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AN INFORMATION INEQUALITY FOR THE BAYES RISK1

BY MICHIKAZU SATO AND MASAFUMI AKAHIRA

University of Tsukuba

This paper presents a lower bound, derived from the information
inequality for the Bayes risk with respect to truncated priors under
quadratic loss. It is discussed in cases where the regularity condition of
Brown and Gajek is not always satisfied. A related result for the minimax
risk is also given.

Ž .1. Introduction. Brown and Gajek 1990 presented lower bounds for
the Bayes risk, derived from the information inequality under scaled quadratic
loss assuming some regularity conditions including that the prior density is
absolutely continuous. So the results cannot be applied to a truncated prior

Ž .like a proper uniform prior. Sato and Akahira 1995 discuss lower bounds for
the minimax risk under quadratic loss, derived from information inequalities

Ž .for the Bayes risk obtained by Borovkov and Sakhanienko 1980 and Brown
Ž .and Gajek 1990 . Related results can be found in Bobrovsky, Mayer-Wolf and

Ž .Zakai 1987
The purpose of this paper is to obtain a lower bound for the Bayes risk of

truncated priors under quadratic loss. An information inequality for such
priors is given in Theorem 2.1, but the bound is not sharp under regularity
conditions as is mentioned in Section 3. In Section 4, we consider what
happens for continuous prior densities. In Section 5, we discuss the relation
to minimax bounds.

2. A lower bound for the Bayes risk. In this section, we obtain a
lower bound for the Bayes risk in cases where the prior density does not

Ž .satisfy the regularity condition of Brown and Gajek 1990 .
Let X be an observable random variable with probability densities pu

relative to some s-finite measure n . Assume u g Q, where Q ; R is a
Ž .possibly infinite interval. It is desired to estimate u by a g Q under loss

22.1 L u , a s a y u .Ž . Ž . Ž .

Ž . w Ž .xLet R u , T s E L u , T denote the risk of the nonrandomized estimatoru
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Ž . Ž .T s T X . Let Q denote the closure of Q. Let g ? be a nonnegative density
with respect to the Lebesgue measure on Q. This is the prior density. For any

Ž . Ž . Ž . Ž . Ž .estimator T, let B g, T s HR u , T g u du and let B g s inf B g, T .T
Ž .B g is the Bayes risk under g.
The setup above is assumed until Section 4.

Ž . Ž . Ž .Ž .2REMARK. If 2.1 is replaced by L u , a s m u a y u where m ) 0, we
Ž . Ž . Ž . Ž .may regard m u g u as g u and use 2.1 .

Ž . Ž .We make the following conditions 2a to 2e :

Ž . Ž .2a There exist u , u g Q such that u - u and, for a.e. u g u , u , the1 2 1 2 1 2
amount of Fisher information

2
I u [ E log p XŽ . Ž .u u½ 5u

Ž . Ž . Ž . Ž .exists. Define V u [ 1rI u and assume 0 - V u F ` for a.e. u g u , u .1 2
Ž . 1 Ž . w x Ž .2b The prior density g is in C , g u ) 0 on u , u and g u s 01 2

w xoutside u , u .1 2
Ž .2c Let T be the Bayes estimator under g, that is,g

Hu 2u p x g u duŽ . Ž .u u1T x s ,Ž .g u 2H p x g u duŽ . Ž .u u1

w x Ž . 2and assume that u ¬ E T , u g u , u , can be extended to a C functionu g 1 2
w xon u , u .1 2
Ž . Ž .2d For T , the Cramer]Rao inequality or the C]R inequality for short´g

2d
Var T G V u E TŽ .u g u g½ 5du

Ž .holds for a.e. u g u , u .1 2
Ž . 1 w x2e There is a C function, V , on u , u which satisfies1 1 2

V u F V u a.e. u g u , u ,Ž . Ž . Ž .1 1 2

w x0 - V u - ` for all u g u , u .Ž .1 1 2

In the above, ‘‘a.e. u ’’ means almost all u with respect to the Lebesgue
n w xmeasure. When we say ‘‘C on u , u ,’’ we consider the right differential1 2

coefficient at u and the left differential coefficient at u .1 2

REMARK. In order to get the best bound of all V ’s, we should let V s V if1 1
Ž .2e is satisfied, but it is often difficult to get the bound concretely.

