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MARKOV PROPERTIES OF NONRECURSIVE
CAUSAL MODELS

BY J. T. A. KOSTER

Erasmus University Rotterdam

This paper aims to solve an often noted incompatibility between
graphical chain models which elucidate the conditional independence
structure of a set of random variables and simultaneous equations sys-
tems which focus on direct linear interactions and correlations between
random variables. Various authors have argued that the incompatibility

Žarises mainly from the fact that in a simultaneous equations system e.g.,
.a LISREL model reciprocal causality is possible whereas this is not so in

the case of graphical chain models. In this article it is shown that this
view is not correct. In fact, the definition of the Markov property embodied
in a graph can be generalized to a wider class of graphs which includes
certain nonrecursive graphs. The resulting class of reciprocal graph proba-
bility models strictly includes the class of chain graph probability models.
The class of lattice conditional independence probability models is also
strictly included. It is shown that the resulting methodology is directly
applicable to quite general simultaneous equations systems that are
subject to mild restrictions only. Provided some adjustments are made,
general simultaneous equations systems can be handled as well. In all
cases, consistency with the LISREL methodology is maintained.

1. Introduction. Recent years have shown the development of the the-
ory of graphical models: statistical models of which the Markov properties
Ž .i.e., the conditional independence structure of a set of random variables are

w Ž .accurately portrayed by a certain graph Frydenberg 1990a , Lauritzen and
Ž . Ž .xWermuth 1989 and Whittaker 1990 . These models generalize the older

w Ž . Ž .xtheory of recursive path models Wright 1934 and Wermuth 1980 , the
w Ž .xcovariance selection models for continuous variables Dempster 1972 and
w Ž .the graphical log-linear models for discrete variables Lauritzen 1979 and

Ž .x Ž .Darroch, Lauritzen and Speed 1980 . In Kiiveri, Speed and Carlin 1984
the factorization of the joint normal density of a set of random variables

Ž .satisfying a recursive system of linear equations e.g., a LISREL model was
studied, and it was shown that some of the Markov properties of such a
system can be read off the associated path diagram, provided certain assump-
tions on the covariance matrices of the exogenous and error variables are
met. Assuming uncorrelated exogenous and error variables, Lauritzen, Dawid,

Ž .Larsen and Leimer 1990 have strengthened the results of Kiiveri, Speed
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Ž .and Carlin 1984 such that more Markov properties can be read off the path
diagram. In summary, the theory of graphical models developed thus far

Žcovers undirected graphs considering only symmetric interactions between
. Žvariables , directed graphs considering only causal relationships between
. Ž .variables and chain graphs s block-recursive models . These models ex-

clude causal cycles or bidirectional influences.
The motivation for the present article is the circumstance, expressed by

w Ž . Ž .various authors e.g., Kiiveri and Speed 1982 , page 239, Lauritzen 1989 ,
Ž . xpage 302, and Whittaker 1990 , pages 72, 302]303 , that the theory of

graphical chain models generates inconsistencies when applied to models for
Ž .general simultaneous equations SE systems, that is, systems in which

causal cycles between variables occur. Therefore, one cannot, for example,
read the Markov properties of a LISREL model from the associated LISREL
path diagram in case the system of linear equations is nonrecursive.

Ž .The article roughly consists of two parts. In the first part Sections 2 and 3
Ž .a class of graphs is introduced i.e., the reciprocal graphs which is much

wider than the class of chain graphs, and the definition of the Markov
property is extended to this class of graphs. In this way a broad set of
nonrecursive systems can be modeled which strictly contains the class of
probability models determined by chain graphs. It is also shown that the

w Ž .x‘‘Gibbs s Markov’’ equivalence cf. Speed 1979 , a key result for statistical
Ž .applications, holds for reciprocal graphs. In the second part Sections 4 to 6

we show that for a restricted class of simultaneous equations systems this
extension is consistent with the LISREL methodology in the following sense:
all conditional independence statements that can be derived from the recipro-
cal graph that is associated with the simultaneous linear equations system
are valid for all normal probability distributions satisfying the simultaneous
equations system. As to the converse, it is shown that, if a conditional
independence statement is valid for all normal probability distributions
satisfying the simultaneous equations system, then the statement can be
read off the graph. It is also explained how general simultaneous equations
systems, which may violate the restrictive conditions referred to above, can
be dealt with.

The structure of the paper is as follows. In Section 2 the necessary graph
theoretical terminology is presented and the notion of a reciprocal graph is

Ž .introduced. Also, basic results on finite distributive set lattices are pre-
sented. In Section 3 the Markov property for reciprocal graphs is defined.
This definition generalizes the corresponding definition for chain graphs as

Ž .given by Frydenberg 1990a . The main result of this section is the ‘‘Gibbs s
Markov’’ equivalence expressed in Theorem 3.4. We also clarify the relation
between graphical probability models and the lattice conditional indepen-

Ž . Ž .dence CI probability models introduced by Andersson and Perlman 1993 .
ŽIn Section 4 we consider simultaneous equations systems e.g., LISREL

.models and discuss some of the inconsistencies which may arise when a
LISREL path diagram is misinterpreted as a reciprocal graph embodying
certain Markov properties. A solution to the problems is proposed in the form
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of two extra assumptions concerning the zero structure of the covariance
matrices of the exogenous and error variables. In Section 5 the main theorem
is stated and proved. It is also asserted there that the class of normal
probability distributions satisfying a SE system that meets certain conditions
is Markov perfect. A direct proof of a restricted version of this assertion is
given. An illustrative example, showing that the class of probability models
determined by a reciprocal graph is strictly larger than the class of models
determined by a chain graph, ends this section. In Section 6 we briefly
discuss how to handle simultaneous equations systems that breach the
assumptions concerning the zero structure of the covariance matrices of the
exogenous and error variables. This discussion is based on recent results of

Ž . Ž .Spirtes 1995 and Spirtes, Richardson, Meek, Scheines and Glymour 1996
and allows us to fully establish the Markov perfectness claim. The upshot of
Sections 5 and 6 is that neither nonrecursiveness nor correlated exogenous or
error variables pose any problem to reading the Markov properties off a
LISREL path diagram. Some open questions are discussed in Section 7.

2. Reciprocal graphs. In this section we will define the type of graph
we intend to study. Since one of our objectives is to generalize certain results

Ž .of Frydenberg 1990a , we will mainly conform to the notation and definitions
Ž .of that paper. In the process, concepts of Andersson and Perlman 1993

pertaining to lattice CI models will also be introduced. In cases where our
Ž .concepts are defined differently from Frydenberg 1990a , this is done solely

for the purpose of using them in a wider context. In such cases the reader is
invited to verify that our definitions are equivalent to the definitions of
Frydenberg when applied to the more narrow context.

Ž . Ž .A graph is a pair G s V, E , where V s V G is a finite set of vertices
Ž .and E s E G is a set of directed or undirected edges. Undirected edges are

Ž . �� 4 < 4members of the class PP V s a , b a g V, b g V and a / b . Directed2
U Ž . �Ž . < 4edges belong to E V s a , b a g V, b g V and a / b . In drawing a

Žpicture of a graph, undirected edges are represented by a line segment e.g.,
� 4 .a}b when a , b g E , whereas directed edges are denoted by an arrow

wpointing from the first member of the ordered pair to the second member e.g.,
Ž . x Ž . Ž .a ª b when a , b g E . If both a , b and b, a belong to E, two arrows

Ž . Ž .are drawn e.g., a ¡ b . Notice that this differs from Frydenberg 1990a
�Ž . Ž .4where the condition a , b , b, a : E denotes that a and b are connected

by an undirected edge. Here we make a clear distinction between a ¡ b and
a}b, and it is the latter, not the first, which is equivalent to Frydenberg’s

�Ž . Ž .4condition a , b , b, a : E. A subset of vertices is called complete if each
pair of its vertices is connected by an edge. A maximal complete subset of
vertices is called a clique.

Ž . Ž .Suppose G s V, E and H s W, F are graphs. H is called a subgraph of
Ž .G if W : V and F : E. We also define G j H s V j W, E j F and G l H s

Ž .V l W, E l F . If a is a subset of vertices, the subgraph induced by a is
Ž . Ž Ž . U Ž .. Ž .G s a, E , where E s E l PP a j E a . An ordered n q 1 -tuplea a a 2

Ž .a , . . . , a of vertices that are distinct except possibly a s a is called a0 n 0 n
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� 4 Ž .path of length n from a to a if a , a g E or a , a g E for i s0 n iy1 i iy1 i
Ž . � 4 � <1, . . . , n. By an a we denote the set a j b b g V, and there exists a path

4 Ž . Ž . Ž .from b to a . Clearly, if b g an a , then an b : an a . A path is called
� 4undirected if a , a g E for i s 1, . . . , n, otherwise it is called directed.iy1 i

Suppose a , b g V. We will write a ' b if a s b or if there exists an
undirected path from a to b. We write a f b if a s b or if there exist paths

Ž .from a to b and from b to a . In other words, a f b if and only if b g an a
Ž . Ž . Ž .and a g an b . Or, equivalently, a f b if and only if an a s an b . It

is easily seen that ' and f define equivalence relations on the set of ver-
Ž .tices. The induced set of ' -equivalence classes is denoted by U G ; the

Ž .' -equivalence class of vertex a is denoted by u a and is called the
Ž .undirected path component of a . The induced set of f -equivalence classes

Ž . Ž .is denoted by C G ; the f -equivalence class of vertex a is denoted by c a
Ž . Ž . Ž .and is called the cycle component of a . Notice that u a : c a : an a for

all a g V.
Ž .For a vertex a g V, the boundary of a is defined as the set bd a s

� < � 4 Ž . 4b b g V, b, a g E or b, a g E . Since the boundary of a consists of all
Ž . Ž .vertices b for which there is a path of length 1 to a , bd a : an a for all

Ž . Ža g V. For a subset a : V, the boundary of a is defined by bd a s Da g a
Ž .. Ž . Ž .bd a _ a; the closure of a is defined by cl a s a j bd a . In what follows an

important role is played by subsets which have an empty boundary. These
sets are called anterior sets, so a : V is called an anterior set of the graph G

Ž . Ž .if bd a s B. This of course means that, for all a g a, bd a : a. Note that B
and V are anterior sets.

Ž .LEMMA 2.1. Let G s V, E be a graph and suppose a : V. Then a is an
Ž .anterior set if and only if, for all a g a, an a : a.

Ž .PROOF. Suppose a is an anterior set, a g a and b g an a . Then there
Ž . � 4exists a path, say a , . . . , a , from b s a to a s a . Since either a , a0 n 0 n ny1

Ž . Ž . Ž .g E or a , a g E, a g bd a , hence a g a and b g an a .ny1 ny1 ny1 ny1
Continuing in this way, we find after n y 1 further steps that a g a. The0
other way around is trivial. I

According to our next lemma, an anterior subset of an anterior set is still
an anterior set in the original graph.

Ž .LEMMA 2.2. Let G s V, E be a graph and suppose a : V is an anterior
Ž .set in G. Suppose b : a is an anterior set in the induced subgraph G s a, E .a a

Then b is also an anterior set in G.

