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ASYMPTOTICS FOR THE MAXIMUM
OF HALF-NORMAL PLOTS1

BY LARRY GOLDSTEIN AND LOUIS GORDON

University of Southern California
and Filoli Information Systems

We study approximations to the distribution of the largest
Walsh]Fourier coefficient obtained by transforming i.i.d. observations from
a non-normal parent distribution. The study is inspired by the use of
half-normal plots in screening studies and in the analysis of molecular
sequence data. In the latter context, we indicate why continuity correc-
tions are needed.

1. Introduction and summary. The full 2n factorial design of n factors
each at two levels has played a prominent role in the development of
data-analytic and mathematical statistical methods. In this paper, we solve
by classical methods a problem of natural data-analytic interest. The problem
has substantial mathematical interest as well because it seems remarkably
resistant to more modern approaches to solution. Specifically, we study the
approximate distribution of the maximum estimated effect resulting from the
analysis of variance of a full 2n factorial design when errors are i.i.d. with
mean 0, and all main effects and interactions are also 0.

The design matrix for the full factorial design can be written in terms of
the Kronecker product m as follows. Define the 2 = 2 matrix

1 y1M s .1 1 1

Inductively, define M s M m M for n ) 1. The columns U , . . . , U n cann 1 ny1 1 2
be interpreted as the main effects and interactions for an analysis of vari-
ance. The columns are typically labeled by those factors taken at their higher

Ž .level. The first four columns comprise the vector of all 1’s the common mean
followed by three vectors whose entries repeat respectively in blocks of y1

Ž . Žand q1 the first factor’s main effect , in blocks of y1, y1, q1, q1 the
. Žsecond factor’s main effect and in blocks of q1, y1, y1, q1 the second-order

.interaction of the first two main effects .
Ž . � 4Fisher 1942 observes that it is possible to map the subsets A ; 1, . . . , n
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onto the columns U of M in such a fashion that the Abelian groupA n

Ž �1, . . . , n 4 .2 , ? under the operation symmetric difference is mapped isomorphi-
Ž� 4 .cally onto the Abelian group U , ? under the operation elementwise multi-A

plication. Alternatively, by identifying columns with successive segments of
the unit interval each having length 2yn , we obtain the specification of the
first 2n Walsh functions in canonical order. The full sequence of Walsh
functions constitutes one of the classical orthonormal bases for square-
integrable functions on the unit interval. They share many properties with
the sines and cosines, including their identity as a representation of a

Ž .commutative group. See Dym and McKean 1972 , Chapter 4, for properties of
Ž .representations of finite commutative groups and Stoffer 1991 for a compre-

hensive survey of the statistical literature involving Walsh functions. An-
other data-analytic problem which strongly uses the group structure of

Ž .subsets is the subsampling method of Hartigan 1969 .
Ž . nDaniel 1959 suggests using graphical methods in conjunction with the 2

factorial design to screen for significant main effects. In modern jargon, given
a column vector X of n s 2n observations, Daniel suggests using a q]q plot

� < T y1r2 <4of the set of absolute values of Walsh]Fourier coefficients U Xn andj
gives critical values for declaring that those coefficients with largest absolute

Ž .value correspond to effects with nonzero mean. Zahn 1975a, 1975b refines
these critical values. Both Zahn’s and Daniel’s calculations presuppose that
measurement errors are independently normally distributed.

The use of Walsh]Fourier coefficients has recently been suggested in the
Ž .context of molecular sequence analysis. See Tavare and Giddings 1988 .´

Ž .Stoffer, Tyler and McDougall 1992 also suggest the use of such analysis,
and mention that a Fisher’s test for Walsh]Fourier coefficients would be
useful. In both papers, the authors code molecular sequence data by using
indicator functions to indicate the identity of each letter in the alphabet
Ž � 4.typically A, C, G, T making up the sequence}either using a separate
indicator for the presence of each letter of the alphabet or using a set of
indicators coding characteristics, for example, purine versus pyrimidine.

Much is known about the distribution of the Fourier coefficients of i.i.d.
Ž .variates. Freedman and Lane 1980 study properties of the empirical distri-

bution function of the Fourier coefficients of i.i.d. non-Gaussian white noise.
The metric they use, however, gives no information about extremely large or
small coefficients. In this paper we solve the analogous question for the
largest Walsh]Fourier coefficient of independent white noise that they pose
for the largest Fourier coefficient.

