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OPTIMAL DESIGNS FOR RATIONAL MODELS
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In this paper, experimental designs for a rational model, Y =
P�x�/Q�x� + ε, are investigated, where P�x� = θ0 + θ1 x+ · · · + θpxp and
Q�x� = 1+ θp+1 x+ · · · + θp+q xq are polynomials and ε is a random error.
Two approaches, Bayesian D-optimal and Bayesian optimal design for
extrapolation, are examined. The first criterion maximizes the expected
increase in Shannon information provided by the experiment asymptoti-
cally, and the second minimizes the asymptotic variance of the maximum
likelihood estimator (MLE) of the mean response at an extrapolation point
xe. Corresponding locally optimal designs are also discussed. Conditions
are derived under which a p + q + 1-point design is a locally D-optimal
design. The Bayesian D-optimal design is shown to be independent of the
parameters in P�x� and to be equally weighted at each support point if
the number of support points is the same as the number of parameters
in the model. The existence and uniqueness of the locally optimal design
for extrapolation are proven. The number of support points for the locally
optimal design for extrapolation is exactly p+q+1. These p+q+1 design
points are proved to be independent of the extrapolation point xe and the
parameters in P�x�. The corresponding weights are also independent of
the parameters in P�x�, but depend on xe and are not equal.

1. Introduction. Experimental design has its root in the agricultural ex-
periments of Fisher’s pioneering work at Rothamsted Experimental Station in
the 1920s and 1930s, and has flourished as an integral part of statistical re-
search and practice. Most of the design work has focused on the linear regres-
sion model due to its simplicity. However, as the amount of statistical analysis
using nonlinear models increased in fields such as the chemical, biological and
clinical sciences, people became aware of the need for optimal design for these
nonlinear models.

The earliest relevant nonlinear example is Fisher’s (1922) work on the
dilution-series problem; see Fedorov (1972), page 121. The next major impe-
tus took the form of various nonlinear regression models involving exponential
functions for reaction rates in chemical kinetics; examples are included in Box
and Lucas (1959) and Katz, Azen and Schumitzky (1981). Another important
class of nonlinear regression models is the rational model, which has been
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widely used in agricultural and biological research; see, for example, Sparrow
(1979a, b).

The nonlinear problem is intrinsically much harder than the linear problem
as the information matrix depends on the unknown parameters. A common
approach is to design an experiment to be efficient for a best guess of the
parameter values. This approach leads to what are called “locally optimal”
designs, introduced by Chernoff (1953) and discussed in Fedorov [(1972), Sec-
tions 1.4, 2.8 and 4.4], Silvey [(1980), Sections 6 and 7], and Ford, Titterington
and Kitsos (1989). Although, in practice, parameters are rarely known, Ford,
Torsney and Wu (1992) note various reasons why locally optimal designs are
still of interest.

A natural generalization of the locally optimal design is to use a prior dis-
tribution on the parameters rather than a single guess. An optimal design is
then called a Bayesian optimal design. Although numerous articles have been
written on the classical aspects of nonlinear models, such as estimation and in-
ference, the area of nonlinear experimental designs, especially Bayesian non-
linear experimental design, started receiving attention much more recently.
The literature in this area includes Tsutakawa (1972), Chaloner and Larntz
(1989) and Chaloner (1993). Finding the Bayesian D-optimal design for a non-
linear model is usually quite difficult. Chaloner (1993) gives a closed form of
the Bayesian D-optimal design for a one-parameter logistic model with a prior
having two equally weighted points. For nondegenerate prior distributions,
the examples of Bayesian D-optimal designs considered so far for models with
more than one parameter are found numerically and, in general, cannot be
expressed in closed form.

It is well known that various versions of the Kiefer–Wolfowitz equivalence
theorem play an extremely important role in almost all the nonlinear design
problems, including both theoretical and numerical approaches. Such equiva-
lence theorems for nonlinear optimal designs can be found in Whittle (1973)
and Läuter (1974), and for Bayesian nonlinear designs in Chaloner and Larntz
(1989) and Pilz (1991). One usually resorts to finding an optimal design within
the class of k-point designs for a particular value of k and then uses the equiv-
alence theorem to check that the resulting design is indeed globally optimal.