Ž .PROOF. We must show that b contains the boundary in G of each of its
Ž .points. Suppose b g b, a g bd b , where the boundary is taken w.r.t. the

graph G. Since b : a and a is an anterior set in G, a g a. But then the
� 4 Ž . Ž .particular edge}be it a , b or a , b } is a member of E , hence a g bd b ,a

where now the boundary is taken w.r.t. the subgraph G . Since b is ana
anterior set in G , it follows that a g b. Ia
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Ž .It is easy to see that the class of all anterior sets of the graph G s V, E is
Žclosed under set union and intersection recall that B and V are anterior

.sets . This means that the anterior sets of G constitute a finite distributive
lattice under the join and meet operations j and l, respectively. For future
reference we state this important fact as a proposition.

Ž .PROPOSITION 2.3. Let G s V, E be a graph. The class of anterior sets of G
constitutes a finite distributive lattice with j and l as join and meet
operations.

Ž .In the sequel some general properties of set lattices will be used. For the
sake of easy reference these properties will be summarized below. For proofs
and more information the reader is referred to Andersson and Perlman
Ž .1993 .

Ž . � 4Suppose A : PP V is closed under j and l and satisfies B, V : A, so A
is finite distributive lattice with j and l as join and meet operations. For

² : � < 4 w x ² : ² :a g A, define a s D b g A b ; a and a s a _ a . Notice that a g A.
Ž . � <w x 4 � <² : 4The set J A s a g A a / B s a g A a ; a is called the class of join-

irreducible elements of the lattice A. There always exists a never-decreasing
Ž .listing of the members of J A , that is, a listing a , . . . , a such that1 q

< Ž . <i - j « a ­ a ; q s J A .j i
� < 4For b g A, define A s a g A a : b , the lattice induced on b by A.b

Important facts concerning lattices and their join-irreducible elements are
collected in the following proposition.

˙PROPOSITION 2.4. Suppose b, c g A. Then, denoting disjoint union by D:

Ž . Ž .i b s D J A .b
Ž . Ž . Ž .ii J A s J A l A .b b
Ž . Ž . Ž . Ž .iii J A s J A l J A .bl c b c
Ž . Ž . Ž . Ž .iv J A s J A j J A .bj c b c

˙Ž . �w x < Ž .4v b s D a a g J A .b
˙Ž . �w x < Ž . Ž .4vi V _ b s D a a g J A _ J A .b

Ž . Ž .vii If a , . . . , a is a never-decreasing listing of the members of J A ,1 q
Ž . � < 4 w x Ž .then, for 1 F i F q, J A : a j F i , D a s D a g A and b _a j jF i j jF i ji

Ž w x.D a g A.jG i j
Ž .viii There exists a never-decreasing listing a , . . . , a of the members of1 q

Ž . w x w xJ A such that if a : b and a ­ b, then i - j.i j

Ž . Ž . Ž . Ž .PROOF. For i to v see Andersson and Perlman 1993 . Relation vi
Ž . Ž . Ž .follows from v and the fact that J A s J A . Notice that it follows fromV

Ž . Ž . Ž . w xv and vi that a g J A , b g A, a : b implies a : b. To see the first
Ž . Ž .statement of vii , note that if j ) i, then a ­ a , hence a f J A . Thej i j a i

Ž .second statement follows from the first and v and the fact that A is closed
Ž w x. Žunder set union. The third statement follows from b _ D a s b l DjG i j j- i

w x. Ž . Ž .a s b l D a . To show viii , let a , . . . , a be a never-decreasingj j- i j 1 q
Ž . Ž . Ž . Ž .listing of J A and assume b / V b s V is trivial . Using v and vi , we
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� < w x 4 � 4have i 1 F i F q, a : b s i , . . . , i , where i - ??? - i , and, similarly,i 1 p 1 p
� < w x 4 � 4i 1 F i F q, a ­ b s i , . . . , i , where i - ??? - i . Now, a , . . . , ai pq1 q pq1 q i i1 p

and a , . . . , a are both never-decreasing sequences. Furthermore, if 1 Fi ipq 1 q

w xr F p - s F q, then a : b, hence a : b, so a ­ a since otherwisei i i ir r s rw xa : b, contradicting a ­ b. So the listing a , . . . , a , a , . . . , a is never-i i i i i is s 1 p pq1 q
Ž .decreasing and satisfies viii . I

Ž .The lattice of all anterior sets of the graph G s V, E will be denoted by
Ž . Ž .A G . It will often be necessary to identify the elements of A G . In general,

this can most readily be done by first identifying the path or cycle compo-
nents in G and then forming unions of these components, always including
with each component all components from which an arrow emanates pointing

Ž .toward it. The lattice A G satisfies some additional properties.

Ž . Ž .PROPOSITION 2.5. Suppose G s V, E is a graph and a g A G . Then:

Ž . Ž Ž .. Ž .i A G s A G ;a a
Ž . w x Ž .ii a g a m an a s a;
Ž . w x Ž . w xiii a g a m c a s a ;
Ž . Žw x. � < ² : Ž . w x4iv bd a s b g V b g a ; b, a g E for some a g a ;
Ž . ² : Ž . ² :v a g a m an a : a .

Ž . Ž . Ž .PROOF. Note that iii , iv and the necessity implication of ii are triv-
Ž . Ž Ž ..ially satisfied if a g A G _ J A G .

Ž . Ž Ž .. Ž .i A G : A G is trivial. The other way around follows froma a
Lemma 2.2.

Ž . w x Ž . Ž . Ž . Ž .ii Suppose a g a . Note that an a : a, an a g A G , so if an a / a,
Ž . ² : w x Ž .then an a : a , contradicting a g a . Now assume an a s a. It follows

Ž . Ž . w x Ž Ž ..from i and Proposition 2.4 v that a g b for some b g J A G . Froma
Ž . Žwhat we have already proved, it follows that an a s b in G and hence alsoa

w xin G, hence a s b and consequently a g a .
Ž . Ž . w xiii Sufficiency is trivial since a g c a . For necessity, let a g a . From

Ž . Ž . Ž . � < Ž .the definition of c a and using ii twice, we have c a s b g V an b s
Ž .4 � < Ž . 4 w xan a s b g V an b s a s a .
Ž . Žw x. Žw x. Žw x. w x ² :iv Clearly, bd a : an a : a, so bd a : a _ a s a . Suppose b

Žw x. Ž . w x Ž . � 4g bd a , say b g bd a for some a g a . Using iii , a , b f E, otherwise
Ž . Ž . w x Ž .b g u a : c a s a . So b, a g E. The inclusion = is obvious.

Ž . Ž . ² : Ž .v This follows from the definition of an a and the fact that a g A G .
I

Ž . Ž . �w x < Ž Ž ..4COROLLARY 2.6. i C G s a a g J A G .
Ž . Ž Ž .. � Ž . < 4ii J A G s an a a g V .

w x Ž Ž ..So the sets a , a g J A G can be referred to as cycle components.
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Ž .If c : V, then the smallest anterior set containing c is denoted by an c .
Proposition 2.3 shows that this set is well defined. No confusion can arise in

� 4 Ž� 4. Ž .case c s a , since an a s an a indeed. Using Proposition 2.3, it will also
be clear that the following result holds.

Ž . Ž . Ž .LEMMA 2.7. If a and b are subsets of V, then an a j b s an a j an b .

Our definition of a graph allows for the possibility that, for two vertices a
� 4 Ž . Ž .and b, each of a , b and a , b and b, a are edges. In fact, this is a bit too

much, since for such general graphs difficulties arise in properly defining the
moral graph. For this reason we will restrict ourselves to a certain type of

Ž .graph. We will define a reciprocal graph as a graph G s V, E that satisfies
U Ž . Ž .the condition E l E u s B for all u g U G . This means that there are no

directed edges between vertices which belong to the same undirected path
component. Hence arrows can only run between vertices from different path

� 4 Ž .components. In particular, we do not allow both a , b g E and a , b g E.
From now on, all graphs considered are understood to be reciprocal graphs,

Ž . Ž . Ž . Ž .unless stated otherwise explicitly. In Example 1 below, a , b , c and d are
Ž .reciprocal graphs, whereas e is not reciprocal.

A graph is called undirected if it does not contain directed edges: E l
U Ž .E V s B. An important notion for undirected graphs is the concept of

graph separation. If a, b and c are disjoint subsets of V, we say that a and b
are separated by c if each path from a vertex a g a to a vertex b g b
contains a vertex of c. The condition is understood to be trivially satisfied if
a s B or b s B.

A graph is called a chain graph if it does not contain any directed cycles.
Ž . Ž .A directed cycle is an ordered n q 1 -tuple a , . . . , a of vertices that are0 n

� 4distinct except for a s a , such that for i s 1, . . . , n either a , a g E or0 n iy1 i
Ž .a , a g E and the latter occurs at least once. A chain graph can equiva-iy1 i

Ž . Ž .lently be defined as a reciprocal graph G for which U G s C G . Notice that
w xin a chain graph the final cycle component a in a never-decreasing listingq

Ž Ž .. Ž .of J A G is called a terminal chain component by Frydenberg 1990a . Also
note that a reciprocal graph cannot contain directed cycles which have

Ž .exactly one arrow besides undirected line segments , but it may very well
Žcontain directed cycles with two or more arrows the simplest example of this

.being a ¡ b .
Chain graphs and their Markov properties were discussed thoroughly by

Ž .Frydenberg 1990a . Although in the present article chain graphs are intro-
Žduced slightly differently i.e., as a subclass of the more general class of

.reciprocal graphs , a little reflection shows that they are the same mathemat-
w �Ž . Ž .4ical objects. Recall that Frydenberg’s condition a , b , b, a : E corre-

� 4 xsponds to our condition a , b g E. Similar remarks hold for the way we
defined the concept of an ‘‘anterior set.’’ It generalizes Frydenberg’s anterior
sets}defined by him exclusively in the context of chain graphs}to the

Ž .context of reciprocal graphs, but in case the graph is a chain graph both
definitions coincide.
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Ž .Let G s V, E be a reciprocal graph. The underlying undirected graph is
u Ž u. u �� 4 <� 4 Ž . 4defined by G s V, E , where E s a , b a , b g E or a , b g E . This

Žmeans that all arrows are replaced by undirected edges at most one edge
. mbetween two vertices, though . The moral graph of G is defined by G s

Ž m. m u Ž Ž Ž ...V, E , where E s E j D PP bd u , that is, the underlying undi-ugUŽG . 2
rected graph, where the boundary of each path component of G is made
complete by means of undirected edges. Note that Gm is an undirected graph.

Some of the concepts introduced so far will be illustrated by the following
example.

Ž . Ž� 4 �Ž . Ž . Ž . Ž .4.EXAMPLE 1. a G s 1, 2, 3, 4 , 1, 2 , 2, 3 , 3, 4 , 4, 1 . A picture of G
would look like 6

1 2

6

6

6 34

� 4The path components of G are a , a s 1, 2, 3, 4, so G is clearly reciprocal.
� 4The anterior sets of G are B and 1, 2, 3, 4 ; the latter set is the only

join-irreducible set and hence also the only cycle component. The moral graph
Gm is just

1 2

34

Ž . Ž� 4 �� 4 � 4 Ž . Ž . Ž .4.b G s 1, 2, 3, 4 , 1, 2 , 3, 4 , 2, 3 , 4, 1 , 1, 4 . Note that the path com-
� 4 � 4 � 4ponents are 1, 2 and 3, 4 ; the anterior sets are B and 1, 2, 3, 4 . Again,

� 41, 2, 3, 4 is the only join-irreducible set and also the only cycle component.

