J s i: x g B t . The ana-is1 i x i

n Ž .logue of Lemma 3.1 says that for x g D B t , the set D V is star-is1 i ig J ix

shaped with respect to x, hence contractible. In the modified proof, we simply
Ž .replace the definition of S x , x byi k

S x , x [ x g Rd : d x F d x .Ž . Ž . Ž .� 4i k i k

For the abstract tube property, we follow the proof technique sketched on
Ž .page 59, last paragraph, of Naiman and Wynn 1992 . We have

� 4DD x s I g DD: I : J ,Ž . x

� 4which coincides with the nerve of the covering V , i g J of D V . Sincei x ig J ix
Ž .the sets V are polyhedra, Theorem 1 applies and D V and DD x havei ig J ix
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Ž .the same homotopy type, so contractibility of DD x follows from that of
D V .ig J ix

Ž . Ž . Ž .The identity 3.3 in Naiman and Wynn 1992 is 4 specialized to this
Ž .case. Note that BB , DD , in general, forms an abstract subtube of the abstractt

tube defined using the simplicial complex consisting of all subsets of the
vertex set, as in Example 4. When these tubes coincide, the Voronoi method
does not lead to an improvement to the inclusion]exclusion identity. In fact,
the two tubes coincide if and only if there exists a point x g Rd whose power

Ž .distances from all of the B 0 is the same. If all the s are equal, thisi i
Žcondition says that there exists a point x equidisant from the x in thei

.Euclidean sense so that the x lie on a common sphere.i
2.2.3. Dual Voronoi diagrams. Using the same notation as in Section

U � Ž .c 42.2.2, define the collection of complementary balls BB s B t , i s 1, . . . , n .t i
A furthest distance Voronoi decomposition is obtained when min is replaced

Ž .by max in 9 . The nerve construction then leads to a simplicial complex
which will be denoted by DD*.

Ž . Ž U .The same argument as is used for BB , DD shows that BB , DD* forms ant t
abstract tube.

Ž .The resulting identity 4 is an identity for the indicator function of
n Ž .c n Ž .D B t , equivalently, an identity for F B t . The relationship be-is1 i is1 i

Ž . Ž U .tween the identities gotten from B , DD and BB , DD* is completely analo-t t
Ž . Ž .gous to the relationship between AA, SS of Example 4 and AA*, SS used to

Ž .give 5 . Some remarkable properties of these identities are given in Naiman
Ž .and Wynn 1993b .

2.2.4. Half-spaces.

DEFINITION 5. A half-space arrangement is an indexed collection of half-
spaces

HH s H t , i s 1, . . . , n ,� 4Ž .t i
where

d ² :H t s x g R : x , u F c q t ,Ž . � 4i i i

for some distinct unit d-vectors u and constants c and t.i i

For such an arrangement, we define a Voronoi decomposition by taking

˜ d ² : ² :V s x g R : x , u y c s min x , u y c½ 5i i i j j
1FjFn

so that
n

˜ ˜ <V s S i j ,Ž .Fi
js1

where
˜ d< ² : ² :S i j s x g R : x , u y c F x , u y c .Ž . � 4i i j j

We define the analogue of the Delauney simplicial complex

˜ ˜� 4DD s J : 1, . . . , n : V / B .F i½ 5
igJ
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Again, there is a dual Voronoi decomposition for half-spaces defined by
replacing min by max so that

n
U˜ ˜ <V s S j i ,Ž .Fi

js1

˜and we denote the corresponding Delauney simplicial complex by DD*. Deter-
˜ Ž .mining if a given index set is a simplex of DD or its dual reduces to checking

feasibility of a certain linear program. As in the case of balls we define
cUHH s H t , i s 1, . . . , n .Ž .� 4t i

ŽIt is easy to verify that the Voronoi decomposition dual Voronoi decompo-
. Ž .sition for the half-space arrangement defined by u , c coincides with thei i

Ž .dual Voronoi decomposition Voronoi decomposition for the ball arrangement
Ž . Ž .with x , r s u , 1 y 2c . Furthermore, the Voronoi decomposition for thei i i i

Ž .half-space arrangement defined by u , c coincides with the dual Voronoii i
Ž .decomposition for the half-space arrangement defined by yu , yc , and vicei i

versa.
A completely analogous argument to the one used for arrangements of

˜ U ˜Ž . Ž .balls yields the conclusion that the pairs HH , DD and HH , DD* form abstractt t
tubes. In particular, there is a critical star-shaped property analogous in

Ž .statement and proof to Lemma 3.1 in Naiman and Wynn 1992 . This says
n ˜Ž .that for t g R and x g D H t , if the set D V is nonempty, whereis1 i ig J ix

� Ž .4J s i: x g H t then it is star-shaped with respect to x.x i

2.2.5. Spherical caps. Let Sdy1 denote the unit d y 1-sphere in Rd, and
dy1 Ž . y1² :define the angular distance between u, v g S by d u, v s cos u, v .

dy1 Ž .For fixed points u , i s 1, . . . , n g S , the u g 0, pr2 define a collection ofi
spherical caps