The article is organized as follows. In Section 2, we review several Bayesian
optimal design criteria for the nonlinear problem, and discuss some basic prop-
erties about these designs. We will illustrate that the Bayesian D-optimal de-
sign under any prior distribution should be equally weighted at each support
point if the number of support points is the same as the number of parameters
in the model.

In Section 3, we consider a general rational model

Y = θ0 + θ1x+ · · · + θp xp
1+ θp+1x+ · · · + θp+q xq

+ ε; x ∈ �a; b�:

We will prove that, under some suitable conditions, the Bayesian D-optimal
and optimal designs for extrapolation depend only on the marginal distribu-
tions of �θp+1; : : : ; θp+q�:
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In Section 4, we show that locally D-optimal designs for rational models
are equally weighted on exactly k = p+q+1 support points under some mild
conditions about the parameters. The relationships between rational models
and polynomial models are also sought.

In Section 5, we construct the locally optimal design for extrapolation, which
is supported on p + q + 1 points and is independent of both the parameters
�θ0; θ1; : : : ; θp� and the extrapolation point xe. If p ≥ q, these support points
are �a = s0 < s1 < · · · < sp+q−1 < sp+q = b�, where �s1; : : : ; sp+q−1� are
determined by the 0’s of a certain polynomial. This is analogous to the result
of Hoel and Levine (1964) for the ordinary polynomial case.

Finally, the Michaelis–Menten model is considered in Section 6. The an-
alytic form of the D-Bayesian optimal two-point designs is discussed. The
locally D-optimal and optimal designs for extrapolation are given and com-
pared.

2. Optimal designs for a general nonlinear model.

2.1. A nonlinear regression model. To introduce the notation, consider a
general nonlinear regression model of the form:

Y = Y�x� = f�x;u� + ε;(1)

whereY is the response variable, x is an explanatory variable, u = �θ1; : : : ; θk�
is a k vector of unknown parameters, f = f�x;u�; the mean response at x,
is a nonlinear function of u and ε is a random error satisfying E�ε� = 0 and
var�ε� = σ2. Let X denote the design space of possible x’s, which is usually
a compact subset of Rp. Assume that ε has a normal distribution with mean
0 and variance σ2. In general, σ2 may depend on both x and u. However, for
simplicity, we assume that σ2 is a known constant and independent of x and
u. This is usually not too restrictive since our main purpose is to design the
experiment concerning the parameter u. Without loss of generality, we assume
that σ2 = 1.

Associated with an observation, Y, there is a Fisher information matrix,
I�u; x�, given by

I�u; x� = ∇f�∇f�t;

∇f ≡ ∇f�x;u� =
(
∂f

∂θ1
;
∂f

∂θ2
; : : : ;

∂f

∂θk

)t
:

(2)

Any design can be represented by a probability measure ξ on X . If ξ is sup-
ported at m points x1; : : : ; xm with mass ξ�xi� = ni/n,

∑m
i=1 ni = n, the exper-

iment takes ni observations at xi. The average (per observation) information
matrix of a design ξ is then defined by

M�ξ� ≡M�uy ξ� =
∫

X
I�u; x�ξ�dx�:(3)

Let ξn denote the n-point design taking observations at the points x�n� =
�x1; : : : ; xn�. If ε is not normally distributed but all the observations are mutu-
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ally independent, then M−1�uy ξn� is proportional to the asymptotic covariance
matrix for the maximum likelihood estimate for u, provided that M−1�uy ξn�
exists.