We show below that, under suitable regularity conditions on the parent
distribution, the distributions of the maximum and of the maximum absolute
value of the Walsh]Fourier coefficients of i.i.d. data are well approximated by
distributions induced by i.i.d. standard normal data. Specifically, for M sn

Ž .nU , . . . , U and for F the standard normal distribution function, we obtain1 2
the following result.
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THEOREM 1. Let X , . . . , X be n s 2n i.i.d. variates distributed as F with1 n
Ž .mean 0, variance 1 and moment generating function c ? , finite in some

neighborhood of 0. Given 0 - « - 1r2 and d ) 0, there exists a constant
Ž .g s g F, « , d depending only on F, « and d for which

T 1r2 y2 nŽ1yF Ž t .. dy«< <1 P max U X F tn y e - g F , « , d n ,Ž . Ž .½ 5j
1FjFn

'whenever t ) 2 log n y 3 y 2« log log n . The distribution of the maxi-Ž . Ž . Ž .
mum of the Walsh]Fourier coefficients is approximated by eyn Ž1yF Ž t .., on the
same interval by an error bound of the identical form.

If, in addition, F is absolutely continuous, or is supported on a lattice, the
order of approximation in the same range of test values t can be improved to
Ž dy2 « . 1r2O n . In the case of a lattice distribution, the test value tn must be a

midpoint between two of the lattice points in the coarsest lattice supporting the
distribution.

Note that the bounds for the test values required in Theorem 1 cover all
but the extreme left tails. For example, the approximate distribution

yn Ž1yF Ž t .. Že for the maximum Walsh]Fourier coefficient has median 2 log n y
1r2Ž . Ž .. Ž Ž Ž .. .'log log n y log 4p q o 1 ; it has mass exp y 1 q o 1 log n to the left

Ž Ž . Ž ..1r2of 2 log n y 2 log log n , so that our result yields a large-sample approxi-
mation to the entire distribution. An indication that the quality of approxima-
tion might be better in the upper tail than in the lower tail is that eyn Ž1yF Ž t ..

puts mass eyn at y`.
Using Mill’s ratio, one can show that for all values of t the approximation

Ž . Ž yr .1 is of order o log n for any fixed positive r. As a consequence of the exact
Ž .order calculations of Hall 1979 , one cannot obtain a uniform bound of this

yn Ž1yF Ž t .. Žorder when replacing e by the usual double exponential extreme
.value approximation.

In Section 2 we use a Monte Carlo experiment to explore the finite-sample
applicability of Theorem 1. In Section 3 we prove the theorem using the
Bonferroni inequalities. Finally, in Section 4 we provide a few technical
remarks related to the proof.

2. A simulation experiment. In this section we describe the results of
a simulation experiment which provide some insight into the utility of our
asymptotic approximations. Presented in Figures 1 and 2 are the results of
10,000 simulations each for 20 s 4 = 5 choices of parent distribution F and
sample size n. In Figure 1 we compare our asymptotic approximation with
the observed distribution of the maximum Walsh]Fourier coefficient in the
Walsh transform of n observations taken i.i.d. with distribution F. In Figure
2 we make the analogous comparison for the distribution of the maximum
absolute value among Walsh]Fourier coefficients computed for the same data
as were used to prepare Figure 1.
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FIG. 1. Hanging rootogram for approximate distribution eyn Ž1yF Ž t .. for the maximum
Walsh]Fourier coefficient of n observations, 10,000 simulations.

All distributions are standardized to facilitate comparison. Choices for
2 'Ž . Ž . Ž .distribution function are 1 standard normal; 2 x y 1 r 2 , to illustrate1

Ž . Ž Ž . . 'the effects of heavy tails; 3 Bernoulli 1r2 y 1r2 r 1r4 , chosen as a
symmetric lattice distribution which might be used in molecular sequence

Ž .analysis to model the purine versus pyrimidine diochotomy; and 4
Ž Ž . . 'Bernoulli 1r4 y 1r4 r 3r16 , chosen as a model for coding the location of
one of the four base pairs comprising molecular sequence data. Sample sizes

� 2 3 4 5 64are chosen from n g 4 , 4 , 4 , 4 , 4 . All computations were performed
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FIG. 2. Hanging rootogram for approximate distribution ey2 nŽ1yF Ž t .. for the maximum absolute
value Walsh]Fourier coefficient of n observations, 10,000 simulations.

using Matlab, version 3.5i, running on Sun Sparcstations. See MathWorks
Ž .1989 .