� 4CC s C , i s 1, . . . , n ,i

where
C s v g Sdy1 : d v , u F u .Ž .� 4i i

Define a sphericalVoronoi decomposition by taking

V s v g Sdy1 : d v , u F d v , u for all j s 1, . . . , nŽ . Ž .� 4i i j

and let DD be the corresponding nerve.
Ž .The result in Naiman and Wynn 1992 , Theorem 4.1, can be interpreted

Ž . nas saying that CC, DD forms an abstract tube if F C s B.is1 i

3. Abstract tube identities and truncation inequalities. In this sec-
tion we consider truncated versions of the expressions on the right-hand side

Ž .of 4 and prove that they give upper or lower bounds for the left-hand side.
From a practical standpoint, these bounds can be enormously useful because,
typically, lower-depth terms are easier to evaluate. For example, in evaluat-
ing the Gaussian probability content of a polyhedron, the sets A are half-i
spaces, and depth 1 terms reduce to univariate normal integrals, depth 2
terms to bivariate normal integrals, and so on.
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The proof of the basic truncation inequality makes use of the following
elementary fact which, incidentally, forms the basis for the Morse inequali-

w Ž .xties of differential geometry see Hirsch 1976 . It is interesting to note that
while the Morse inequalities relate information about the number of critical
points of various indices for a Morse function on a manifold, they are based
on the following more fundamental algebraic topological result. While this
latter result is implicit in treatments of the Morse inequalities, it is surpris-
ing to us that this result is not found in standard algebraic topology text-
books.

The approach we take here employs some elementary homology theory. For
the definition of simplicial homology, we recommend the exposition in Hilton
Ž .1960 . For a simplicial complex SS , we define a chain complex

     n ny1 ny2 2 1 0
10 ??? C ª C ª C ª ??? ª C ª C ª C ??? ,Ž . n ny1 ny2 1 0 y1

where C is a free Abelian group whose rank is g , the number of simplices ofi i
dimension i of SS , and the homology groups of this chain complex coincide

< <with the usual singular homology groups of geometric realizations SS . By
Ž .convention, we take C s 0 for n - 0. Let b denote the rank of the imagen i

B of C under  and let z denote the rank of the kernel Z of  , for thei iq1 iq1 i i i
Ž .chain complex 10 . Here the term rank refers to the number of copies of Z

that appear when the group is decomposed, as a direct sum of cyclic groups.
Ž . � 4We define dim SS s max i: g / 0 .i

THEOREM 3. Let SS be a simplicial complex with g simplices of dimensioni
i, for i s 0, 1, . . . . Let b denote the ith Betti number of SS ; that is, b denotesi i
the rank of the ith simplicial homology group, that is, the quotient group
H s Z rB . Theni i i

m m
i i mq111 y1 b s y1 g q y1 bŽ . Ž . Ž . Ž .Ý Ýi i m

is0 is0

for m s 0, 1, . . . .

Ž .The first term on the right hand side of 11 may be recognized as the
Ž .Euler characteristic of the m-skeleton of SS . For the case when m s dim SS ,

we have b s 0 and we obtain the well-known conclusion that the alternat-m
ing sum of the Betti numbers gives the Euler characteristic of SS .

PROOF. The proof is reminiscent of the proof presented in introductory
algebraic topology courses of the fact that the Euler characteristic is a
topological invariant. From the short exact sequences,

i n
0 ª Z ª C ª B ª 0, n s 0, 1, 2, . . .n n ny1

we obtain

z q b s g , n s 0, 1, 2, . . . .n ny1 n



D. Q. NAIMAN AND H. P. WYNN1970

On the other hand, the exact sequence that defines H as a quotient groupn

i
0 ª B ª Z ª H ª 0, n s 0, 1, 2, . . . ,n n n

leads to
b q b s z , n s 0, 1, . . . .n n n

Ž .Equation 11 follows easily. I

Since b G 0 always, and since a contractible simplicial complex has Bettii
numbers b s 1 if i s 0 and b s 0, for i ) 0 we obtain the following.i i

COROLLARY 2. If SS is a finite simplicial complex then we have the inequal-
ities

m m
m mi iy1 y1 b F y1 y1 gŽ . Ž . Ž . Ž .Ý Ýi i

is0 is0

Ž .for m s 0, 1, . . . , with equality if m s dim SS . In particular, if SS is con-
tractible then

m
m m iy1 F y1 y1 g ,Ž . Ž . Ž .Ý i

is0

Ž .for m s 0, 1, 2, . . . and equality holds if m s dim SS .

Returning to abstract tubes, if SS is a simplicial complex, recall that we use
SS to denote the m-skeleton of SS , and SS k to denote the set of k-dimensionalm
simplices of SS so that

m
iSS s SS .Dm

is0

Ž . � 4THEOREM 4. For any abstract tube AA, SS with AA s A , i s 1, . . . , n , wei
have

m m Ž .a J y1
n12 y1 I F y1 y1 I ,Ž . Ž . Ž . Ž .ÝD A F Ais 1 i i g J i

JgSSm

Ž . � Ž . 4for m s 0, 1, 2, . . . , with equality if m s dim SS s max a J : J g SS y 1.