1 2

6

6

6

34
m Ž .The moral graph G is the same as in example a .

Ž . Ž� 4 �� 4 Ž . Ž . Ž . Ž .4.c G s 1, 2, 3, 4 , 1, 2 , 2, 3 , 4, 1 , 4, 3 , 1, 4 . The path components
� 4 � 4 � 4 � 4 � 4are 1, 2 , 3 and 4 ; the anterior sets are B, 1, 2, 4 and 1, 2, 3, 4 . The latter

two sets are also join-irreducible, so the cycle components of this graph are
w� 4x � 4 w� 4x � 41, 2, 4 s 1, 2, 4 and 1, 2, 3, 4 s 3 .

1 2

6

6

6 6

34

The moral graph Gm replaces all arrows by undirected edges and adds the
� 4 Ž . � 4 medge 2, 4 since bd 3 s 2, 4 is to be made complete. Hence G becomes

1 2

34

Ž . Ž� 4 �Ž . Ž . Ž . Ž . Ž .4.d G s 1, 2, 3, 4 , 2, 1 , 2, 3 , 4, 1 , 3, 4 , 1, 4 . The path components
� 4 � 4 � 4 � 4are a , a s 1, 2, 3, 4; the anterior sets are B, 2 , 2, 3 and 1, 2, 3, 4 ; the
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� 4 � 4 � 4join-irreducible sets are 2 , 2, 3 and 1, 2, 3, 4 , leading to the cycle compo-
� 4 � 4 � 4nents 2 , 3 and 1, 4 .

61 2

6

6

6

6 34

The moral graph Gm again replaces all arrows by undirected edges and adds
edges to make boundaries of the path components complete. Hence Gm is

1 2

34
Ž . Ž� 4 �� 4 � 4 � 4 Ž .4.e Finally, consider the graph G s 1, 2, 3, 4 , 1, 2 , 2, 3 , 3, 4 , 4, 1 .

A picture of G looks like
1 26

34
� 4Since 1, 2, 3, 4 is a path component, the arrow 4 ª 1 runs between vertices

of the same path component. Hence G is not reciprocal.

In the sequel, the operation of inducing a subgraph and considering its
moral graph will almost exclusively take place w.r.t. anterior sets. The
following proposition may sometimes be useful. Its simple proof is left to the
reader.

PROPOSITION 2.8. Suppose a and b are anterior sets of the reciprocal graph
Ž .m Ž .m Ž .mG. Then G s G j G and G s G j G .aj b a b aj b a b

We end this section with a result concerning graph separation.

Ž .PROPOSITION 2.9. Suppose G s V, E is a reciprocal graph. Let a , . . . , a1 q
Ž Ž ..be a never-decreasing listing of the members of J A G . For 1 F i F q, let bi

w x w x Žw x. Žw x.denote D a s D a . Then a is separated from b _ cl a by bd ajF i j jF i j i i i i
Ž .m w x Žw x. Žw x. Ž .m win G . Also, a is separated from a _ cl a by bd a in G . Hereb i i i i ai i

Žw x. Žw x.bd a and cl a are to be taken w.r.t. G, or, which is the same, w.r.t. onei i
Ž .m Ž .m xof G , G , G or G .b b a ai i i i

PROOF. Note that b s a j b , b [ B, so the previous propositioni i iy1 0
implies that the second statement follows from the first statement. To see the

w x Žw x. Žw x.first statement, since a j b _ cl a j bd a s b , it suffices to showi i i i i
� 4 Ž .m w x Žw x.that a , b is not an edge in G whenever a g a and b g b _ cl a .b i i ii

� 4 Ž . Žw x.Clearly, a , b f E and b, a f E since otherwise b g bd a . Supposei
Ž . w x Ž .a , b g E, say b g a for some k - i. Then, using Proposition 2.5 ii andk

Ž . Ž . �w x < 4 w xProposition 2.4 vii , a g an b s a : D a j F k , contradicting a g a .k j i
� 4 Ž Ž .. w xFinally, suppose a , b : bd u g for some g g b . If g g a , then b gi i

Žw x. Žw x. w xbd a , contradicting b g V _ cl a . So g g a for some k - i. But theni i k
Ž . w xa g an g s a , which again contradicts a g a . Ik i



NONRECURSIVE CAUSAL MODELS 2157

3. The Markov property for reciprocal graphs. From now on, the
Ž .vertices of the reciprocal graph G s V, E will index a set of real-valued

random variables, X , a g V, defined on some common probability space. Soa

� 4 Vthe random vector X s X : a g V assumes values in R . The simultane-V a

ous probability distribution of X is denoted by P, and, for a subset ofV
Ž .vertices a, P or P for short denotes the marginal probability distributionX aa

� 4of X s X : a g a . Notice that P s P. For three disjoint subsets a, b anda a V
c of V, we will denote the fact that X and X are conditionally independenta b

< w xgiven X under P by X H X X P . Often this will be abbreviated toc a b c
< w x <a H b c P , or even to a H b c if reference to P is clear. The condition is

understood to hold trivially if a s B or b s B.
For some purposes it is necessary to assume that P satisfies condition

Ž . Ž . Ž .CI5 of Frydenberg 1990a , coined intersection by Pearl 1988 and also
w Ž .xcalled the block independence property Whittaker 1990 :

< <w x w xa H b c j d P and a H c b j d PŽ .
BIPŽ .

< w xif and only if a H b j c d P .

A sufficient condition for this is that P is absolutely continuous w.r.t. some
product measure m s = m on the Borel sets of RV and has a densitya g V a

Ž .which is m-a.e. positive. Here and in the sequel each m is assumed s-finite.a

In case the graph is undirected and assuming that the probability measure P
Ž . Ž .fulfills condition BIP , Pearl and Paz 1986 have proven the equivalence of

Ž .three types of Markov properties, namely 1 the pairwise Markov property,
Ž . Ž .2 the local Markov property and 3 the global Markov property. In Fryden-

Ž .berg 1990a these three Markov properties are generalized to the context of
Ž .chain graphs and it is shown there that, assuming BIP , they remain

equivalent and can thus be referred to as ‘‘the Markov property.’’ It seems
only natural to define the three Markov properties for our present still more
general context of reciprocal graphs, but it turns out that this does not pay
off. Instead, the only concept that we can fruitfully use is that of the global
Markov property, so we will turn to its definition now.

< w xThe probability measure P is called global G-Markov if a H b c P
Ž .m Ž .mwhenever c separates a and b in G , where G is theanŽaj bj c. anŽaj bj c.

moral graph of the smallest anterior set containing a j b j c. Notice that
this equals Frydenberg’s definition verbatim, so if the graph happens to be a
chain graph both definitions amount to the same thing. The adjective ‘‘global’’
will often be omitted since this, too, cannot lead to confusion in cases where
the graph is a chain graph.

A question that arises is whether the class of probability models deter-
mined by reciprocal graphs is strictly larger than the class of probability

Ž .models determined by chain graphs. Frydenberg 1990a gives a necessary
and sufficient condition for two chain graphs to define the same probability
model and it might be the case that for each reciprocal graph G there exists a

˜ ˜chain graph G such that P is G-Markov iff P is G-Markov. The discussion at
the end of Section 5 shows that this is not the case.
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It is important to note what the global G-Markov property means in case
the graph G is undirected. This is formulated in the next lemma.

Ž .LEMMA 3.1. Suppose G s V, E is an undirected graph and P is a
< w xprobability measure. Then P is global G-Markov if and only if a H b c P

whenever c separates a and b in the graph G.

Ž . � Ž . < 4PROOF. Since G is undirected, an a j b j c s D u a a g a j b j c .
From this it is easy to see that c separates a and b in G if and only if c

Ž .mseparates a and b in G . But G s G , since G isanŽaj bj c. anŽaj bj c. anŽaj bj c.
undirected. I

Ž .In Andersson and Perlman 1993 the class of lattice conditional indepen-
Ž .dence CI models was introduced in the context of multivariate normal

distributions. A lattice CI probability model can be defined as follows. Sup-
Ž .pose A : PP V is a finite distributive lattice under the set operations j and
Ž .l, where PP V denotes the power set of V and V indexes a set of real-valued

random variables, X , a g V, defined on a common probability space. Thena

the probability measure P satisfies the lattice CI probability model deter-
< w xmined by A if, for all a, b g A, X H X X P . The condition isa_ b b_ a al b

Ž .understood to be trivially satisfied if a : b or b : a . As Andersson and
Ž .Perlman observe, the lattice CI models differ from graphical chain models.

There are, however, fundamental relationships with the G-Markov property
Ž .for reciprocal graphs see Corollaries 3.5 and 3.6 below . A first impression is

given by the following proposition.

PROPOSITION 3.2. Suppose the probability measure P is G-Markov, where
Ž .G s V, E is a reciprocal graph. Then P satisfies the lattice CI model

Ž .determined by A G , the lattice of all anterior sets of G.

PROOF. Suppose a and b are anterior sets of G such that both a _ b / B
ŽŽ . Ž . Ž .. Ž .and b _ a / B. Since an a _ b j b _ a j a l b s an a j b s a j b, it

suffices to show that a _ b is separated from b _ a by a l b in the graph
Ž .m � 4 Ž .mG ; that is, a , b cannot be an edge in G , whenever a g a _ baj b aj b

� 4and b g b _ a. So assume a g a _ b and b g b _ a. Then a , b ­ a and
� 4 � 4a , b ­ b. Using Proposition 2.8, it follows that a , b is not an edge of the

Ž .m Ž .m Ž .mgraph G j G s G . Ia b aj b

LEMMA 3.3. Suppose the probability measure P is G-Markov, where G s
Ž .V, E is a reciprocal graph. Let a , . . . , a be a never-decreasing listing of the1 q

Ž Ž .. w x Ž . Žw x. < Žw x.elements in J A G . Then a H D a _ cl a bd a for 1 F i F q.i jF i j i i

w x Ž . Žw x. Žw x. Ž . Ž .PROOF. Since a j D a _ cl a j bd a s D a s b , sayi jF i j i i jF i j i
w x Žw x.is an anterior set, it suffices to show that a is separated from b _ cl ai i i

Žw x. Ž .mby bd a in G . But this follows from Proposition 2.9. Ii b i
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We will now set out for the main result of this section, namely the
‘‘Gibbs s Markov’’ equivalence for reciprocal graphs. Theorem 3.4 below gen-

Ž .eralizes the corresponding results for chain graphs in Frydenberg 1990a ,
Theorem 3.3, Corollary 3.4 and Theorem 4.1. The reader is invited to verify

Ž .that the Gibbs factorization in Theorem 3.4 vii reduces to the factorization in
Ž . Ž .Frydenberg 1990a , Theorem 4.1 iii , in case the graph is a chain graph. An

introduction to the subject of the ‘‘Gibbs s Markov’’ equality can be found in
Ž .Speed 1979 .

w Ž .xREMARK 3.1. Frydenberg’s Theorem 4.1 Frydenberg 1990a is there
stated and proved under the supposition that the following conjecture holds:
‘‘If G is an undirected finite graph, P is a global G-Markov probability
measure and P has a strictly positive density p w.r.t. the product measure
m s = m on the Borel sets of RV, where each m is s-finite, then p has aa g V a a

Ž .Gibbs factorization w.r.t. G.’’ Note that the latter means that p x factorizes
cŽ . cas Ł c x , m-a.e., where K denotes the set of cliques of G, c denotescg K c

c �some nonnegative real-valued measurable function on R and x s x :c a

4a g c . It is not entirely clear if a full proof of the conjecture, known in the
literature as the Hammersley]Clifford theorem, has been published some-

w Ž . xwhere see, e.g., Isham 1981 and the references therein . However, as it can
w Ž . xbe rigorously proven, it is indeed a theorem. For details, see Koster 1994 .