For continuous parent distributions approximate quantiles are computed
by inverting the approximate distribution to obtain the a th quantile q sa

y1Ž Ž . . y1Ž Ž . .F 1 q log a rn for the maximum coefficient and q s F 1 q log a r2na

for the maximum of the absolute values, for a s jr40 and 1 F j F 40. For
discrete distributions the approximate quantiles are rounded to the nearest
midpoint of the lattice supporting the distribution.
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Forty bins are thereby determined, and a hanging rootogram of these forty
values is plotted for each combination of parent distribution and sample size.

Ž .See Tukey 1965 for a discussion of rootograms. Vertical lines are plotted at
the midpoint of each histogram bin. The top of each vertical line is located at
the square root of expected content of the bin, using eyn Ž1yF Ž t .. or ey2 nŽ1yF Ž t ..

Žas the asymptotic approximation for the true distribution function. Extreme
bins are plotted at the same horizontal distance as that between the immedi-

.ately adjacent two bins. The length of each vertical line is the square root of
the empirical histogram. If the approximation were perfect, the bottoms of
the vertical lines would all lie horizontally at the level 0, so that deviations
from the horizontal provide an indication of lack of fit.

Because the square root is a variance stabilizing transformation for the
Poisson, we indicate by three parallel dotted lines the zero level and levels at
"3s , in units corresponding to sampling variation. The horizontal lengths of
the dotted lines correspond to intervals of length 2 on comparable scales with
conveniently round endpoints, to facilitate comparisons of distributional scale
or location for varying sample sizes n. Endpoints for the intervals are
displayed at the bottom set of rootograms. For example, all rootograms in the
fifth column display bins whose centers lie between 3.0 and 5.0.

A number of features of the graphs are immediately apparent. Note that
effects of granularity of the data are evident for small values of n. In this
case, there are relatively few possible values which the maximum can take.
For example, when n s 16 the possible values that the Walsh]Fourier
coefficients can take are quarter-integers. When one standardizes in the

Ž .Bernoulli 1r2 case to unit variance, one obtains possible values at half-
integers; as a check, there are indeed exactly four bins spanning the interval

Ž .of length 2. In the Bernoulli 1r4 case, standardization using a smaller
variance makes the bins more widely spread. Note also that there is a
compression in range as one increases sample size. This is consistent with the
behavior in the Gaussian case, where the approximate variance of extreme

Ž .values decreases at rate O 1rlog n .
The approximation is, of course, nearly perfect in the Gaussian case

displayed first, because the Walsh transform is obtained by an orthogonal
rotation. What little lack of fit there is can be attributed to approximating the

Ž Ž ..n Ž Ž . .nexact distribution of the form 1 y F t or 2F t y 1 by functions of the
form eym Ž1yF Ž t .. for m s n, 2n. Fit for all other distributions improves with
increasing sample size, and is perhaps acceptable by the time n s 256. The
approximation is better in the upper tail than it is in the lower tail, as might
be expected by the restricted values of t required for the best rates of
convergence in Theorem 1. The approximation appears equally good whether
one is approximating the maximum coefficient or the maximum coefficient in
absolute value.

3. Proof of Theorem 1. Recall that X , . . . , X is an i.i.d. sequence with1 n
Ž .distribution F ? , having mean 0, variance 1 and moment generating function

Ž . nc ? . The sample size n s 2 is some large power of 2. The distribution of the
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Ž . msymmetrized random variables X y X is denoted by G ? . Denote by F* ,1 2
G*m and F*m the m-fold convolutions of F, G and F, respectively.

Our first two lemmas are concerned with the combinatorial structure of
the various linear combinations whose maximum we seek. The complex
dependency structure}illustrated in Figure 3 and discussed after the proof
is complete}is the reason we have resorted to the Bonferroni inequalities so

Ž .effectively used by Watson 1954 , as opposed to more modern methods of
Poisson approximation. See our remarks in Section 4.