Note that for m s 0 we obtain the familiar Bonferroni bound, while for
Ž . Ž .m s dim SS we obtain identity 4 .

n Ž .PROOF. If x f D A , both sides of 12 vanish. On the other hand, ifis1 i
n Ž . Ž .mx g D A then the left-hand side of 12 evaluated at x gives y1 andis1 i

Ž .m m Ž .i Ž Ž .i.the right-hand side equals y1 Ý y1 g , where g s a SS x , the num-is0 i i
Ž .ber of simplices of SS x of dimension i. Thus, the result follows from

Corollary 2. I
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As a special case, using the abstract tubes defined in Example 4, we
Ž .recover the classical inclusion]exclusion identity 2 and the associated trun-

Ž .cation inequalities 3 . Furthermore, from the abstract tube associated with a
Ž . Ž .convex polyhedron see Section 2.2.1 we obtain the inequalities in 1 .

Ž . Ž .THEOREM 5. If AA, SS forms an abstract subtube of AA, SS* then
m mŽ . Ž .a J y1 a J y113 y1 y1 I F y1 y1 IŽ . Ž . Ž . Ž . Ž .Ý ÝF A F Ai g J i i g J iUJgSS m JgSS m

for m s 0, 1, 2, . . . .

REMARK 3. Since any abstract tube is a subtube of the abstract tube
defined as in Example 4, we may conclude from this result that every

Ž .inequality obtained by truncation of an abstract tube identity 4 at depth m
is at least as sharp as the inequality obtained by truncation of the classical

Ž .inclusion]exclusion identity 2 at depth m. The problem of finding sharpest
abstract tube inequalities reduces to the interesting combinatorial problem of
finding the minimal abstract tubes.

Ž . nPROOF OF THEOREM 5. Both sides of 13 evaluated at x f D A areis1 i
n Ž . Ž .zero, so assume x g D A . The chain complex 10 for SS x gives Abelianis1 i

groups C , B , Z and H whose corresponding ranks are denoted by g , b , zi i i i i i i
and b . Similarly, let b U, bU, zU and g U be the ranks of the groups CU, BU,i i i i i i i

U U Ž . Ž .Z and H corresponding to SS * x . Evaluating both sides of 13 at x we seei i
that it suffices to show

m m
m mi i Uy1 y1 g F y1 y1 g .Ž . Ž . Ž . Ž .Ý Ýi i

is0 is0

Ž . w Ž .x UBy the contractibility of SS x and SS * x , we have b s b , i s 0, 1, . . . .i i
Using Theorem 3 we see that

m m
m mi i U Uy1 y1 g s y1 y1 g q b y b .Ž . Ž . Ž . Ž .Ý Ýi i m m

is0 is0

Since the chain complex C can be viewed as a subcomplex of the chain?

complex CU, B can be viewed as a subgroup of BU for every i, and so? i i
U Ž .b F b for m s 0, 1, . . . , and we obtain 13 . Im m

4. Importance sampling.

4.1. Use of inclusion]exclusion inequalities to devise importance sampling
schemes. The truncation inequalities in Section 3 lead to efficient impor-
tance sampling schemes for determining the probability content of a union of

Ž� 4 .sets. Fix an abstract tube A , . . . , A , SS with A g GG, a s-algebra of1 n i
Ž .subsets of X, a probability measure P on X, GG , and suppose our goal is to

Ž n .approximate P D A .is1 i
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Let m G 0 and assume that we are able to evaluate the upper bound

Ž .my1 a J y114 y1 y1 P A ,Ž . Ž . Ž .Ý F i
igJJgSSmy1

for
n

my 115 y1 P AŽ . Ž . D iž /
is1

Ž . Žobtained by truncation of the identity 4 at depth m i.e., the inequality
.based on the m y 1-skeleton of SS . When m s 0 we define SS s B so thaty1

Ž . Ž Ž n .. ithe bound in 14 for yP D A is 0. Recall that SS denotes the set ofis1 i
simplices of SS of dimension i, while SS denotes the set of simplices ofm
dimension at most m.

Define a probability density function

1
f s I ,Ým F Ai g J iQ mm JgSS

on X with respect to P; where

Q s P A ,Ý Fm i
m igJJgSS

let
Ž .a J y1

nh s I y y1 I ,Ž .Ým D A F Ais 1 i i g J i
JgSSmy1

and let g s h rf in the support of f . The main result of this section ism m m m
the following.

THEOREM 6. Let Y , . . . , Y be iid and distributed according to the proba-1 k
bility distribution of f dP; thenm

k
Ž .a J y1y1 P A q g Y rkŽ . Ž .Ý F Ýi m iž /

igJ is1JgSSmy1

w n xis an unbiased estimator for P D A .i -s1 i

PROOF. The idea is to use importance sampling to approximate the dif-
Ž . Ž .ference between 14 and 15 . Using the depth m q 1 truncation inequality

we see that

m m Ž .a J y1
ny1 I F y1 y1 IŽ . Ž . Ž .ÝD A F Ais 1 i i g J i

JgSSm

m Ž .a J y1s y1 y1 I q I ,Ž . Ž .Ý ÝF A F Ai g J i i g J i
mJgSS JgSSmy1
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so combining with the depth m inequality, we obtain

m Ž .a J y1
n0 F y1 I y y1 I F I .Ž . Ž .Ý ÝD A F A F Ais 1 i i g J i i g J i

mJgSS JgSSmy1

Equivalently,
m

0 F y1 h F Q f .Ž . m m m

It follows that

hm
h dP s h dP s f dP s E g YŽ .H H Hm m m f m mfX f )0 f )0 mm m

and the result follows. I

REMARK 4. In Theorem 6 we obtain the same conclusion if f is replacedm
by f X s c f and g is replaced by gX s g rc , where c is a nonnegativem m m m m
function, normalized so that c f defines a probability density function withm
respect to P, and c ) 0 on the set where g / 0.m

4.2. Discussion. It is instructive to describe this importance sampling
procedure for the easiest cases. Since it is typically the case that lower depth
terms are less numerous and more tractable, we view the size of m as
indicative of the level of complexity of the procedure.