The converse statement, that is, Gibbs factorization implies the global Markov
w Ž .xproperty, is well known cf. Lauritzen, Dawid, Larsen and Leimer 1990 .

� 4Suppose P, the probability distribution of X : a g V , has a positivea

density p w.r.t. the product measure m s = m on the Borel sets of RV.a g V a

Ž .Let, for a : V, p denote a version of the marginal density of X w.r.t.a a
a Žm [ = m on the Borel sets of R . Furthermore, let p denote aa a g a a a < b

. Žversion of the conditional density of X given X i.e., p s p rp ,a b a < b aj b b
. < w xm -a.e. . It is well known that X H X X P if and only if p s p ,aj b a b c a < bj c a < c

w Ž .x � 4m -a.e. cf. Dawid 1979 . Evaluation of p at x [ x : a g a and ofaj bj c a a a

Ž . Ž .p at x is denoted by p x and p x , respectively. The lattera < b aj b a a a < b aj b
notation stresses the fact that p is considered a function of x . We willa < b aj b
sometimes say that p has a Gibbs factorization w.r.t. the undirected grapha < b

Ž . cŽ .G. By this we mean that p x factorizes as Ł c x , m-a.e., hencea < b aj b cg K c
cŽ . Ž .also as Ł c x , m -a.e. K denotes the set of cliques of G . Incg K cl Žaj b. aj b

order to prevent cumbersome formulations, we will henceforth mostly omit
the ‘‘m-a.e.’’ clauses.

Ž .THEOREM 3.4. If G s V, E is a reciprocal graph, P is a probability
measure and P has a positive density p w.r.t. the product measure m s
= m on the Borel sets of RV, then the following statements are equiva-aa g V
lent:

Ž .i P is global G-Markov.
Ž . Ž .ii For each a g A G , P is global G -Markov.a a
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Ž . Ž . Ž .miii For each a g A G , P is G -Markov.a a
Ž . Ž . Ž .miv For each a g A G , p has a Gibbs factorization w.r.t. G .a a
Ž .v For every never-decreasing listing a , . . . , a of the members of1 q

Ž Ž ..J A G , P is G -Markov, P is G -Markov andxV _w a V _w a x a aq q q q

w x w x w x w xa H V _ cl a N bd a P .Ž . Ž .q q q

Ž .vi The density p can be factorized:
p x s c c x , m-a.e.Ž . Ž .Ł Ł a cl clŽw ax.

Ž Ž .. cgKagJ A G a

cŽ . Ž . Ž Ž ..such that Ł c x s p x , m -a.e., for each a g J A G .cg K a cl clŽw ax. w ax <²a: a aa
Ž .vii The density p can be factorized:

p x s c c x , m-a.e.Ž . Ž .Ł Ł a cl clŽw ax.
Ž Ž .. cgKagJ A G a

such that

c c x dm x s 1, m -a.e.,Ž . Ž .ŁH a cl clŽw ax. w ax w ax ²a:w axR cgK a

Ž Ž ..for each a g J A G .

Ž . Ž . Ž .mIn vi and vii , K denotes the set of cliques in the undirected graph G .a a

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .PROOF. We show that i « ii « iii « i ; iii m iv ; ii « v « iv ;
Ž . Ž . Ž . Ž .v « vi « vii « iv .

Ž . Ž .To see that i implies ii , let b, c and d be subsets of the anterior set a
Ž .m Ž .and assume that d separates b and c in G , where an b j c j danŽbj cj d .

is taken w.r.t. G . From Lemma 2.2 and Proposition 2.3, it follows that it isa
Ž .immaterial whether the set an b j c j d is taken w.r.t. G or w.r.t. G. So da

Ž .m Ž .separates b and c in G as well, where now an b j c j d isanŽbj cj d .
< w xtaken w.r.t. the graph G. Hence b H c d P .

Ž . Ž .Assume ii . Lemma 3.1 shows that, in order to prove iii , it suffices to
< w x Ž .mshow that b H c d P whenever d separates b and c in the graph G . Buta

Ž .m w Ž . xif d separates b and c in the graph G , then since an b j c j d : a da
Ž .m Ž .separates b and c in the graph G as well. Hence ii impliesanŽbj cj d .

< w xb H c d P .
Ž . Ž . Ž .mAssume iii . To show i , suppose c separates a and b in G .anŽaj bj c.

Ž .m <Since P is G -Markov, it follows immediately that a H b canŽaj bj c. anŽaj bj c.
w xP .

Ž . Ž .To show that iii and iv are equivalent, we refer to Remark 3.1 which
Ž . Ž .mestablishes that, for each a g A G separately, P is G -Markov iff p hasa a a

Ž .ma Gibbs factorization w.r.t. G .a
Ž . Ž . wNow suppose ii holds. The first two statements of v are immediate note

Ž . w x Ž .xthat Proposition 2.4 vii implies that V _ a g A G . The third statement ofq
Ž . Ž . Ž .v follows from Lemma 3.3. So ii implies v .

Ž . Ž . < Ž Ž .. <To show that v implies iv , we use induction on q s J A G . If q s 1,
Ž Ž .. � 4 w xthen J A G s V , a s V, so by hypothesis P s P is G-Markov whichq V

Ž . Ž .is i , equivalent to iv . Assume now the implication holds for all reciprocal
< Ž Ž .. < Ž .graphs H with J A H - q. Take a g A G fixed. Let a , . . . , a be a1 q
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Ž Ž .. w xnever-decreasing listing of the members of J A G such that, if a : a andi
w x w Ž .x w xa ­ a, then i - j cf. Proposition 2.4 viii . If a : V _ a , the first state-j q

Ž . Ž . Ž . Žment of v and the already established equivalence of i and iv applied to
. Ž .m w xG show that p has a Gibbs factorization w.r.t. G . If a l a / B,V _w a x a a qqw x w xthen a : a, so a : a for all i F q, so a s V. We must now show that pq i

m w x Žw x. < Žw x.has a Gibbs factorization w.r.t. G . By hypothesis, a H V _ cl a bd a ,q q q
w x ² : Žw x. < Žw x.hence a H a _ cl a bd a . Then, denoting the conditional densityq q q q

of X given X by p , we obtain for the density p: p s p =a b a < b V _w a xq

p s p = p s p = p s p = p rp .w a x <V _w a x V _w a x w a x < bdŽw a x. V _w a x w a x <²a : V _w a x a ²a :q q q q q q q q q q q

By the induction hypothesis, p has a Gibbs factorization w.r.t.V _w a xq
Ž .m mG , hence also w.r.t. G as the latter graph has more edges and henceV _w a xq

more and greater cliques. By hypothesis, P is G -Markov, so the alreadya aq q
Ž . Ž .established equivalence of i and iv shows that p and p have Gibbsa ²a :q q

Ž .m Ž .m mfactorizations w.r.t. G and G , respectively, hence also w.r.t. G asa ²a :q q

again the latter graph has more edges and hence more and greater cliques.
This shows that p has a Gibbs factorization w.r.t. Gm.

Ž . Ž .Note that we have now established that i to v are equivalent.
Ž . Ž .We proceed by showing that v implies vi . We use induction on q s

< Ž Ž .. < Ž Ž .. � 4J A G . If q s 1, then J A G s V , a s V. So the hypothesis impliesq
Ž . Ž . Ž .that P is G-Markov; that is, i holds. But i is equivalent to iv , so p has a

m Ž Ž .. � 4 w x Žw x.Gibbs factorization w.r.t. G . However, since J A G s V , a s cl a sq q
Ž . cŽ .V, the factorization in vi reduces to Ł c x , where K denotes the setcg K c

of cliques of the undirected graph Gm. This is an ‘‘ordinary’’ Gibbs factoriza-
tion w.r.t. Gm, which, as has just been shown, holds. Now assume that the

< Ž Ž .. <implication holds for all reciprocal graphs H with J A H - q. Since
w x Žw x. < Žw x.a H V _ cl a bd a , p s p = p s p = p .q q q V _w a x w a x <V _w a x V _w a x w a x < bdŽw a x.q q q q q q

w x Žw x. < Žw x.Since also a H a _ cl a bd a , p s p , so p sq q q q w a x < bdŽw a x. w a x <²a :q q q q

Ž . Ž .p = p . By v and induction, p x factorizes as:V _w a x w a x <²a V _w a x V _w a xq q q q q
cŽ . cŽ .Ł Ł c x , where, for i - q, Ł c x si - q c g K a c l clŽw a x . c g K a c l clŽw a x .a i i a i ii i

Ž .p x . Furthermore, since P is G -Markov, p has a Gibbs factoriza-w a x <²a : a a a ai i i q q q

Ž .m Ž . Ž .tion w.r.t. G . As v is equivalent to iv , it also follows that p has aa ²a :q q
Ž .m Ž .mGibbs factorization w.r.t. G , hence also w.r.t. G . So the following²a : aq q
Ž . Ž . Ž . Ž .equalities hold: p x s p x s p x rp x sw a x < bdŽw a x. clŽw a x. w a x <²a : a a a ²a : ²a :q q q q q q q q q q

c Ž . c Ž .Ł c x s Ł c x , where the last transition is validcg K a c cg K a cl clŽw a x.a q a q qq q

since the left-hand side only depends on x . All in all we have now shownclŽw a x.q
Ž . cŽ .that p x s Ł Ł c x , where, for i F q, Łi F q cg K a cl clŽw a x. cg Ka i i ai icŽ . Ž . Ž .c x s p x ; that is, vi holds.a cl clŽw a x. w a x <²a : ai i i i i

Ž . Ž .Clearly, vi implies vii .
Ž . Ž .Finally, we show that vii implies iv . We again use induction on q s

< Ž Ž .. < Ž Ž .. � 4 Ž . � 4 w x Žw x.J A G . If q s 1, then J A G s V , A G s B, V , a s cl a s V,q q
so the factorization of p obtained by the hypothesis is all that is needed to

Ž .establish iv . Assume now the implication holds for all reciprocal graphs H
< Ž Ž .. < Ž .with J A H - q. Take b g A G fixed. We must show that p has a Gibbsb

Ž .mfactorization w.r.t. G . Let a , . . . , a be a never-decreasing listing of theb 1 q
Ž Ž .. w x w x wmembers of J A G such that, if a : b and a ­ b, then i - j cf.i j
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Ž .x w xProposition 2.4 viii . Suppose b : V _ a . Thenq

p x s c c x dm xŽ .Ž . Ž .Ł ŁHV _w a x V _w a x a cl clŽw a x. w a x w a xq q i i q qw a xqR iFq cgK ai

s c c x ,Ž .Ł Ł a cl clŽw a x.i i
i-q cgK ai

Ž . Ž .so vii is satisfied for P and G . By the induction hypothesis, ivx xV _w a V _w aq q

Ž .m w xholds for G . So p has a Gibbs factorization w.r.t. G . If b l a / B,V _w a x b b qqw x w xthen a : b, so a : b for all i F q, so b s V. Clearly, for each a gq i
Ž Ž .. cŽ .J A G , x ¬ Ł c x is a function with a Gibbs factorizationa cg K a cl clŽw ax.a

Ž .m m Ž . cŽ .w.r.t. G , so also w.r.t. G . But then p x s Ł Ł c xa ag J Ž AŽG .. cg K a cl clŽw ax.a

satisfies a Gibbs factorization w.r.t. Gm as well. I

Ž . Ž . Ž . Ž .REMARK 3.2. Note that in proving i « ii « iii « i , we have not used
Ž . Ž . Ž .the assumption that P has a positive density w.r.t. m. In fact, i , ii and iii

of Theorem 3.4 are equivalent for any probability measure P, as long as it is
Ž . Ž .m Ž .mwell understood that, in iii , ‘‘ G -Markov’’ means ‘‘global G -Markov.’’a a

Ž .Theorem 3.4 vi is very instructive since it offers detailed insight into the
meaning of the G-Markov property and its relation to the lattice CI property.
Loosely stated, one can say that the Gibbs factorization of p consists of an

Ž .outer factorization which is determined by the lattice structure of A G and
an inner factorization which is determined by Gibbs factorizations w.r.t.
Ž .mG for join-irreducible anterior sets a. This is made more precise in thea
next two corollaries.