LEMMA 2. Let columns V , . . . , V of M generate a subgroup of exactly 2k
1 k n

elements under the operation elementwise multiplication of columns. The set
� T T 4of linear combinations V X, . . . , V X then has representation in terms of the1 k

k � 4 k n r2 k

2 subsets A ; 1, . . . , k , indexing the 2 i.i.d. random variables Z ; F* ,A
where n s 2n. Specifically, for all 1 F j F k , we may write V T X sj

Ž . Ž . � 4 kÝ b A Z and b A g y1, 1 . All 2 possible combinations of "1A; �1, . . . , k 4 j A j
k Ž Ž . Ž ..appear among the 2 vectors b A , . . . , b A .1 k

PROOF. By hypothesis, the n = 2k matrix V formed of the 2k columns
generated by all possible elementwise products of the V has full rank,j
because the columns of M are orthogonal. Each entry in V is determined byn

the set of "1’s in the rows of the k columns corresponding to the original V ’s.j

FIG. 3. The combinatorial structure of the coefficients n s 16 and k s 3.
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Because column rank equals row rank, there must be at least 2k distinct rows
in V. Hence each of the 2k possible combinations of k 1’s and y1’s must
appear as rows in the generating k columns.

Note that the rows of M also comprise a group under the operationn

Želementwise multiplication. Indeed, the transpose of every column U ap-j
.pears as some row read in inverse order, as can be seen by induction on n .

� 4For each A ; 1, . . . , k , let S denote the set of row indices having y1A
entries in V for those j g A and q1 entries in columns V for j g Ac lj j
� 41, . . . , k . For example, S indexes those rows having entry q1 in all the kB

original columns V , and S indexes rows having all y1’s in the distin-j �1, . . . , k 4
guished k columns. Choose and fix any A / B. We already know that
S / B, so choose some distinguished row R* indexed by an element of S .A A
Because the rows form a group, elementwise multiplication by R* carries
rows indexed by S one-to-one into the set of rows indexed by S . Similarly,B A
elementwise multiplication by R* carries the rows indexed by S one-to-oneA
into rows indexed by S . Hence each S has 2nyk s nr2k rows.B A

� 4 kFor A ; 1, . . . , k , write Z s Ý X , a sum of nr2 observations X .A ig S i iA

Note that Z ; F*n r2 k

. By construction, all X summing to Z share theA i A
T Ž .same coefficient in all linear combinations V X for j s 1, . . . , k . Let b A gj j

� 4 T Ž .y1, 1 be that coefficient, so that V X s Ý b A Z . We have previ-j A; �1, . . . , k 4 j A
ously seen that each S is nonempty so that all combinations of "1’s appearA
as coefficients. I

Note that Lemma 2 does not apply to any subset of columns containing the
first column composed of all 1’s. The next lemma is applicable to any subset of
columns.

Ž .LEMMA 3. Given columns V , . . . , V of M , there exist constants b A g1 k n j
� 4 n r2 ky1, 1 and i.i.d. random variables Z ; F* , both indexed by A ;A
� 4 T T1, . . . , k such that the k random variables V X have representation V X sj j

Ž .Ý b A Z .A; �1, . . . , k4 j A

PROOF. If the k columns V generate a subgroup of size 2 k, Lemma 2j
immediately is applicable. Otherwise the subgroup has size 2k with k - k.

In the latter case, assume without loss that the columns V , . . . , V gener-1 k

ate the subgroup. From Lemma 2, the first k columns’ linear combinations
T U Ž . U Uhave representations V X s Ý b A Z , where the Z are i.i.d. asj A; �1, . . . , k 4 j A A

n r2 k U Ž . � 4F* , and b A g y1, 1 . The representation is easily extended to all kj
columns, because columns k q 1, . . . , k are obtained by elementwise multipli-
cation of entries in columns 1 through k . Now arbitrarily allocate the nr2k

summands making up each ZU into 2 kyk equal-sized groups and defineA
Ž . U Ž � 4. � 4b A s b A l 1, . . . , k for A ; 1, . . . , k to obtain the desired representa-j j

tion. I

Figure 3 illustrates the idea of the proofs which formalism may have
obscured. Consider the case k s 3 and n s 24. We show in Figure 3 the first
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five columns of M , U through U , where only the signs of the entries in the4 1 5
Hadamard matrix M need be displayed.4