The simplest case for this sampling procedure is when m s 0, so that we
are determining the correction to the probability estimate of 0. The depth 1
inclusion]exclusion truncation bound utilizes the vertices, that is, the single-

� 4tons i g SS . These singletons are used to define a density function

Ý I�i4g SS A if s0 Ý P AŽ .�i4g SS i

w n xfrom which we sample to obtain Y , . . . , Y and estimate P D A using1 k is1 i

k

g Y rk ,Ž .Ý 0 i
is1

where
w xÝ P A�i4g SS i

g s .0 Ý I�i4g SS A i

� 4Note that the denominator of g counts the number of A , i a vertex of SS ,0 i
containing a given point.

This special case is the analogue of the importance sampling procedure of
Ž . w Ž . xFrigessi and Vercellis 1984 see also Fishman 1996 , Section 4.1.2 for the

union counting problem. Here one is given finite sets S , . . . , S : S, of1 n
Ž n .known size and one wants to estimate a D S . Let Y , . . . , Y be iid withis1 i 1 k

each Y obtained as follows. Take I , . . . , I to be iid random indices withi 1 n
w x Ž .P I s j A a S . Conditional on I , take Y to be uniformly distributed ini j i i
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Ž n . Ž Ž . . k Ž � 4S , then estimate a D S using a S rk Ý 1ra i: Y g SS . This esti-I is1 i js1 i
mator is known to outperform the naive hit or miss estimator, where Y arei
randomly sampled from S and the estimator is the proportion of Y ini
D n S , in cases when the union is small relative to S. A detailed analysisis1 i

Ž .appears in Fishman 1996 .
w xFor m s 1, we are correcting the Bonferroni bound Ý P A , which�i4g SS i

uses the vertices of SS , by sampling from the density function that is defined
using the edges of SS . If Y , . . . , Y is a sample from the distribution with1 k
density

Ý I�i , j4g SS A l Ai jf s1 Ý P A l A�i , j4g SS i j

Ž . w n xwith respect to P then we estimate P D A usingis1 i

k

w xP A q g Y rk ,Ž .Ý Ýi 1 j
� 4 js1i gSS

where
I n y Ý ID A �i4g SS As1 i ig s P A l A .Ý1 i j Ý I�i , j4g SS A l A� 4i , j gSS i j

4.3. Importance sampling for the Gaussian probability content of a polyhe-
dron. We now summarize how Theorem 6 combined with the abstract tube
of Section 2.2.1 can be used to approximate the Gaussian probability content
of a polyhedron. As in Section 2.2.1, assume a d-dimensional polyhedron PP is

w x Ž .given and we want to approximate P Z g PP where Z ; N m, S . Assumed
PP s F n H : Rd, where the facets of PP are given by F s H l PP. Assumeis1 i i i

� d t 4H s x g R : u x F 1 , where each u is a nonzero d-vector.i i i
We describe the approximation method as the following sequence of steps.

Throughout the discussion we assume vectors are represented as columns.
Fix a depth m G 0. The depth m procedure is as follows.

Step 1. Determine the collection of index sets

� 4SS s J : 1, . . . , n : a J F m q 1, F aB .Ž . Fm i½ 5
igJ

This step can be carried out using linear programming as described in the
remarks at the end of Section 2.2.1.

Step 2. Calculate

Ž .a J y1 cp s y1 P Z g H .Ž .Ý F iž /
igJJgSSmy1

Each probability in this sum is of the form
t16 P u Z G 1, i g J ,Ž . i

Ž .where a J F m, so involves at most m-fold integration.
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Step 3. Calculate each probability

c mq s P Z g H , J g SSFJ i
igJ

Ž . Ž .which is of the form in 16 with a J s m q 1, and so involves at most
m q 1-fold integration.

Let q s Ý m q and use the q to express the distribution f dF as aJ g SS J J m Z
mixture of distributions

qJ Jf dF s f dF ,Ým Z m ZqmJgSS

where
1

J
cf s I .m I F Hi g J iqJ

� 4 mStep 4. For each J s i , . . . , i g SS , order the indices in J so that1 mq1
� 4u , . . . , u is a maximal linearly independent set of vectors. Then we havei i1 k J

kJ
Ju s l u , p s 1, . . . , m q 1 y k ,Ýi p , j i Jk qp jJ

js1

for some choice of constants lJ . Let lJ denote the column k -vector whosep, j p J
entries are the l , j s 1, . . . , k .p, j J

Next find a basis v , . . . , v of Rd with v s u , for j s 1, . . . , k . Let A1 d j i J Jj

t W Ž1.w xdenote the matrix whose rows are the v and define W s AZ. Write W s Ž2.i W
Ž1. Ž2. Ž . Žwhere W is k -dimensional and W is d y k -dimensional. Find col-J J