COROLLARY 3.5. Suppose the probability measure P has a positive density
p w.r.t. the product measure m s = m on the Borel sets of RV. Leta g V a

Ž .A : PP V be a distributive lattice. Then the following statements are equiva-
lent:

Ž .i P satisfies the lattice CI probability model determined by A.
Ž . Ž . Ž .ii The density p can be factorized: p x s Ł p x , m-a.e.ag J Ž A. w ax <²a: a

< Ž . <PROOF. Let q s J A and let a , . . . , a be a never-decreasing listing of1 q
Ž . Ž .the members of J A . Define the graph G s V, E by

<w x w x w x w xE s PP a j a , b a g a , b g a , a : a .Ž .Ž . � 4D D2 i j i jž /
Ž . i-jFqagJ A

Ž . Ž .Clearly, G is a reciprocal graph even a chain graph and A G s A. Also, for
Ž Ž .. Žw x. ² : Žw x. Ž .m Ž Ž ..a g J A G , bd a s a , cl a s a, G s a, PP a , so the set ofa 2

Ž .m � 4cliques in the undirected graph G is K s a .a a
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Ž . Ž .To see that ii implies i , notice that the density p satisfies Theorem
Ž . w aŽ . Ž . Ž .x3.4 vi w.r.t. the graph G just put c x s p x , a g J A , so P isa a w ax <²a: a

G-Markov. Proposition 3.2 now implies that P satisfies the lattice CI model
Ž .determined by A G s A.
Ž . Ž . < Ž . <We prove that i implies ii by induction on q s J A . If q s 1, then

� 4 Ž . � 4 w x ² : Ž .A s B, V , J A s V , V s V and V s B, so ii is trivial. Suppose the
implication holds for all lattices with less then q join-irreducible elements.

Ž . Ž .Let a , . . . , a be a never-decreasing listing of J A . From Proposition 2.4 vii1 q
w xit follows that V _ a g A. Clearly, P satisfies the lattice CI modelq V _w a xq

Ž . � 4determined by A . Notice that J A s a , . . . , a . By induction,xV _w a V _w a x 1 qy1qq

Ž . Ž .p x s Ł p x . The lattice CI property for A impliesV _w a x V _w a x iF qy1 w a x <²a : aq q i i i

Ž w x. Ž w x. < Ž w x. w xthat a _ V _ a H V _ a _ a a l V _ a , that is, a H V _q q q q q q q
<² : Ž . Ž . Ž .a a . It follows that p x s p x = p x sq q V _ w a x V _ w a x w a x <V _ w a xq q q q

Ž . Ž . Ž .p x = p x s Ł p x . IV _w a x V _w a x w a x <²a : a iF q w a x <²a : aq q q q q i i i

Ž .In view of Theorem 3.4 vi and Corollary 3.5 the next result, specifying two
further conditions equivalent to the G-Markov condition, should not come as
a surprise.

COROLLARY 3.6. Suppose the probability measure P has a positive density
p w.r.t. the product measure m s = m on the Borel sets of RV. Leta g V a

Ž .G s V, E be a reciprocal graph. Then the following statements are equiva-
lent:

Ž .i P is G-Markov.
Ž . Ž .ii P satisfies the lattice CI probability model determined by A G , and Pa

Ž Ž ..is G -Markov for each a g J A G .a
Ž . Ž .iii P satisfies the lattice CI probability model determined by A G ; for

Ž Ž .. w x Žw x. < Žw x.each a g J A G , a H a _ cl a bd a and the conditional density pw ax <²a:
Ž .mhas a Gibbs factorization w.r.t. G .a

Ž . Ž . Ž . Ž .PROOF. i implies ii is clear. Assume ii holds. To see iii , let a g
Ž Ž .. Žw x. Ž .J A G . Note the bd a : a, so the two final statements of iii pertain to

the marginal distribution P . As P is G -Markov, both statements followa a a
Ž .easily from Theorem 3.4. Finally, assume iii holds. By the previous corollary

Ž . Ž .we have the factorization p x s Ł p x . Furthermore, forag J Ž AŽG .. w ax <²a: a
Ž Ž .. Ž . Ž . Ž .each a g J A G , p x s p x . Now p x has a Gibbsw ax <²a: a w ax < bdŽw ax. clŽw ax. w ax <²a: a

Ž .m Ž . cŽ .factorization w.r.t. G , say p x s Ł c x s Ła w a x <²a: a c g K a c c g Ka a
Ž cŽ .c x , where the last equality holds since there is only dependence ona cl clŽw ax.

Ž .x . Together we obtain the factorization p x s Ł ŁclŽw ax. ag J Ž AŽG .. cg K a
cŽ . Ž .c x , so Theorem 3.4 vi holds. This means that P is G-Markov. Ia cl clŽw ax.

Together, Corollaries 3.5 and 3.6 imply that the class of lattice CI probabil-
ity models with positive densities is a subclass of the class of probability

Ž .models determined by a reciprocal graph or even a chain graph . It is easy to
see that this inclusion is strict. Recently, without assuming the existence of
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Ž .positive densities, Andersson, Madigan, Perlman and Triggs 1995a, b showed
that the class of lattice CI probability models coincides with the class of
G-Markov probability models, where G is a transitive directed acyclic graph
Ž . Ž .TDAG . Andersson, Madigan, Perlman and Triggs 1995a also contains
Corollary 3.5 and various other conditions equivalent to the lattice CI prop-
erty.

4. Reciprocal graphs and LISREL models. In this section we will
consider multivariate normal probability distributions which obey a set of
linear equations. Before doing so we formulate an important lemma concern-

Ž .ing general nondegenerate normal distributions. It is well known that in
this case ‘‘independence’’ is equivalent to ‘‘zero correlation.’’ Also, ‘‘conditional
independence’’ just means ‘‘zero partial correlation.’’ Since partial correla-
tions are closely connected to the inverse of the covariance matrix, the

w Ž .following lemma can be proved cf. Speed and Kiiveri 1986 and Whittaker
Ž .x1990 . Notice that the first three statements of the lemma refer to the
simultaneous distribution of all variables, whereas the last three statements
pertain to certain marginal distributions.

� 4LEMMA 4.1. Suppose the random vector X : a g V has a nondegeneratea

normal distribution with covariance matrix S. Let a, b and c be disjoint
Ž .subsets of V a and b nonempty such that a j b j c s V. Let S denote thea, b

Ž Ž ..submatrix Cov X , X . Then the following statements are equiva-a b a g a, b g b
lent:

Ž . <i X H X X .a b c
Ž . Ž .y1 Ž .ii S s S S S [ 0 if c s B .a, b a, c c, c c, b
Ž . Ž y1 .iii S s 0.a, b
Ž . <iv For all a g a and b g b, X H X X .a b c
Ž . Ž . Ž .y1 Ž .v For all a g a and b g b, Cov X , X sS S S [0 if csB .a b a , c c, c c, b

Ž . Ž Ž .y1 .vi For all a g a and b g b, Cov X , X , X s 0.a b c a , b

Let us now turn to linear equations systems. In Joreskog and Sorbom¨ ¨
Ž .1989 the so-called full LISREL model is defined by the following equations:

h s Bh q Gj q z structural equation

Y s L h q «y
measurement equations5X s L j q dx

with the assumptions

LI-1. z , « , d and j are mutually uncorrelated;
LI-2. I y B is nonsingular.

A few remarks concerning these assumptions are in order here. First, in
LI-1 we make the assumption that « and j are uncorrelated, whereas

wŽ . xJoreskog and Sorbom 1989 , page 4 , assume instead that « and h are¨ ¨
Ž .y1Ž .uncorrelated. Since h s I y B Gj q z it is obvious that the latter is
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implied by our set of assumptions, but not the other way around. However,
Ž .since all models in Joreskog and Sorbom 1989 in fact do have « uncorre-¨ ¨

lated with j , it seems that this is tacitly presumed by them, so LI-1 simply
Ž .y1Ž .makes this explicit. Substituting h s I y B Gj q z into the measure-

ment equation for Y, this also leads to the ‘‘natural’’ condition that in all
equations the errors are uncorrelated with the regressors.

The second remark pertains to the assumption that the error variables z , «
and d are mutually uncorrelated. This keeps open the possibility that there
are nonzero correlations within the sets of z-, «- and d-variables. Formulating

wthe full LISREL model as the so-called ‘‘Submodel 3B’’ cf. Joreskog and¨
Ž . xSorbom 1989 , page 157 , it even becomes possible to allow correlations¨

between the «- and d-variables. This is of course a nice illustration of the
flexibility of the LISREL model. It can be argued though that correlated
errors are, from a modeling point of view, inelegant, since they introduce
correlations between dependent variables which apparently cannot be ex-
plained otherwise. In this view, the sole role of error variables is to make both
ends of a linear equation meet. They should not be allowed to introduce new
relations between the variables of primal interest. Be this as it may, it turns
out that the main result in Section 5 can only be proved if all error variables

Ž .are uncorrelated in fact, if not, the result is false . Therefore we will make
Ž .the explicit assumption i.e., SE-5 below that all error variables are uncorre-

lated. However, this assumption is much less restrictive than might be
suspected since the case of correlated errors can be handled satisfactorily as
the discussion in Section 6 shows.

Ž .A final remark concerns the covariance matrix of the exogenous j-
Ž .variables, F s Cov j . In ordinary regression and path analysis models, no

special structure is imposed on this covariance matrix: it is only assumed to
be strictly positive definite. In LISREL, however, entries of F like the entries
of all other parameter matrices can be fixed to certain values or constrained
to be equal to other parameters. We will see later that too much of this
‘‘modeling’’ of F may render some of our results false, so the theorems in

Ž .Section 5 will only be proved under the supposition SE-6 below that F is a
nondegenerate block-diagonal covariance matrix. Again, the general case
with possible violation of this condition is treated in Section 6.

Consider the following way of writing the LISREL model:

0 0 L y 0 «Y Y
L d0 0 0s q j q .X X x

h h zG0 0 B

In this way the model takes the form of a system of p q q q m simultane-
ous equations. In fact, it has the form of a LISREL ‘‘Submodel 2,’’ except for
the fact that some of the endogenous and all exogenous variables are latent.