The k s 3 columns U , U , U are independent under the group operation2 3 5
elementwise multiplication, so we conclude from the proof of Lemma 2 that
we may partition the n s 24 rows into 2k s 8 subsets, each having nr2k

rows. Note that each of the 2k possible patterns of q1 and y1 appears in
exactly two rows determined by columns U , U and U , as claimed in the2 3 5
lemma. For the sake of comparison, columns U , U and U are dependent in2 3 4
the group sense because elementwise multiplication of any two columns
yields the third. Hence Lemma 3 is applicable in this case. Because U and U2 3
determine the entries of U , we may partition the rows into four classes4
sharing common entries in columns U , U and U with each class having2 3 4
four rows, but not every combination of "1’s now appear.

We next provide a useful bound on the distance between normal distribu-
tions with different means and variances. We denote the standard normal

Ž . Ž .density by f x s F9 x . We denote the normal density having mean m and
2 Ž < 2 . Ž < 2 .variance s by f x m, s , with associated distribution function F x m, s .

LEMMA 4. Assume s 2 G s 2. Then2 1

< <` m y m2 12 2 2 2< <f x m , s y f x m , s dx F q s rs y 1 .Ž . Ž . Ž .H 2 2 1 1 2 1sy` 2

PROOF. The left-hand side of the inequality is the total variation distance
Ž .between two normal distributions. Write d s m y m rs and u s s rs G2 1 2 2 1

1. The desired integral is twice

x y m x y m x y m x y m2 2 1 2 2 1 1 1
max F y F y F y Fž / ž / ž / ž /s s s sx , x1 2 2 2 1 1

x x2 1s max F y d y F y d y F x y F xŽ . Ž .2 1ž / ž /u ux , x1 2

F max F y y d y F y y d y F y y F yŽ . Ž . Ž . Ž .2 1 2 1
y , y1 2

x x2 1q max F y F y F x y F x ,Ž . Ž .2 1ž / ž /u ux , x1 2

Ž . Ž .where we have added and subtracted F x ru y F x ru and then used the2 1
triangle inequality. The first summand in the upper bound is itself bounded

'Ž < < . Ž < < . < <by F d r2 y F y d r2 - d r 2p . If u s 1 the former bound suffices. If
not, u ) 1, in which case the second summand is bounded above by

2 2log u log u 1Ž . Ž .
2 F u y F - u y 1 - u q 1 u y 1Ž . Ž .( (2 2ž / ž / 2u y 1 u y 1

Ž .by the mean value theorem and the bound log u - u y 1. I
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Ž .We use the notation O x for a quantity which, when divided by x, ise
bounded by 1 in absolute value. The notation is convenient in a number of the
following arguments where we require uniformity of bounds in normal ap-
proximation simultaneously across a number of distributions.

LEMMA 5. Denote by P the probability measure in which the X ’s haveF
common distribution F and by P the probability measure in which the X ’sF

have common standard normal distribution F. Assume F has mean 0,
Ž .variance 1 and moment generating function c ? , finite in some neighborhood

Ž .of 0. There then exists a constant g s g F such that, for any k G 1 columns
� 4V , . . . , V of M and any r , . . . , r elements of y1, 1 ,1 k n 1 k

2 3 kq1 kk t g f tŽ .
T 1r2 T 1r2P min r V X ) tn y P min r V X ) tn - ,½ 5 ½ 5F j j F j j 1r2njFk jFk

whenever g k 2 t 3ny1r2 - 1 - t.