Ž . w xDefine b u [ E T y u ; then we getu g
2 2R u , T G V u 1 q b9 u q b u ,� 4Ž . Ž . Ž . Ž .1

2 2B g s B g , T G V 1 q b9 q b g du .Ž . Ž .Ž . � 4Hg 1
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2 Ž . w xFor any C function y s y u on u , u , define1 2

2 2J y [ V 1 q y9 q y g du .Ž . Ž .� 4H 1

Ž . Ž .Under the boundary conditions y u s c , y u s c , we want to minimize1 1 2 2
Ž . 2 w x Ž . Ž .J y . Let h be a C function on u , u such that h u s h u s 0, let h k 01 2 1 2

and let a be a constant. Then we obtain

J y q ah y J yŽ . Ž .

s 2a V h 1 q y9 q h y g du q a 2 V h92 q h 2 g du .� 4Ž . Ž .H H1 1

2.2Ž .

Ž .If J y takes its minimum value at y, then we have

V h9 1 q y9 q h y g du s 0� 4Ž .H 12.3Ž .
for all h satisfying the assumptions above.

Ž . Ž .Conversely, if 2.3 holds at y, then, by letting a s 1 in 2.2 , we obtain

J y q h ) J y for all h satisfying the assumptions above.Ž . Ž .
Ž . Ž .Hence J y takes its minimum value at y if and only if 2.3 holds at y. By

integration by parts, we have

V h9 1 q y9 g duŽ .H 1

s h9 1 q y9 V g duŽ . Ž .H 1

2.4Ž .
u2s h 1 q y9 V g y h y0 V g q 1 q y9 V g du� 4Ž . Ž . Ž . Ž . Ž .Hu1 1 11

s h y0 V g q 1 q y9 V g du ,� 4Ž . Ž . Ž .H 1 1

Ž . Ž . Ž .where the last equality follows from h u s h u s 0. Hence 2.3 is equiva-1 2
lent to

h y0 V g q 1 q y9 V g 9 y gy du s 0� 4Ž . Ž . Ž .H 1 12.5Ž .
for all h satisfying the assumptions above.

Ž .Then a necessary and sufficient condition for 2.5 is easily shown to be that y
is a solution of the differential equation

y0 V g q 1 q y9 V g 9 y gy s 0,Ž . Ž . Ž .1 1

which is equivalent to

1
2.6 y0 q gy9 y y q g s 0,Ž . ˜ ˜

V1

Ž .where g s log V g 9.˜ 1
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Ž .LEMMA 2.1. The differential equation 2.6 has a unique solution for any
2 w xchoice of c and c , and the solution is C on u , u .1 2 1 2

Ž .PROOF. Let y s y q Ay q By be a general solution of 2.6 , where y0 1 2 1
Ž .and y are linearly independent. In order to show that 2.6 has a unique2

solution, it is enough to prove that the simultaneous equations

y u q Ay u q By u s c , j s 1, 2,Ž . Ž . Ž .0 j 1 j 2 j j

have a unique solution with respect to A and B. This is equivalent to

y u y uŽ . Ž .1 1 2 1
/ 0,

y u y uŽ . Ž .1 2 2 2

which holds if and only if the simultaneous equations

y u q Ay u q By u s 0, j s 1, 2,Ž . Ž . Ž .0 j 1 j 2 j

have the unique solution A s B s 0; that is, the differential equation

1
2.7 y0 q gy9 y y s 0, y u s y u s 0Ž . Ž . Ž .˜ 1 2V1

Ž .has the only solution y ' 0. Assume that 2.7 has a solution y k 0. Then we
Ž .get to a contradiction by considering the sign of 2.7 at the point u where

Ž . Ž . Ž .y u takes its maximum minimum value. It is easily seen from 2.6 that the
solution is C 2. I

Ž . Ž .THEOREM 2.1. Assume that conditions 2a to 2e hold. Let y s y q0
Ž .Ay q By be a general solution of 2.5 , where y and y are linearly1 2 1 2

2 w x Ž .independent. If y moves over all C functions on u , u , then J y takes its1 2
minimum value J and0

a b c q 2 f g h y a f 2 y b g 2 y c h2
0 0 0 0 0 0 0 0 0 0 0 0

B g G J s ,Ž . 0 2a b y h0 0 0

where

a [ V yX2 q y2 g du , b [ V yX2 q y2 g du ,Ž . Ž .H H0 1 1 1 0 1 2 2

2X X X2c [ V 1 q y q y g du , f [ V 1 q y y q y y g du ,� 4Ž . Ž .� 4H H0 1 0 0 0 1 0 2 0 2

g [ V 1 q yX yX q y y g du , h [ V yX yX q y y g du .� 4Ž . Ž .H H0 1 0 1 0 1 0 1 1 2 1 2