. Ž1. Ž2. Ž1. Ž2. Ž .umn vectors m , m , and matrices B , S and S such that marginallyJ J J J J
Ž1. Ž Ž1. Ž1.. Ž1. Ž1. Ž2.W ; N m , S and conditionally, given W s w , W is distributedk JJ

Ž Ž2. Ž . Ž2.. y1as N m q B w 1 , S . Also, compute A .dyk J J JJ

Using these quantities, we can sample from the probability distribution
f J dF as follows:m Z

Ž1. Ž Ž1. Ž1.. Ž1.1. Generate W having a N m , S distribution, conditional on W G 1,k J iJ

for i s 1, . . . , k , and lJ tW Ž1. G 1, for p s 1, . . . , m q 1 y k .J p J
Ž2. Ž Ž2. Ž1. Ž2..2. Generate W distributed according to N m q B W , S .dyk J J JJ

3. Take Z s Ay1W.J

w xStep 5. Draw a sample Y , . . . , Y from f dF and estimate P Z g PP1 k m Z
using

k

1 y p y g Y rk ,Ž .Ý m i
is1

where
Ž .a J y1

n c cI y Ý y1 IŽ .D H J g SS F His 1 i my1 i g J ig s .m fm
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Ž .The conditional sampling in 1 warrants additional discussion. Typically,
we are interested in the case when m and S are both relatively small, so that
the boundaries of the polytope are in the tails of the distribution of Z. For

Ž .m s 0, in 1 we are sampling in the tails of a univariate normal distribution.
Ž .Procedures for this purpose are well known and appear in Devroye 1986 , for

Ž . Ž1.example. For m G 1 one idea for 1 is to generate W by enclosing the set

O s x g Rmq 1 : x G 1, i s 1, . . . , k , lJ t x G 1, p s 1, . . . , m q 1 y k� 4J i J p J

in a half-space H, then generate W Ž1. according to the conditional distribu-
tion of W Ž1. given W Ž1. g H, using the same technique as described in Step 4,
until we get W g O . Thus, sampling to get W Ž1. g H essentially involvesJ
generating a random variate T in the tails of a univariate normal distribu-
tion, generating an m-variate normal random variate conditionally on T,
then linear transforming. We have found this procedure to perform ade-
quately in numerical examples when m s 1 and we leave the problem of
carrying out this step more efficiently as an open problem.

REMARK 5. The method can be applied when Z is distributed as a discrete
mixture of normal distributions so that conditionally, given I s i, we have

Ž .Z ; N m , S . All that is required is the incorporation of an additional stepd i i
of repeated generation of I and evaluating each conditional probability

w xP Z g PP ¬ I s i as described.

w xREMARK 6. The method can also be used to approximate P Z g PP when
Ž . Ž .the density function of Z is of the form S r z f z , where r is a knownk k k k

function and f is a normal density. For example, Edgeworth expansions arek
of this form with each r being a polynomial. Here we approximate each termk

r z f z dz ,Ž . Ž .H k k
PP

by utilizing Remark 4 as follows. Steps 1 and 4 remain unchanged. In Step 2,
take

Ž .a J y1p s y1 r z f z dz ,Ž . Ž . Ž .Ý H k k
cF Hig J iJgSSmy1

and in Step 3 take

q s f z dz .Ž .HJ k
cF Hig J i

Finally, modify the function g in Step 5 by multiplying by the factor r .m k

REMARK 7. Steps 1 and 4 can require a significant amount of computation
effort. On the other hand, it is frequently the case that we are interested in

w xdetermining P Z g c PP , where c takes a range of values. For example, in
many testing situations we look for a critical value c so that this probability
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takes some given value 1 y a . In such cases, Step 1 needs to be carried out
only once, while the quantities in Step 4 are easily modified to account for the
change in c.

4.4. Numerical examples. In this section we present some examples to
illustrate the procedure and describe some general phenomena that appear to
deserve further study.

We have written C code for implementing the procedure described above
for general problems. The linear programming was carried out using lp solve,]

Ž .a public-domain linear programming package with source code written by
Michel Berkelaar and Jeroen Dirks. The linear algebra and normal distribu-
tion function calculations utilized the Numerical Recipes in C source code

Ž .provided by Press, Flannery, Toukolsky and Vetterling 1988 . Finally, the
bivariate normal distribution function was calculated using an algorithm due

Ž .to Donnelly 1973 .
The calculations described below were carried out on a SUN Sparcsta-

tion 5.