PROOF. Consider the random variable S s Ýk r V T X. Use Lemma 3 tojs1 j j
represent the sum

k k

S s r b A Z s c A Z ,Ž . Ž .Ý Ý Ý Ýj j A j A
� 4 js1 � 4 js1A; 1, . . . , k A; 1, . . . , k

Ž . � 4 n r2 k
where c A g y1, 1 and the Z are i.i.d. with distribution F* underj A
P -measure or with distribution F*n r2 k

under P -measure. Under eitherF F

Ž k . Ž k Ž ..2measure, nr2 Ý Ý c A is the variance of S, a sum of k uncorrelatedA js1 j
Ž k Ž ..2 kvariates, each having variance n. Hence Ý Ý c A s k2 .A js1 j

k Ž . < <TLet I s I . Let c s Ý c A . Observe that c F k. Let s be aj �r V X ) t n 4 A js1 j A'j j

constant whose value will be chosen later and write S s Ý c Z . We wish toA A A
approximate

k

E IŁF j½ 5
js1

k
kn r2s ??? I F* dzŽ .Ł ŁH H 4�Ý c Ž A. z ) t n A'A j A1r2S)ktn js1 � 4A; 1, . . . , k

k
kn r2 1r2s c sc exp yktn s ??? IŽ . Ž .Ł ŁH HA jž / 1r2S)ktnA js1

2Ž .

exp sc z F*n r2 k

dzŽ . Ž .A A A1r2= exp ys S y ktn .Ž .Ž .Ł kn r2c scA Ž .A



L. GOLDSTEIN AND L. GORDON2260

Because F has a moment generating function, we may choose a constant
g ) 1 sufficiently large such that

s2
3log c s s q O g s ,Ž .Ž . Ž .e2

d
2log c s s s q O g s ,Ž .Ž . Ž .eds

3Ž .
d2

log c s s 1 q O g s ,Ž . Ž .Ž . e2ds

d4

log c s s O g ,Ž . Ž .Ž . e4ds

< <whenever g s - 1.
Ž . Ž . Ž .The shifted probability distribution exp sc z F dz rc sc has cumulantA A

Ž Ž .. Ž Ž .. < <generating function log c sc q z y log c sc . Recall that c F k. HenceA A A
< < Ž . Ž 2 2 .g k s - 1 implies the shifted distribution has mean m s s c s q O g c s ,A A e A

2Ž . Ž .variance s s s 1 q O g c s and third centered absolute moment boundedA e A
by g .

Ž . 2Ž . 2 kIf F s F, then m s s c s and s s s 1 exactly. Recall that Ý c s k2 .A A A A A
Ž . Ž . Ž .Use 2 , 3 and the Berry]Esseen theorem of Feller 1971 , Chapter 16,

applied 2 k times, once for each of the subsets A indexing the Z , to concludeA

2 2k c sAyk 2 3 1r2E I s exp n2 q O g kc s y ktn sŽ .Ł ÝF j e A½ 5 ž /2js1 A

= ??? exp ys S y ktn1r2Ž .Ž .H H
1r2ž S)ktn

k
kn r2 2<= I F* dz m s , s sŽ . Ž .Ž .Ł Łj A A A

js1 A

y1r2n
q O 3g ,Ý e kž /ž / /2A

< < y1r2 2 kwhenever g k s - 1. Set s s tn and again use Ý c s k2 to obtainA A

k
2 1r2E I s exp ykt r2 ??? exp ys S y ktnŽ .Ž . Ž .Ł H HF j½ 5 1r2ž S)ktnjs1

k
kn r2 2<= I F* dz m s , s sŽ . Ž .Ž .Ł Łj A A A

js1 A

qO 3g k 2 t 3ny1r2 q O 3g 23k r2 ny1r2 ,Ž . Ž .e e /
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whenever g k 2 t 3ny1r2 - 1. If g tkny1r2 - 1r2 as well, we may use Lemma 4
to obtain

k
2 1r2E I s exp ykt r2 ??? exp ys S y ktnŽ .Ž . Ž .Ł H HF j½ 5 1r2S)ktnjs1

k
kn r2 <= I F* dz c s, 1Ž .Ł Łj A A

js1 A4Ž .
2 2 k y1r2q exp ykt r2 O 2g kt 2 nŽ . Ž .e

qO 3g k 2 t 3ny1r2Ž .e

3k r2 y1r2qO 3g 2 n ,Ž .e

the first error term due to slightly changing 2 k normal means and variances,
the middle term due to approximating the cumulant generating function by a
quadratic and the last term due to the Berry]Esseen theorem. The first

Ž . � k 4expression on the right-hand side of 4 is exactly E Ł I , proving theF js1 j
assertion, by increasing the size of g to accommodate the normalizing factor

Ž .in f ? and the terms with exponent k in the error bounds. I

We have proved the preceding lemma under fairly general conditions on
the parent distribution F and with no restrictions on the identity of the k
Walsh]Fourier coefficients of interest. We can obtain substantially better
bounds with slightly stronger restrictions on the distribution and on the
particular k coefficients selected.