PROOF. We need only minimize

J [ J y q Ay q By s a A2 q 2h AB q b B2 q 2 g A q 2 f B q c ,Ž .0 1 2 0 0 0 0 0 0

where the coefficients are given in the above. Note that this is a quadratic
form in A and B. By definition, a ) 0, and by applying the Cauchy]Schwarz0



M. SATO AND M. AKAHIRA2292

inequality to

² : X Xy , y [ V y y q y y g du ,Ž .H1 2 1 1 2 1 2

we have h2 - a b . Hence l , l ) 0, where l and l are the eigenvalues of0 0 0 1 2 1 2
a h0 0 Ž . Ž .. By exchanging coordinates rotation and moving parallel A, B forž /h b0 0

Ž . Ž . 2 2C, D say , we get J in the form J s l C q l D q J and we obtain1 2 0

l 0 0 a h g1 0 0 0

0 l 0 h b f2 0 0 0

0 0 J g f c0 0 0 0
J s s0 l 0 a h1 0 0

0 l h b2 0 0

as its minimum value J , where the second equality follows from the fact0
that the numerators and the denominators, which are usually used to classify
curves of second degree, are invariant with respect to exchanging coordinates.

I

REMARK. Another representation of J is pointed out by Shimakura0
Ž .1993 . In a similar way to Lemma 2.1, we get that the differential equation
Ž . Ž . Ž .2.6 has a unique solution under the boundary condition y9 u s y9 u s1 2

2 w x Ž .y1, and the solution is C on u , u . For and only for the solution y,1 2
Ž . w 2J s J y holds. The proof is similar to that of Theorem 2.1. Let h be a C0

w x Ž Ž . Ž . . xfunction on u , u such that h k 0 not necessarily h u s h u s 0 .1 2 1 2

EXAMPLE 2.1. Let u s u y d , u s u q d , d ) 0. Let l g R and define a1 0 2 0
prior density g by

elŽuyu 0 .

< <g u [ for u y u - d ,Ž . 0w lŽ .
where

¡ d t yd te y e
d , for t / 0,tu ~w t [ e du sŽ . H t

yd ¢
2d , for t s 0.

Ž . Ž . Ž . Ž .Assume that 2a , 2c , 2d and the following 2f hold.

2f v# [ inf V u , 0 - v# - `, V ' v#.Ž . Ž . 1
u -u-u1 2

Then

v#Ý2 n 2 v#n 2 q 1 w 2 nŽ .Ž .js1 j j j2B g G J s v# v#l q 1 y ,Ž . Ž .0 2r w r w lŽ . Ž .
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where

4 yl q r yl y r
2r [ l q , n [ , n [ .1 2( v# 2 2

In particular, if l s 0, then the prior distribution becomes a uniform one
Ž .U u , u . Hence1 2

'v# k
2.8 B g G J s v# 1 y ,Ž . Ž . 0 ž /d

dr v# y1 y1' Ž . Ž .where g s e , k s g y g r g q g , 0 - k - 1. Indeed, letting u s 0,0
we get y s v#l, y s en1u, y s en 2 u. Substituting them into the inequality0 1 2
of Theorem 2.1, we have the conclusion.

Ž .Note that we may replace 2f by
2g 0 - v# F inf V u , v# - `, V ' v#.Ž . Ž . 1

u -u-u1 2

3. On the attainment of the bound. The information inequality
Ž .B g G J is given in Section 2, but the equality does not hold under0

Ž . Ž .regularity conditions. We make the following conditions 3a to 3d using Tg
Ž .given in 2c :

Ž . w Ž .x3a u g Q cf. 2a1
Ž . Ž .3b For u ) u close to u , P is absolutely continuous with respect to P1 1 u u1w Ž .xcf. 2a .
Ž . w x w . 2 w Ž .x3c The function u ¬ E T , u g u , u is C cf. 2c .u g 1 2
Ž . w Ž .3d The functions V and u ¬ Var T are right-continuous at u cf. 2du g 1
Ž .xand 2e .