Ž .Let us now consider a general recursive or nonrecursive simultaneous
equations system of p endogenous and q exogenous variables:

Y s BY q CX q E,
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where we assume:

Ž .SE-1. Cov E , X s 0 for i s 1, . . . , p and j s 1, . . . , q;i j
SE-2. I y B is nonsingular;

Ž . Ž .SE-3. Y, X ; N 0, S .pqq

Some or all of the Y- and X-variables may be latent, hence the previous
formulation of the LISREL model shows that this model is a special case of
the present system of equations. Typically, the matrices B and C will be

Ž .stipulated to have fixed structural zeros on certain entries and the same
Ž .will be the case for various off-diagonal elements of F [ Cov X and C [

Ž .Cov E . Let Z , Z , Z and Z denote the sets of indices of all structuralb c f c

Ž . Ž .zeros of B, C, F and C, respectively. It is assumed that i, i g Z , i, i f Zb c

Ž .and j, j f Z for 1 F i F p and 1 F j F q. Now the matrices B, C, F and Cf

are constrained to satisfy the zero structures specified in Z , Z , Z and Z ,b c f c

respectively; that is, we assume:

Ž . Ž . Ž . Ž .SE-4. Z : Z B , Z : Z C , Z : Z F and Z : Z C .b c f c

Ž .Here Z A denotes the set of indices of zero entries of the matrix A.
It is common practice to draw a path diagram of the SE system. As

Ž .Joreskog and Sorbom 1989 remark, this has at least two advantages. First,¨ ¨
‘‘the path diagram effectively communicates the basic conceptual ideas of the
model.’’ Second, ‘‘if the path diagram includes sufficient detail, it can repre-
sent exactly the corresponding algebraic equations of the model and the
w xcorrelational assumptions about the error terms in these equations.’’ We
may add to this that the path diagram also portrays the correlational
assumptions about the exogenous variables. But is it possible to extricate
more information from it, in particular concerning the conditional indepen-
dence structure of the random variables?

The following conventions for drawing path diagrams are usually observed:

1. The Y-, X- and E-variables are denoted either by name or short keyword
or number; they constitute the vertices of the path diagram.

2. Assumed correlations within the set of X-variables or within the set of
E-variables are denoted by two-way arrows. More precisely stated, a
two-way arrow between, say, X and X , i / j, is drawn if and only ifi j
Ž .i, j f Z . Similarly, a two-way arrow between, say, E and E , i / j, isf i j

Ž .drawn if and only if i, j f Z .c

3. One-way arrows always point toward Y-variables. An arrow from X to Yj i
Ž .is drawn if and only if i, j f Z ; an arrow from Y to Y is drawn if andc j i

Ž .only if i, j f Z . Finally, one-way arrows point from E to Y for i sb i i
1, . . . , p.

So we see that path diagrams of SE systems look very similar to reciprocal
graphs. Indeed, if the two-way arrows are understood to represent undirected
edges, it is clear that there are no one-way arrows between vertices belonging
to the same path component, hence path diagrams are really pictures of
reciprocal graphs. Now, the question is whether or not the Markov properties
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of the random variables involved in the SE system can be read off the path
diagram.

There are various reasons why this might not be the case. For one, in the
Ž .way a path diagram is generated as outlined above no reference at all is

made to the notion of conditional independence. A path diagram merely
portrays a system of linear equations: each variable that has a one-way arrow
pointing toward it corresponds to precisely one equation. No such connection
with equations, either linear or nonlinear, is present in the case of G-Markov
probability measures. Furthermore, the absence of a two-way arrow between
two exogenous or error variables means that these variables are uncorre-
lated. This is just a property of their marginal, bivariate distribution and
does not imply anything about them being partially uncorrelated}the linear

Ž .counterpart of conditional independence cf. Lemma 4.1 .
ŽA simple example may illustrate the fact that the Markov properties i.e.,

.the conditional independence statements which can be obtained from a path
diagram by interpreting it as a reciprocal graph need not be valid.

EXAMPLE 2. Consider the single equation Y s c X q c X q c X q E,1 1 2 2 3 3
together with the assumptions SE-1 to SE-4, where it is supposed that

Ž . �Ž . Ž .4Cov X , X s 0, hence Z s 1, 3 , 3, 1 . Let PP denote the set of normal1 3 f

Ž .probability distributions for Y, X , X , X satisfying these assumptions. We1 2 3
have the following path diagram:

X1 66

6 6

6X Y E2

6

6 6
X3

Ž .mNow, although X and X are separated by X in G s1 3 2 anŽ�X , X , X 4.1 2 3
Ž� 4 �� 4 � 44. <X , X , X , X , X , X , X , it is easy to see that X H X X does not1 2 3 1 2 2 3 1 3 2
hold for all P g PP. On the other hand, although X H X holds by supposi-1 3

Žtion for all P g PP, it is not true that X and X are separated by the empty1 3
. Ž .m Ž .mset in G s G .anŽ� X , X 4. anŽ�X , X , X 4.1 3 1 2 3

Let us consider the matter in more detail. Since the model in the given
example clearly is recursive, at least part of the problem has nothing to do

Ž .with non recursiveness. In order to eliminate inconsistencies as the above,
wwe must introduce two further qualifications these were also made by

Ž .Kiiveri, Speed and Carlin 1984 , when studying recursive systems of equa-
xtions . First, all error variables are assumed to be uncorrelated; second, it is

assumed that the exogenous variables can be so ordered that their covariance
matrix becomes block-diagonal without structural zero entries within the

wdiagonal blocks it is not required to actually carry out the reordering,
though; the condition simply means that the structural zero entries of

Ž . Ž .y1 xCov X and Cov X coincide . In terms of the sets Z and Z , whichc f

Ž . Ž .contain the indices of structural zero off-diagonal entries of Cov E and
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Ž .Cov X , this can be stated as follows:
U Ž� 4.SE-5. Z s E 1, . . . , p ;c

Ž . Ž . Ž .SE-6. If i, j f Z and j, k f Z , then i, k f Z .f f f

Ž .Notice that SE-6 is violated in the previous example since 1, 3 g Z ,f

Ž . Ž .whereas 1, 2 f Z and 2, 3 f Z . The remarkable fact is that SE-5 andf f

SE-6 suffice to solve all problems; that is, once SE-5 and SE-6 are satisfied,
Markov properties can validly be read off a path diagram. This will be shown
in the next section.

5. Markov properties of a simultaneous equations system. From
now on we will consider a simultaneous equations system with p endogenous
and q exogenous variables, Y s BY q CX q E, which satisfies assumptions
SE-1 to SE-6. The set of normal probability distributions for the random

Ž .vector Y, X satisfying all of this is denoted by PP.
We associate with the SE system a graph, G; it is the subgraph obtained

from the path diagram by deleting all error variables. More precisely stated,
Ž . � 4G s V, F , where V s 1, . . . , p q q is the set of vertices representing the

random variables Y , . . . , Y , X , . . . , X in this order, while the edge set F1 p 1 q
consists of the following elements:

Ž .1. a , b g F iff 1 F b F p and one of the following conditions holds:
Ž .a. 1 F a F p, a / b and b, a f Z ;b
Ž .b. p q 1 F a F p q q and b, a y p f Z .c

� 4 Ž .2. a , b g F iff p q 1 F a , b F p q q, a / b and a y p, b y p f Z .f

wNotice that we leave out all error variables. We will not discuss exten-
sively the reasons for this exclusion. It suffices to say that they mainly stem

Ž .from the fact that the vector Y, X, E has a degenerate normal distribution:
the linear dimension of the 2 p q q random variables is only p q q. This

<leads to ‘‘trivial’’ conditional independencies such as Y H Y rest, where ‘‘rest’’i j
� 4 xdenotes remaining Y-variables jX j E.

Ž .Clearly, the class of undirected path components of G, U G , is equal to
�� 4 � 44 � Ž . < 41 , . . . , p j u a p q 1 F a F p q q . From this it is obvious that there

Ž .are no directed edges arrows between vertices which belong to the same
path component. So G is indeed a reciprocal graph; loosely stated, it is just
the subgraph obtained from the ordinary path diagram by wiping out all
error variables together with their associated arrows.

y1 wThe next lemma gives well-known expressions for S and S e.g., see
Ž .xKiiveri, Speed and Carlin 1984 . Recall that S is the covariance matrix of

Ž . Ž . Ž .the random vector Y, X , F s Cov X and C s Cov E .

LEMMA 5.1. Let Y s BY q CX q E be a simultaneous equations system
which satisfies SE-1 to SE-3. Then

y1 y1 y1I y B C q CFC9 I y B9 I y B CFŽ . Ž . Ž . Ž .
S s y1

FC9 I y B9 FŽ .



NONRECURSIVE CAUSAL MODELS 2169

and

y1 y1I y B9 C I y B y I y B9 C CŽ . Ž . Ž .y1S s .y1 y1 y1yC9C I y B C9C C q FŽ .

U Ž� 4.We now formulate our main result. Assuming Z s E 1, . . . , q in SE-6,f

that is, uncorrelated exogenous variables, it was discovered independently by
Ž .Spirtes 1995 .

THEOREM 5.2. Let Y s BY q CX q E be a simultaneous equations system
Ž .with p endogenous and q exogenous variables that satisfies SE-1 to SE-6.

Ž .The set of normal probability distributions for Y, X satisfying this system is
Ž .denoted by PP. Let G s V, F be the associated reciprocal graph, defined as

above. Then all P g PP are global G-Markov.

Ž .We must show that for disjoint sets a, b and c a and b nonempty the
implication

Ž .m < w xc separates a and b in G « a H b c P for all P g PPanŽaj bj c.

holds. The proof will be split up in six steps and it will become apparent that
in all steps except the last one we are able to show that the implication holds
the other way around, too. In fact, we claim that the class PP is Markov

w Ž .xperfect w.r.t. G cf. Frydenberg 1990b , that is,

< w x Ž .ma H b c P for all P g PP « c separates a and b in GanŽaj bj c.

Žholds, but we are unable to prove it at this point. However, recent results by
Ž .Spirtes, Richardson, Meek, Scheines and Glymour 1996 entail Markov

perfectness of PP. See Section 6 for further discussion of this and related
.matters.

PROOF OF THEOREM 5.2. We will first prove the theorem and its converse
under the additional supposition that a j b j c s V. Notice that, in this

Ž .m mcase, c separates a and b in G s G if and only if, for all a g aanŽaj bj c.
� 4 mand all b g b, a , b is not an edge in G .