LEMMA 6. If, in addition to the hypotheses of Lemma 5, F is either a
lattice distribution or is absolutely continuous and if the k columns V , . . . , V1 k
are independent in the group sense of elementwise multiplication, then there
exists a constant g depending only on the distribution function F for which

3 4 kq1 kk t g f tŽ .
T 1r2 T 1r2P min r V X ) tn y P min r V X ) tn - ,½ 5 ½ 5F j j F j j njFk jFk

whenever g k 3t 4 ny1r2 - 1 - t. If F is concentrated on the lattice a q bj for
integer j and maximal span b, then t must also be taken to be of the form

Ž .a q b j q 1r2 .

Ž .PROOF. Recall that G ? is the distribution of the difference of two i.i.d.
Ž .variates distributed as F. Denote its moment generating function by c s sG
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Ž . Ž . Ž .c s c ys , so that as in 3 there exists a constant g for which

log c s s s2 q O g s4 ,Ž .Ž . Ž .G e

d
3log c s s 2 s q O g s ,Ž .Ž . Ž .G eds

d2
2log c s s 2 q O g s ,Ž .Ž . Ž .G e2ds5Ž .

d3

log c s s O g s ,Ž . Ž .Ž .G e3ds

d4

log c s s O g ,Ž . Ž .Ž .G e4ds
< < T Ž .whenever g s - 1. Now use Lemma 2 to write V X s Ý c A W ,j A; �1, . . . , ky14 j A

where the W are 2 ky1 i.i.d. variates with common distribution G*n r2 ky 1
. WeA

Ž .now follow the proof of Lemma 5, save that we use the proofs of Theorems
Ž .4.1 and 4.2 of Feller 1971 , Chapter 16, instead of the Berry]Esseen theo-

rem. The results themselves are not applicable because we require uniformity
among the shifted distributions of Z . Needed also in the case of densities is aA
uniform version of the Riemann]Lebesgue lemma. One can modify the proof

Ž .of Feller 1971 , Section 15.4, Lemma 3.
The symmetrization afforded by Lemma 2 with consequent improved

Ž .expansions 5 allows us to replace the Berry]Esseen bounds by uniform
Ž . Ž .bounds of order O trn . Arguing as in the derivation of 4 yields the

Ž .existence of a positive constant g s g F for which
k k

E I s E IŁ ŁF j F j½ 5 ½ 5
js1 js1

3 k 3 4 3k r2g kt 2 g k t g 2 t
2q exp ykt r2 O q O q O .Ž . e e ež / ž / ž /n n n

I

We now complete the proof of Theorem 1. We may use the finiteness of the
moment generating function and Markov’s inequality to restrict our attention

Ž .1r2to the case t - 4 log n , which we assume for the rest of the section.
The principle of inclusion and exclusion yields

< T < 1r2P max U X F tn½ 5F j
jFn

n
k T 1r2s 1 q y1 P min r U X ) tn ,Ž .Ý Ý Ý ½ 5F i i

igAAks1 � 4A; 1, . . . , n � 4r g y1, 1?
< <A sk

6Ž .

< <where A denotes the cardinality of the subset A. The identity also holds
when F s F, in which case the orthogonality of the columns of M allows usn

Ž . Ž w Ž .x. nto write the left-hand side of 6 as 1 y 2 1 y F t .
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Ž .The Bonferroni inequalities, as used in Watson 1954 , let us truncate the
Ž .inclusion]exclusion series 6 at any k, obtaining either an upper or lower

bound, as determined by the sign of the first dropped term. Truncate one of
the two inclusion]exclusion series for P or for P at k and the other atF F

k y 1. Then apply Lemma 5 to obtain

T 1r2 T 1r2< < < <P max U X F tn y P max U X F tn½ 5 ½ 5F j F j
jFn jFn

nT 1r2< <s P max U X F tn y 1 y 2 1 y F tŽ .Ž .½ 5F j
jFn

k 2 3k tk knn k k- 2 1 y F t q g 2 gf tŽ . Ž .Ž . Ž .Ý 1r2ž / ž /k k nks1

7Ž .

k k 2 3k2 en 1 y F t 2ng ef t k tŽ . Ž .Ž .
- q gÝ 1r2ž /k k nks1

Ž .1r2for 1 F t F 4 log n and n sufficiently large. In passing from the first to
the second inequality, we have used that Stirling’s formula is actually a lower

kq1r2 yk'bound, namely k!G 2p k e for k G 0. See, for example, Whittaker
Ž .and Watson 1927 , Section 12.4.