4.4.1. A signal detection problem. Consider the problem of detecting a
localized signal in the sequence X , t s 1, . . . , 20, meaning that some localt
average of the X is sufficiently large. As a simple example, we take detectiont
to mean that at least one of the following events occurs:

X ) c for some t s 1, . . . , 20,t

'X q X ) 2 c for some t s 1, . . . , 19,t tq1

'X q X q X ) 3 c for some t s 1, . . . , 18,t tq1 tq2

where c ) 0. We are interested in the probability of false detection, that is,
detection of a signal under a suitable null hypothesis. For illustrative pur-
poses we compute the probability p, of detection, under the white noise

Ž .hypothesis, when X are iid N 0, 1 . Note that failure of detection corre-t
w xsponds to the vector X s X , . . . , X lying in a convex polytope.1 20

We compare three Monte Carlo sampling methods for calculating p, the
probability of signal detection: the naive hit-or-miss method and the two
importance sampling methods described above for depths 0 and 1. In order to
compare the three methods, it is important to note that while all of them
produce unbiased estimates based on averages of iid random variates, there
is a nesting of the computational effort required in using the importance
sampling procedures. Some overhead, namely, the determination of inci-

Ž . Ž .dences Step 1 and the matrix calculations Step 4 can be carried out once
and for all; this applies to the calculation of the whole table of probabilities as
we vary the critical constant c. Additional overhead is required for each
particular value of c, since there are multivariate tail probabilities to be
determined in Steps 2 and 3. Further sampling effort could be carried out to
reduce the variance of the estimates and the overhead costs would remain
fixed.
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TABLE 1
Ž .Sampling effort CPU seconds in Step 4 to obtain s s pr10 for the detection probabilityp̂

estimate p̂

Detection probability p

Method 0.25 0.10 0.05 0.01 0.005 0.001

hit-or-miss 0.418 1.15 2.39 12.3 26.1 109
depth 0 0.072 0.0511 0.0418 0.0283 0.0244 0.0178
depth 1 0.404 0.147 0.0768 0.0242 0.0155 0.00640

Table 1 summarizes the sampling effort required by the three methods,
ignoring the overhead just described. Since one might typically be interested
in obtaining a prescribed relative error for a given estimator p of p, weˆ
estimated the amount of CPU time required to attain s s pr10, for eachp̂
estimator. These calculations were performed as follows. For each of a range
of critical values c, we used a sample of N s 10,000 variates and estimated
the variance s 2 for each of the three estimators p . In addition, we recordedˆp NˆN

the CPU time T required to carry out each sampling effort. By treating theN
average of all three estimates as the true value of p, we are able to solve the
equation

2s s Ns rM s pr10,'p pˆ ˆM N

for M, to estimate the required sample size. Since the CPU time is propor-
tional to the sample size, we can then estimate the required CPU time as

Ž . 2 2T s M T rN s 100s rp .M N p̂N

We see from Table 1 that, as expected, the sampling effort required for the
hit-or-miss procedure grows as p decreases, while the importance sampling
procedures achieve the desired accuracy in progressively less time. In addi-
tion, in terms of sampling effort, the depth 1 procedure out performs the
depth 0 procedure for sufficiently small values of p.

Table 2 gives the overhead required by the two importance sampling
procedures. Since the computational effort required by Steps 2 and 3 varied
only slightly for different values of p, the ranges are given. Note that the

TABLE 2
Ž .Overhead CPU seconds for depth 0 and depth 1 importance sampling procedures to obtain for

the detection probability problem for p in the range in Table 1

All values of p Fixed value of p

Step 1 Step 4 Steps 2 and 3
( ) ( ) ( )Method incidences matrices probabilities

depth 0 1.96 22.40 0.022 " 0.001
depth 1 43.54 658.27 1.52 " 0.01
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overhead required to carry out the importance sampling procedures can be
quite substantial relative to the sampling effort. Also, the depth 1 procedure
seems to require an order of magnitude more computational effort than the
depth 0 procedure in overhead.

Ž .We find that for computing a single probability e.g., a p-value that is
Ž .sufficiently small p - 0.005 the effort required by the depth 0 procedure,

including overhead, is comparable to or less than the effort required to use
the hit-or-miss procedure. By extrapolation, it appears that for p - 0.0001
the depth 1 procedure, which concentrates its effort in overhead, outperforms
the hit-or-miss procedure. On the other hand, unless the overhead for the
depth 1 procedure can be reduced, the depth 0 procedure appears more
practical. Future investigations will focus on finding ways to control the
overhead of the importance sampling procedures in special situations.

4.4.2. Tukey]Kramer procedure. This problem is discussed in Naiman
Ž .and Wynn 1992 . We do some calculations for a specific example. We consider

a one-way ANOVA with eight cells. Let n denote the number of observationsi
in the ith cell. We take n , . . . , n to be 5, 6, 8, 10, 12, 13, 14, 16. By1 8
conditioning on the estimated error sum of squares, the problem of finding
the coverage probability for simultaneous confidence intervals for all pairwise
differences of cell means reduces to finding the probability that

1 1
< <m y m F C q for all i / j,ˆ ˆi j (n ni j

Ž .where m are independent N 0, 1 random variables.ˆ i
Tables 3 and 4 give the same information as in Tables 1 and 2 for the

Tukey]Kramer coverage probability calculations. We see the same qualita-
tive features in this case as were pointed out for the signal detection problem.
We believe that the phenomena observed, namely, improvement using higher
depth inequalities sufficiently far out in the tails of the distribution, is quite
general, and future investigation will attempt to better understand this
observation.