� 4 � 4 � 4 � 4 � 41. Assume that a s a , b s b , c s V _ a , b and a , b : 1, . . . , p , that
< � 4 w xis, both a and b refer to endogenous variables. Then a H b V _ a , b P

Ž . y1 ŽŽfor all P g PP m the a , b -entry of S vanishes for all P g PP m I y
. y1Ž ..B9 C I y B s 0 for all matrices B and C which satisfy the simulta-a , b

w Ž . Ž .x y1neous equations model i.e., Z : Z B and Z : Z C m yc b yb c a a a b

cy1 b q Ý p b cy1 b s 0 for all matrices B and C satisfying Z :bb ba gs1 ga gg gb b
Ž . Ž . Ž . Ž .Z B and Z : Z C m a , b g Z and b, a g Z and for all g gc b b

� 4 Ž . Ž . Ž . Ž .1, . . . , p either g , a g Z or g , b g Z m b, a f F and a , b f Fb b
� 4 Ž . Ž .and there exists no g g 1, . . . , p such that both a , g g F and b, g g

� 4 m � 4 � 4 � 4 mF m a , b is not an edge in G m V _ a , b separates a and b in G .
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� 4 � 4 � 42. Next assume that a s a , b s b and c s V _ a , b , but now a g
� 4 � 41, . . . , p and b g p q 1, . . . , p q q , so a refers to an endogenous vari-

< � 4 w xable whereas b denotes an exogenous variable. Then a H b V _ a , b P
Ž . y1 ŽŽfor all P g PP m the a , b -entry of S is 0 for all P g PP m y I y

. y1 .B9 C C s 0 for all matrices B, C and C which satisfy the simulta-a , byp
neous equations model m ycy1c q Ý p b cy1c s 0 for allaa a , byp gs1 ga gg g , byp

Ž . Ž .matrices B, C and C which satisfy Z : Z B , Z : Z C and Z :b c c

Ž . Ž . � 4 Ž .Z C m b, a f F and there exists no g g 1, . . . , p such that both a , g
Ž . � 4 m � 4g F and b, g g F m a , b is not an edge in G m V _ a , b separates

� 4 � 4 ma and b in G .
� 4 � 4 � 43. If a s a , b s b and c s V _ a , b and both a and b refer to exoge-

< � 4 w x Ž y1nous variables, then a H b V _ a , b P for all P g PP m C9C C q
y1 .F s 0 for all matrices C, C and F which satisfy the simultane-ayp, byp

Ž y1 . p y1ous equations model m F q Ý c c c s 0 for allayp, byp gs1 g , ayp gg g , byp
Ž . Ž .matrices C, C and F which satisfy Z : Z C , Z : Z C and Z :c c f

Ž . � 4 � 4Z F m a , b f F and there exists no g g 1, . . . , p such that both
Ž . Ž . � 4 m � 4a , g g F and b, g g F m a , b is not an edge in G m V _ a , b

� 4 � 4 mseparates a and b in G .
< < < <4. We proceed by induction on a j b . Suppose a j b G 3. Without loss of

< <generality, we may assume that b G 2. Pick some b g b. Then, using the
Ž . < w x Ž < � 4 w xBIP and induction, a H b c P for all P g PP m a H b c j b _ b P

� 4 < � 4 w x . � 4and a H b _ b c j b P for all P g PP m c j b _ b separates a and
� 4 m � 4 � 4 mb in G and c j b separates a and b _ b in G m c separates a
and b in Gm.

5. Now consider the case that a j b j c is an arbitrary anterior set, not
Ž .necessarily V. Suppose a j b j c s an a j b j c s d, say. Define the

� 4 � 4sets e and f by e s d l 1, . . . , p , f s d l p q 1, . . . , p q q . It is easy to
Ž . < <see that the subvector Y , X satisfies a system of e simultaneouse f

wequations, together with the set of assumptions SE-1 to SE-6 which are
Ž .xunderstood to pertain only to Y , X . Here we use the fact that d is ane f
Ž .anterior set, so the subvector Y , X is ‘‘self-contained’’: ignoring errors,e f

Ž .no variables but those in Y , X are involved in the definition of itse f
equations. Note that X and X are mutually uncorrelatedf � pq1, . . . , pqq4_ d
since d is an anterior set. Furthermore, the set of normal probability

Ž . � < 4distributions for Y , X satisfying SE-1 to SE-6 is just PP s P P g PP .e f d d
Ž .This is true since any subvector Y , X satisfying assumptions SE-1 toe f

SE-6 can always be extended to a random vector, say
˜ ˜Ž .Y , Y , X , X , which satisfies the assumptions of thee �1, . . . , p4_ d f � pq1, . . . , pqq4_ d

Ž .full SE system and has the distribution of Y , X as its marginal distribu-e f
< w xtion. Using the result of step 4 we now get: a H b c P for all P g PP m

< w x Ž .ma H b c P for all P g PP m c separates a and b in G m c separatesd d d d
Ž .ma and b in G .anŽaj bj c.

Ž .m6. Finally, suppose a and b are separated by c in G . Using ananŽaj bj c.
argument similar to the one used in step 5, it is clear that we may assume,

Ž . Žwithout loss of generality, that an a j b j c s V. Define d s V _ a j
.b j c . Now define d as the set of all vertices d g d for which there exists1
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a path in Gm to a vertex a g a, such that the path remains outside c
w Ž m. xhence the path is contained in the subgraph G . Now put d s d _V _ c 2
d , then a j d is separated from b j d by c in Gm. For suppose there is,1 1 2

Ž m.say, a path from g g d to d g d in G . The definition of d implies2 1 V _ c 1
Ž m.the existence of a path in G from d to some a g a. Together theseV _ c

Ž .paths constitute a path from g to a outside c , contradicting the defini-
Ž m.tion of d . By a similar argument, a path in G from b g b to d g d2 V _ c 1

Ž .can be extended to a path outside c from b to some a g a and hence
Ž m.cannot occur. Finally, paths in G from g g d to a g a or fromV _ c 2

Ž .b g b to a g a are ruled out by definition or by hypothesis. Since a j d1
Ž . Ž .j b j d j c s V, it now follows from the previous step that a j d H2 1

Ž . < w x < w xb j d c P for all P g PP, hence also a H b c P for all P g PP. I2

REMARK 5.1. It is interesting to consider the following implication of the
< w xclaim that PP is Markov perfect w.r.t. G. Suppose a H b c P for all P g PP.

Ž . Ž . < w xThen a j d H b j d c P for all P g PP, where d and d are defined as1 2 1 2
in step 6 of the foregoing proof. So the sets of conditionally independent
variables a and b can be extended to a j d and b j d such that a j b j1 2
c j d j d constitutes an anterior set of the associated reciprocal graph. To1 2
appreciate this, it should be understood that, in case of SE systems satisfying
SE-1 to SE-6, the concept of an ‘‘anterior set’’ can easily be defined without
reference to the associated reciprocal graph. This can be seen as follows. For

� 4 � < Ž . 4 � <1 F a F p, define Y x s Y j Y 1 F b F p, a , b f Z j X 1 F b F q,a a b b b

Ž . 4 � < Ž . 4a , b f Z . Also, for 1 F a F q, let X x denote X 1 F b F q, a , b f Z .c a b f

� 4Suppose A : X , . . . , X , Y , . . . , Y and let a : V be the corresponding1 p 1 q
subset of vertices in the associated reciprocal graph. Then a is an anterior set
if and only if, for all Z g A, Zx : A.

The partial proof in steps 1]5 of the claim that PP is Markov perfect
comprises a result which is worth being formulated separately.

PROPOSITION 5.3. Let Y s BY q CX q E be a simultaneous equations sys-
tem that satisfies SE-1 to SE-6, and let PP denote the set of normal probability

Ž . Ž .distributions for Y, X satisfying this system. Let G s V, F be the associ-
Žated reciprocal graph. Suppose a, b and c are disjoint subsets of V a and b

. < w xnonempty such that a j b j c is an anterior set and assume that a H b c P
Ž .mfor all P g PP. Then a and b are separated by c in G .aj bj c

w Ž . xEXAMPLE 3 cf. Whittaker 1990 , pages 302 and 303 . Consider the equa-
tions Y s b Y q c X q E and Y s b Y q c X q E , together with1 12 2 11 1 1 2 21 1 22 2 2

Ž .assumptions SE-1 to SE-6, where it is assumed that Cov X , X s 0, hence1 2
�Ž . Ž .4 �Ž . Ž .4 �Ž . Ž .4Z s 1, 2 , 2, 1 . Note that Z s 1, 1 , 2, 2 and Z s 1, 2 , 2, 1 . Let PPf b c

Ž .denote the set of normal probability distributions for Y , Y , X , X1 2 1 2
satisfying these assumptions. The associated reciprocal graph is

Ž� 4 �Ž . Ž . Ž . Ž .4. ŽG s 1, 2, 3, 4 , 1, 2 , 2, 1 , 3, 1 , 4, 2 recall that the vertices 1, 2, 3, 4 rep-
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.resent Y , Y , X , X in this order , that is,1 2 1 2

6

3 1

6

6

6

24

� 4 � 4 � 4 � 4 � 4 � 4The anterior sets of G are B, 3 , 4 , 3, 4 and 1, 2, 3, 4 . Clearly, 3 and 4
Ž .m Ž� 4 .are separated by the empty set in G s 3, 4 , B , hence X and XanŽ�3, 44. 1 2

are marginally independent. Furthermore, Gm is

3 1

24

� 4 � 4 � 4 mSo 3 and 4 are separated by 1, 2 in G . From Theorem 5.2 we can
<Ž . w x y1conclude that X H X Y , Y P for all P g PP. Indeed, for S s1 2 1 2

Ž .y1Cov Y, X we have

y1 y1 2 y1 y1 y1 y1c q c b yc b y c b yc c c b c11 22 21 11 12 22 21 11 11 22 21 22

y1 y1 y1 y1 2 y1 y1yc b y c b c q c b c b c yc c11 12 22 21 22 11 12 11 12 11 22 22y1S s ,y1 y1 y1 2yc c c b c f q c c 011 11 11 12 11 11 11 11

y1 y1 y1 2c b c yc c 0 f q c c22 21 22 22 22 22 22 22

y1 Ž . Ž . Ž .so S has structural zero entries only at the positions 3, 4 and 4, 3 . We
can also illustrate our claim that PP is Markov perfect w.r.t. G. For instance,

� 4 � 4 � 4 Ž .m mit is not true that 3 and 4 are separated by 1 in G s G .anŽ�1, 3, 44.
Indeed, a simple computation, taking, for example, F s C s I and b s12

Ž . Ž .y1 Ž .b s c s c s 1r2, gives s s 0 / 1r3 = 25r9 = 2r3 s21 11 22 34
y1 <s s s , hence it is not true that X H X Y for this particular P g PP. I31 11 14 1 2 1

There are two other issues that can be settled by means of the previous
Žexample I thank anonymous referees for drawing my attention to these

.points . First, it is well known that different graphs can have the same
Markov properties and hence can give rise to the same probability model.
Thus far we have not shown that the class of reciprocal graphs, although
strictly larger than the class of chain graphs, defines a class of probability
models which is strictly larger than the class of models determined by chain
graphs. That this is in fact the case follows from the next proposition.

PROPOSITION 5.4. No chain graph has the same Markov properties as the
Ž� 4 �Ž . Ž . Ž . Ž .4.reciprocal graph G s 1, 2, 3, 4 , 1, 2 , 2, 1 , 3, 1 , 4, 2 .

PROOF. Clearly, the only two valid, nontrivial conditional independence
� 4 � 4 � 4 � 4 <� 4statements implied by G are 3 H 4 and 3 H 4 1, 2 . Example 3 shows

that there exist probability measures that satisfy these two statements only.
As there also exist probability measures that satisfy only either one of these

Ž .statements and hence are not G-Markov , it follows that a chain graph, say
H, will define the same probability model as G if and only if the only
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nontrivial graph separation statements which are valid for H are the follow-
ing:

Ž . � 4 � 4 Ž .mA 3 and 4 are separated by B in H ;anŽ�3, 44.
Ž . � 4 � 4 � 4 mB 3 and 4 are separated by 1, 2 in H .