Let 0 - « - 1r2 be given and let d ) 0 be arbitrarily small. Let k s
? Ž . Ž .@c log n rlog log n for some positive constant c yet to be determined and

Ž Ž . Ž . Ž ..1r2take t G 2 log n y 3 y 2« log log n for n sufficiently large. We now
Ž Ž .. Ž . Ž .use that s 1 y F s rf s ª 1 as s ª `. The first bounding term in 7 is

Ž ŽŽ . .O exp d y « c log n . Because « F 1r2, the summands in the second bound-
ing term are eventually increasing in k F k . The k th summand is of order
Ž ŽŽ Ž . . ..O exp d q 1r2 y « c y 1r2 log n ; so also is the entire second sum of
Ž .O log n terms. Both bounds are uniform in t for t in the specified range, and

their sum decays fastest when c s 1.
< T <We have thus far shown that the P -distribution of max U X is wellF jF n j

Ž w Ž .x. napproximated by 1 y 2 1 y F t over the specified range of t, over which
Ž . Ž Ž . . 2 yn x yn x Ž1 y F t s O log n rn . Finally, use the inequality nx e ) e y 1 y

.n < < Ž w Ž .x. nx ) 0 for x - 1 to show that 1 y 2 1 y F t is well approximated by
ey2 nŽ1yF Ž t .. over the necessary set of t ’s. For a proof of the inequality, see

Ž .Whittaker and Watson 1927 , Section 12.21.
In case F is lattice or is absolutely continuous, use Lemmas 5 and 6 to

Ž . Ž Ž Ž . . ..show the second sum in 7 is bounded by O exp d q 1r2 y « c y 1 log n .
In this case the best rate is obtained when c s 2. Hence Theorem 1 is proved

< T <for max U X . The proof for the distribution of the maximumjF n j
Walsh]Fourier coefficient is essentially identical.

4. Remarks.

1. We have actually proved substantially more than Theorem 1. The identical
argument shows that observing the location of extreme observations among
finitely many disjoint subsets of the 2 ? 2n determinations of Walsh func-
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tion and sign behave asymptotically independently with probability of
observation approximately eym Ž1yF Ž t .., where m is the cardinality of a
subset in question. We suspect, but have not proved, that the location of
the maximum among the 2 ? 2n possibilities is uniformly distributed in the
limit.

2. The natural context in which to raise our problem is that of Poisson
Ž .approximation as developed in Aldous 1989 , with formal computations

carried out by some variant of the Chen]Stein method. We have been
unable to give a proof of our result using either the local methods dis-

Ž .cussed in Arratia, Goldstein and Gordon 1990 or the coupling methods of
Ž .Barbour, Holst and Janson 1992 . The difficulty in the former case is

caused by our inability to define a local neighborhood of dependence. The
difficulty in the latter case is caused by dependence that is neither
exchangeable nor monotone. All difficulties are exemplified in Figure 3. By
summing and considering very skew distributions, we see that the joint
distribution of U T X, U T X, U T X is not in general the same as the joint2 3 5

distribution of U T X, U T X, U T X.2 3 4
3. Our method of proof combines an insight into the combinatorial structure

of the Walsh]Fourier coefficients with the large deviation asymptotics of
Ž .Bahadur and Ranga Rao 1960 . Of possible technical interest is that we

can use the large deviation style of calculation with approximate centering
in contrast to a more straightforward application of the theory requiring
exact centering.

4. There is a more extensive literature to the analogous problem of finding
the maximum Fourier coefficient of non-Gaussian i.i.d. observations. Be-

Ž . Ž .sides Freedman and Lane 1980 , see Walker 1965 , Turkman and Walker
Ž . Ž .1984 and Gersho, Gopinath and Odlyzko 1979 .
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