Ž . Ž . Ž . Ž .THEOREM 3.1. Under 2a to 2e and 3a to 3d , the strict inequality
Ž .B g ) J holds.0

Ž .PROOF. Assume that B g s J holds. Then b should be the solution in0
Ž . Ž .the remark below Theorem 2.1, and, from 3a and 3b , it should also be so at

Ž . Ž .u ; hence b9 u s y1. Next, since B g s J , the equality should hold in the1 1 0
Ž . Ž .C]R inequality for a.e. u g u , u ; we get from 3d that it also holds at u .1 2 1

Ž . Ž .So Var T s 0, that is, T is a constant say c P -a.e., and, from 3b , it isu g g u1 1
Ž . w x Ž .P -a.e. for u ) u close to u . For such u , E T s c and b u s c y u , butu 1 1 u g

Ž .this b is not a solution of 2.6 . This is a contradiction. I

REMARK. A similar result holds if we assume the regularity conditions on
u close to u instead of u .2 1

Ž .It is not yet clear whether the case B g s J exists or not.0

Ž .4. Cases where the assumption does not hold. Assumption 2b
implies that g is discontinuous at u and u . We shall consider cases where1 2
Ž . Ž .2b does not hold but the following 4a holds:



M. SATO AND M. AKAHIRA2294

Ž . 1 w x Ž . Ž . Ž .4a The prior density g is C on u , u , g u ) 0 on u , u and g u s 01 2 1 2
Ž .outside u , u .1 2

Ž . Ž . Ž . Ž .THEOREM 4.1. Assume that 2a , 2c to 2e and 4a hold. Then the
Ž . w xdifferential equation 2.6 has at most one solution on u , u without bound-1 2

Ž . Ž .ary conditions. In addition, J y takes its minimum value say J in the0
2 Žclass of all C functions if and only if there is the solution above and for and

. Ž .only for the solution y, J s J y holds.0

PROOF. In a similar way to the statement above Lemma 2.1, we get that
Ž . Ž . Ž .J y takes its minimum value at and only at the solution of 2.6 , where we

2 w x w Ž .let h be a C function on u , u such that h k 0 not necessarily h u s1 2 1
Ž . x Ž . Ž . Ž .h u s 0 and the last equality in 2.4 follows from g u s g u s 0. The2 1 2

Ž .uniqueness follows from 2.3 I

It is not yet clear whether the solution in the theorem above exists or not.

5. Relation to minimax bounds. Let u s u y d , u s u q d for d ) 01 0 2 0
and define a prior density g by

1 p
2 < <5.1 g u [ cos u y u for u y u - d .Ž . Ž . Ž .0 0d 2d

Ž . Ž . Ž . w Ž .x Ž .Assume that 2a , 2d , 2f or 2g and the following condition 5a hold:

Ž . Ž . w x5a In 2c , u ¬ E T can be extended to an absolutely continuousu g
w xfunction on u , u .1 2

Ž .Then it follows from Borovkov and Sakhanienko 1980 and Brown and Gajek
Ž .1990 that

y12p v#
5.2 B g ) v# 1 q .Ž . Ž . 2ž /d

Define
R* T [ sup R u , T , r* [ inf R* T ;Ž . Ž . Ž .

Tu

Ž .then r* is called the minimax risk and T is said to be minimax if R* T s0 0
Ž . Ž .r* - `. Since r* G B g , the bounds for B g in Section 2 and Borovkov and

Ž . Ž .Sakhanienko 1980 and Brown and Gajek 1990 are regarded as those for
Ž . Ž .r*. Now we compare the bounds 2.8 and 5.2 by regarding them as the

Ž .bounds of r*. If d is sufficiently small, then the bound 2.8 is better than
Ž . Ž . Ž .5.2 ; if d is sufficiently large, then the bound 5.2 is better than 2.8 . Indeed,

'letting x s dr v# , we have

Bound 2.8 2p 2Ž .
2 xlim e q 1 y 1 s y 2 ) 0,Ž . ½ 5Bound 5.2 3xx0 Ž .

Bound 2.8Ž .
2lim x y 1 s y` - 0.½ 5Bound 5.2xª` Ž .
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Ž . < <In particular, if X is a N u , 1 random variable and u F d , it is shown in
Ž . ŽBickel 1981 that, for large d which is equivalent to large n in the indepen-

.dently and identically distributed case , the distribution given by the density
Ž .5.1 is an approximate least favorable distribution rather than the uniform

Ž .distribution on yd , d .
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