Ž� 4 .Suppose H s 1, 2, 3, 4 , F is a chain graph for which just the statements
Ž . Ž . � 4 Ž . Ž .A and B hold. It follows immediately that 3, 4 f F, 3, 4 f F and 4, 3 f

Ž� 4. � 4 Ž� 4. � 4F. We first show that an 3, 4 s 3, 4 . Suppose a g an 3, 4 _ 3, 4 s
Ž Ž . Ž .. � 4 Ž . � 4an 3 j an 4 _ 3, 4 , say a g an 3 _ 3, 4 . Then there exists a path from 3

Ž .m � 4 � 4to a in H . Also, since it is not true that a , 3 and 4 are separated.anŽ�3, 44
Ž .m Ž .mby B in H , there exists a path from a to 4 in H . TogetheranŽ�3, 44. anŽ�3, 44.

Ž .mthese paths constitute a path from 3 to 4 in H , contradicting.anŽ�3, 44
Ž . Ž . � 4statement A . A similar argument shows that a f an 4 _ 3, 4 . From this it

� 4 � 4 � 4 Ž .follows that, for all a g 1, 2 and all b g 3, 4 , a , b f F and a , b f F.
�Ž . Ž . Ž . Ž . 4Consequently, F : 3, 1 , 3, 2 , 4, 1 , 4, 2 , e , where e g12 12

�� 4 Ž . Ž .4 41, 2 , 1, 2 , 2, 1 . This still leaves 2 = 4 s 64 possibilities for F and hence
Ž . Ž .for H. However, it is impossible that both 3, 1 g F and 4, 1 g F, as this

Ž . Ž .would contradict statement B . Similarly, it is impossible that both 3, 2 g F
Ž .and 4, 2 g F. It is now an easy exercise to check that, for none of the

Ž . Ž .remaining possibilities for H, A and B are the only valid graph separation
statements. I

Finally, the graph in Example 3 may also serve to illustrate an interesting
difference between reciprocal graphs and chain graphs. In chain graphs,
every missing edge between two vertices implies a valid, nontrivial condi-
tional independence statement pertaining to these vertices and a certain

w Ž .xconditioning set cf. Wermuth and Lauritzen 1990 . The entire list of these
statements constitutes the content of the so-called pairwise Markov prop-
erty, which is equivalent to the global Markov property for probability

Ž . Ž .measures satisfying BIP ; cf. Frydenberg 1990a , Theorem 3.3. For recipro-
cal graphs this no longer holds, generally. For instance, although there is no
edge between, say, vertices 3 and 2 in Example 3, no valid, nontrivial
conditional independence statement concerns these two variables.

6. Markov perfectness and SE systems violating SE-5 or SE-6. We
will first briefly discuss SE systems Y s BY q CX q E that satisfy SE-1 to
SE-4 but violate SE-5 or SE-6. This issue is treated at length by Spirtes
Ž . Ž .1995 and Spirtes, Richardson, Meek, Scheines and Glymour 1996 and we

Ž .refer the reader to these papers for a detailed discussion. In Spirtes 1995 it
is shown that the class of all normal probability distributions for SE systems
satisfying SE-1 to SE-5, and meeting the additional requirement that F s

Ž .Cov X is a diagonal matrix, is Markov perfect w.r.t. the associated reciprocal
Ž .graph which in this case is a fully directed graph . It turns out that the

general case of SE systems satisfying SE-1 to SE-4 but violating SE-5 or SE-6
can essentially be reduced to this situation. Indeed, Spirtes, Richardson,

Ž .Meek, Scheines and Glymour 1996 show that, by adding a latent variable
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for each pair of correlated exogenous or error variables, a so-called ‘‘trans-
formed graph’’ can be made that precisely represents the Markov properties

Ž .of the original SE system for Y, X , that is, three subsets of variables satisfy
Ža conditional independence relation for all probability measures induced by

.the SE system if and only if these subsets satisfy a corresponding graph
separation condition in the transformed graph. Two examples may help to
clarify the procedure.

Ž .EXAMPLE 2 Continued . Two extra latent variables are added to account
Ž . Ž .for Cov X , X / 0 and Cov X , X / 0. The transformed graph associated1 2 2 3

Ž . Žwith the SE system for Y, X , say H, looks as follows. Notice that the
variables Y, X , X , X are represented by the vertices 1, 2, 3, 4 respectively;1 2 3

.vertices 5 and 6 represent the two added latent variables.
2 6

6

5 6 66 3 1

66

6

4
� 4 � 4 � 4 � 4 � 4 � 4 � 4The anterior sets of H are B, 5 , 6 , 2, 5 , 4, 6 , 5, 6 , 2, 5, 6 , 4, 5, 6 ,

� 4 � 4 � 4 � 4 � 4 � 43, 5, 6 , 2, 3, 5, 6 , 2, 4, 5, 6 , 3, 4, 5, 6 , 2, 3, 4, 5, 6 , 1, 2, 3, 4, 5, 6 . Clearly,
� 4 � 4 Ž .m Ž� 4 �� 42 and 4 are separated by B in the graph H s 2, 4, 5, 6 , 2, 5 ,anŽ�2, 44.
� 44.4, 6 . Hence X H X as it should be. On the other hand it is not true that1 3
� 4 � 4 � 4 Ž .m Ž� 42 and 4 are separated by 3 in the graph H s 2, 3, 4, 5, 6 ,anŽ�2, 3, 44.
�� 4 � 4 � 4 � 4 � 44.2, 5 , 3, 5 , 3, 6 , 4, 6 , 5, 6 , hence X H X N X is not implied by the1 3 2
graph.

Ž . Ž .EXAMPLE 3 Continued . Assume Z s B, that is, Cov E , E may bec 1 2
Ž .nonzero. We postulate a single latent variable to account for Cov E , E / 0.1 2

ŽThe transformed graph H associated with the SE system is notice that the
variables Y , Y , X , X are represented by the vertices 1, 2, 3, 4 respectively;1 2 1 2

.vertex 5 represents the added latent variable :6

63 1

6

6

6

56

24
Ž� 4. � 4 m Ž� 4 Ž� 4.Now, an 1, 2, 3, 4 s 1, 2, 3, 4, 5 and H s 1, . . . , 5 , PP 1, . . . , 5 _2

�� 44. � 4 m Ž .3, 4 , that is, 3, 4 is the only missing edge in H . Since 3, 5, 4 is a path
m � 4 Ž .in H from 3 to 4 which stays outside 1, 2 , X H X N Y , Y is not implied1 2 1 2

Ž y1 .by the graph. Indeed, using Lemma 5.1 it is easy to see that Ý need not3, 4
be 0.

As regards Markov perfectness for SE systems satisfying SE-1 to SE-6 we
can now state:

THEOREM 6.1. Let Y s BY q CX q E be a simultaneous equations system
that satisfies SE-1 to SE-6, and let PP denote the set of normal probability

Ž . Ž .distributions for Y, X satisfying this system. Let G s V, F be the associ-
ated reciprocal graph. Then PP is Markov perfect w.r.t. G.
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PROOF. Let H be the transformed graph associated with the SE system
Ž .as in Spirtes, Richardson, Meek, Scheines and Glymour 1996 . It is easy to

see that, under the conditions of the theorem, the transformed graph H and
Žthe reciprocal graph G have the same graph separation properties for

Ž ..subsets of vertices representing Y, X . More precisely stated: If a, b and c
�are disjoint subsets of V, the set of vertices representing Y , . . . , Y ,1 p

4 � .mX , . . . , X , then a and b are separated by c in G if and only if a1 q anŽaj bj c.
Ž .mand b are separated by c in H . However, the latter condition isanŽaj bj c.

w x w Ž .xequivalent to a H b N c P for all P g PP cf. Spirtes 1995 . I

7. Some remaining questions. There are various problems relating to
the class of reciprocal graphical models introduced in this paper which
remain to be solved. Some of these not only have theoretical interest, but also
bear on statistical estimation.

A first question concerns, on the one hand, the set PP of normal probability
Ž .distributions for Y, X satisfying SE-1 to SE-6, and, on the other hand, the

set of G-Markov normal probability distributions, say PPU, where G is the
reciprocal graph associated with the SE system. According to Theorem 5.2,
PP : PPU. This inclusion may be strict, as can be seen by taking Z s B inf

Ž .Example 3, that is, Cov X , X may be nonzero. The associated reciprocal1 2
graph imposes no conditional independence constraints, so any normal proba-
bility distribution is in PPU. The LISREL model, on the other hand, still has
one degree of freedom.

Second, one would like to have a necessary and sufficient condition to
determine when two reciprocal graphs define the same probability model. In

Ž .Frydenberg 1990a this question was solved for chain graphs. Two chain
graphs have the same Markov properties if and only if they have the same

wunderlying undirected graph and the same ‘‘minimal complexes’’ Frydenberg
Ž . x1990a , Theorem 5.6 . The following example shows that this theorem is no

� 4 Ž �Ž . Ž .4.longer valid for reciprocal graphs. Let V s 1, 2, 3 , G s V, 1, 2 , 3, 2 ,1
Ž �Ž . Ž . Ž .4. Ž �Ž . Ž . Ž .4.G s V, 1, 2 , 2, 3 , 3, 2 and G s V, 1, 2 , 2, 3 , 3, 1 . Then G and2 3 1

G have the same underlying undirected graph and the same minimal2
complexes, but have different Markov properties as 1 H 3 is implied by G1
but not by G . On the other hand, G and G have the same Markov2 2 3
properties, but do not have the same underlying undirected graph nor
the same minimal complexes. From Corollary 3.6 a sufficient condition can
be derived: if two reciprocal graphs, say G and H, have the same join-

Žirreducible anterior sets and hence also the same anterior sets; cf. Proposi-
.tion 2.4 , and for each join-irreducible anterior set a it holds that G s H ,a a

then G and H have the same Markov properties. However, this condition is
rather strong and the graphs G and G above show that it is indeed2 3
unnecessary.

Recently the problem of Markov equivalence of cyclic directed graphs was
Ž . Ž .addressed independently by T. Richardson. Richardson 1994 states a

theorem that gives necessary and sufficient conditions for the Markov equiva-
lence of two cyclic directed graphs. Although the conditions can be checked in
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polynomial time, it turns out that they are much more complicated than
Frydenberg’s conditions for chain graphs.

There is a related statistical question, but to address it one first has to
think of a proper way to introduce parametric families of distributions within
the present context of G-Markov probability models, for example, discrete
multivariate cross classifications, multivariate normal distributions, condi-

Ž . w Ž .xtional Gaussian CG distributions cf. Lauritzen and Wermuth 1989 and so
on. In view of Theorem 3.4, it seems desirable that, for each join-irreducible
anterior set a, both the marginal distribution P and the conditional distri-a
bution P belong to the parametric family. This means that for a givenw ax <²a:
parametric family only graphs should be considered for which these closure
properties hold. Of course, this condition is trivial for discrete multivariate
cross classifications and multivariate normal distributions, since these fami-
lies are closed under marginalization and conditioning anyhow. For other
families, for example, CG distributions, the matter may be different. Notice
that this requirement of parametric closure under marginalization and condi-
tioning does not entirely agree with the definition of a CG chain model in

Ž .Wermuth and Lauritzen 1990 , since no restrictions on the chain graph are
made in that paper. In any case, once this point has been decided upon, the
next question is: when do two reciprocal graphs define the same statistical
model?
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