TABLE 3
Ž .Sampling effort CPU seconds in Step 4 to obtain s s pr10 for the Tukey]Kramer coveragep̂

probability p̂

Detection probability p

Method 0.25 0.10 0.05 0.01 0.005 0.001

hit-or-miss 0.144 0.425 0.851 4.03 8.06 29.7
depth 0 0.0256 0.0157 0.0110 0.00569 0.00424 0.00210
depth 1 0.100 0.0227 0.00787 0.00112 0.000516 0.0000789
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TABLE 4
Ž .Overhead CPU seconds for depth 0 and depth 1 importance sampling schemes to obtain the

Tukey]Kramer coverage probability p in the range in Table 3

All values of p Fixed value of p

Step 1 Step 4 Steps 2 and 3
( ) ( ) ( )Method incidences matrices probabilities

depth 0 1.72 0.913 0.007 " 0.001
depth 1 35.1 26.6 0.35 " 0.03

APPENDIX

Proof of Lemma 1. To prove Lemma 1 we first need the following.

d � 4LEMMA A.1. For any « g R _ 0 , if PP l H is a facet of PP then therei
Ž . « , d « , d « , dexists L s L « ) 0 such that PP l  H is a facet of PP for alli i i

Ž .d g 0, L .i

PROOF. Fix a point x in the relative interior of PP l  H , that is, ai i
solution to the system

ut x s 1i i

ut x - 1 for all j / i .j i

d Ž 5 5 2 . t dLet x s x q d« r u u so that u x s 1 q d« . If we definei i i i i i i i

1 y ut xj i 2t 5 5L s min : j / i and « u u r u y « ) 0 ,i i j i i j2t½ 55 5« u u r u y «i j i i j

Ž .then L ) 0 and for d g 0, L we havei i

d«it d t tu x s u x q u u - 1 q d« for all j / i ;j i j i j i j25 5ui

that is, x d lies in the relative interior of the facet PP« , d l  H « , d of PP« , d. Ii i

n � 4 Ž .LEMMA A.2. For any « g R _ 0 , if J f FF there exists S s S « ) 0J J
« , d w .such that J f FF for all d g 0, S .J

n � 4 Ž .PROOF. Fix « g R _ 0 , and J f FF, and let m s a J . The system

ut x s 1, i g J ,i
17Ž .

ut x F 1, i f J ,i

is infeasible and we need to show that the system

ut x s 1 q d« , i g J ,i i
18Ž .

ut x F 1 q d« , i f J ,i i
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is infeasible for d ) 0 sufficiently small. By standard techniques from linear
w Ž .x w Ž . Ž .xprogramming see Murty 1983 similar to the reduction from 7 to 8 , the

Ž .system 17 is equivalent to a system of the form

Ay s b ,

y G 0,
19Ž .

Ž . Ž .where A is an n q m = 2 d q 1 matrix depending only on the u and J,i
and b is an n q m vector depending only on J. The same construction

Ž . Ž .applied to 18 gives a system equivalent to 18 of the form

Ay s b q d«*,

y G 0,
20Ž .

where «* is a nonzero vector depending only on « and J.
d � 2 dq1 4 � 2 dq14Let W s y g R : Ay s b q d«* , and let V s Ay: y g R :

nqm Ž .R , the column space of A. Note that by assumption 19 is infeasible.
Ž . dAlso, infeasibility of 20 holds if b q d«* f V or equivalently, if W s B.

If W 0 s B then b f V, so there exists an open neighborhood of b con-
tained in V c. It follows that b q d«* f V for d sufficiently small. If, on the
other hand, W 0 / B, then there are two cases to consider. Either «* f V in
which case b q d«* f V, for all d / 0, by linearity of V, or «* g V. For the
latter case, if we let Ay s «*, then W d s W 0 q d y, for all d g R. It follows˜ ˜
that

d 0 5 5 d 0 5 5d W , W s inf x y y : x g W , y g W F d y .� 4Ž . ˜

� 2 dq1 4Let Q s y g R : y G 0 denote the nonnegative orthant. Since, by as-
Ž . 0 Ž 0 .sumption, 19 is infeasible, we have W l Q s B, and d W , Q ) 0, since

these are closed polyhedra. By the triangle inequality we see that

d 0 d 0 0 5 5d W , Q G d W , Q y d W , W ) d W , Q y d y ) 0,Ž .Ž . Ž . Ž . ˜

Ž .and hence 20 is infeasible, if d is sufficiently small. I

n � 4 Ž .LEMMA A.3. For any « g R _ 0 , if J g FF, there exists G s G « ) 0J J
« , d Ž . « , d Ž .such that either J f FF for all d g 0, G , or J g FF for all d g 0, G .J J

PROOF. As in the proof of Lemma A.2, we convert the condition for J g FF
« , d Ž . Ž .or J g FF into a statement about feasibility of the systems 19 and 20 .

Ž .By assumption, 19 is feasible and we want to show that the feasibility or
Ž .infeasibility of 20 is unchanged for d ) 0 in a neighborhood of 0. Using the

same notation as in the proof of Lemma A.2, we have b g V and W 0 / B.
Ž .If «* f V, then b q d«* f V for all d / 0, by linearity. It follows that 20

is infeasible for all d / 0.
If «* g V, then letting Ay s «* as above, we have W d s W 0 q d y. Since˜ ˜

Ž . 0 0 int d19 is feasible we have W l Q / B. If W l Q / B then clearly W l
int Ž . 0 intQ / B; hence, 20 is feasible, for d sufficiently small. If W l Q s B
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then by linearity of W 0, and the fact that Q is an orthant, we must have
0 Ž . d *0 g W . If 20 is feasible for some d * ) 0, let y g W l Q. Then we have

0 w x 0y s y q d *y for some y g W . If l g 0, 1 convexity of W and Q givesˆ ˜ ˆ
l y s l y q ld * y g W 0 q ld * y l Q s W ld * l Q,Ž . Ž .ˆ ˜ ˜Ž .

Ž .we conclude that 20 is feasible for all d G 0 sufficiently small. I

Ž . d � 4PROOF OF LEMMA 1. To prove a fix « g R _ 0 and define L s
min L , S s min S , and G s min G , where L , S and G1F iF n i J f FF J J g FF J i J J

� 4are defined in Lemmas A.1, A.2 and A.3. If we define D s min L, S, G then
Ž . Ž . Ž .clearly D ) 0 and properties i , ii , and iii in the statement of the lemma

follow.
Ž .To prove b , let J , . . . , J be the faces of FF consisting of d q 1 elements.1 q

� 4Fix i g 1, . . . , q and let x satisfyi

21 ut x s 1 for all j g J .Ž . j i i

Let R denote the set of « g Rn for which the system of equationsi

22 ut x s 1 q d« for all j g JŽ . j j i

Ž .is feasible. Using the fact that x satisfies 21 we see that R coincides withi i
the set of « g Rn for which

23 ut x s « for all j g J ,Ž . j j i

Ž . dis feasible. Since x in 23 is constrained to lie in R , and there are d q 1
� 4 Ž .variables « , j g J , the set of « , j g J for which 23 has a solution forms aj i j i

proper subspace of a d q 1-dimensional space. It follows that R forms ai
proper subspace of Rn.

q n Ž . Ž .Let E s D R . If « g R _ E, and d g 0, D , where D is given in a ,is1 i
Ž . « , dthen none of the systems of equations 22 is feasible so J f FF , fori

Ž .Ž . « , d « , di s 1, . . . , q. Furthermore, by a ii , FF : FF and it follows that FF does
not contain any faces with d q 1 elements, so PP« , d is in general position. I

Acknowledgments. The Associate Editor and referees deserve much
thanks for suggesting many improvements. We express our gratitude to Hal
Sadowsky for simplifying our original proof of Theorem 3.

REFERENCES

Ž .BORSUK, K. 1948 . On the imbedding of systems of compacta in simplicial complexes. Fund.
Math. 35 217]234.

Ž .DEVROYE, L. 1986 . Nonuniform Random Variate Generation. Springer, New York.
Ž .DONNELLY, T. G. 1973 . Algorithm 462. Bivariate normal distribution. Communications ACM 16

638.
Ž .EDELSBRUNNER, H. 1995 . The union of balls and its dual shape. Discrete Comput. Geom. 13

415]440.
Ž .EDELSBRUNNER, H. 1987 . Algorithms in Computational Geometry. Springer, New York.

Ž .EDELSBRUNNER, H. and SEIDEL, R. 1986 . Voronoi diagrams and arrangements. Discrete Com-
put. Geom. 1 25]44.



INCLUSION]EXCLUSION IDENTITIES AND EQUALITIES 1983

Ž .FISHMAN, G. 1996 . Monte-Carlo. Springer, New York.
Ž .FRIGESSI, A. and VERCELLIS, C. 1984 . An analysis of Monte Carlo algorithms for counting

problems. IAMI-84.2, Dept. Mathematics, Univ. Milan.
Ž .HILTON, P. 1960 . Homology Theory. Cambridge Univ. Press.
Ž .HIRSCH, M. 1976 . Differential Topology. Springer, New York.
Ž .MURTY, K. 1983 . Linear Programming. Wiley, New York.

Ž .NAIMAN, D. and WYNN, H. P. 1992 . Inclusion]exclusion-Bonferroni identities and inequalitiues
for discrete tube-like problems via Euler characteristics. Ann. Statist. 20 43]76.

Ž .NAIMAN, D. Q. and WYNN, H. P. 1993a . Independence number, Vapnik]Chervonenkis dimen-
sion, and the complexity of families of sets. Discrete Math. 154 203]216.

Ž .NAIMAN, D. and WYNN, H. P. 1993b . Indicator identities via Voronoi diagrams. Unpublished
manuscript.

Ž .NAIMAN, D. Q. and WYNN, H. P. 1993c . A theorem on independence. Discrete Math. 120
287]289.

Ž .PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A. and VETTERLING, W. T. 1988 . Numerical
Recipes in C. Cambridge Univ. Press.

Ž .ROTMAN, J. J. 1988 . An Introduction to Algebraic Topology. Springer, New York.
Ž .TAKACS, L. 1967 . On the method of inclusion and exclusion. J. Amer. Statist. Assoc. 62´

102]113.
Ž .TONG, Y. L. 1980 . Probability Inequalities in Multivariate Distributions. Academic Press, New

York.

DEPARTMENT OF MATHEMATICAL SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS

JOHNS HOPKINS UNIVERSITY AND ACTUARIAL SCIENCE

BALTIMORE, MARYLAND 21218 CITY UNIVERSITY

E-MAIL: dan@jesse.mts.jhu.edu LONDON

ENGLAND