2.2. The design criteria. Bayesian optimal designs minimize the expecta-
tion of some function of M�uy ξ� with respect to some prior distribution. The
most commonly used criterion is

φD�ξ� =
∫

Q
log�det�M�uy ξ���dπ�u�;(4)

where π�·� is a prior distribution of u. This criterion was originally sug-
gested by Lindley (1956) and used recently by Chaloner and Larntz (1989)
and Chaloner (1993), for instance. Under an asymptotic normal approximation
to the posterior distribution of u, φD�·� approximates the expected increase
in Shannon information provided by the experiment. A design ξ minimizing
(4) is called a Bayesian D-optimal design. If π�·� is degenerate, a Bayesian
D-optimal design is referred to as a locally D-optimal design.

Another commonly used design is a Bayesian L-optimal design minimizing

φL�ξ� =
∫

Q
tr�L�u�M−1�uy ξ��dπ�u�;(5)

where L�u� is a symmetric, nonnegative definite, k× k matrix. If linear com-
binations of the θi’s are of interest, then L�u� does not depend on u and is
a constant matrix. If nonlinear combinations of the θi’s are of interest, then
L�u� has entries which are functions of u. If π�·� is a degenerate prior, the
Bayesian L-optimal design is referred to as the locally L-optimal design.

When L is a rank-one matrix of the form L = cc′ for some k × 1 column
vector c, the corresponding designs are referred to as c-optimal.

In design problems, the experimenter often wants to know the dependence
of the response on explanatory variables in those regions where observations,
from the practical point of view, are impossible or extremely difficult to collect.
To be specific, suppose that we need to extrapolate to a given point xe /∈ X .
This means estimating f�xe;u�, the mean response at xe: Let û be the MLE
of u. For any design ξ, the variance of the asymptotic distribution of f�xe; û�
for fixed u is then ∇f�xe;u�tM−1�u; ξ�∇f�xe;u�. This motivates a special c-
optimal design criterion with c = ∇f�xe;u�: A design ξ minimizing such a
criterion will be called a Bayesian ce-optimal design. The corresponding locally
optimal design will be called the ce-locally optimal design.

The following theorem gives an upper bound for the number of support
points needed for a Bayesian optimal design.

Theorem 1. If the prior distribution of u is supported on no more than r
distinct points, there exists a Bayesian D-optimal design, supported at no more
than 1

2rk�k+ 1� points.

Proof. This can be proven in a manner similar to Theorem 4 in Läuter
(1974). See also Theorem 2.1 of Dette and Neugebauer (1995). 2
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In the case of one-parameter nonlinear models, this means that the support
of the Bayesian optimal designs consists of no more points than the support
of the prior distribution. In addition, there must be a locally optimal design
with one support point.

Theorem 2. Consider a general nonlinear regression model, Y = f�x;u�+
ε, where x ∈ X = �a; b� and u = �θ1; : : : ; θk�. For any fixed prior of u, among
all the k-point designs, a Bayesian D-optimal design has equal weight on its
k supporting points.

Proof. See Karlin and Studden (1966), page 329. 2

We should point out that for a k-parameter design problem, if the Bayesian
D-optimal design ξ has more than k supporting points, ξ may not be equally
weighted.

3. Bayesian optimal designs.

3.1. Preliminaries and a gradient identity. In this section, we consider a
general rational regression model,

Y = f�x;u� + ε; with f�x;u� = P�x�/Q�x� and x ∈ X ≡ �a; b�;(6)

where P�x� = P�x;uP� andQ�x� = Q�x;uQ� are two polynomials in x, defined
by

P�x� = θ0 + θ1x+ · · · + θpxp;(7)

Q�x� = 1+ θp+1x+ · · · + θp+qxq:(8)

Here k = p + q + 1; uP = �θ0; θ1; : : : ; θp�t, uQ = �θp+1; : : : ; θp+q�t and u =
�uP;uQ�: This, of course, is a special case of the general nonlinear regression
model (1). We will examine the design problems for the Bayesian D-optimal
design and the Bayesian ce-optimal design. More detailed results about the
corresponding locally optimal designs will be investigated in Sections 4 and 5.

In using Kiefer–Wolfowitz-type equivalence theorems, a useful concept is
the directional derivative of ξ in the direction ξx, defined by

d�ξ; x� = lim
ε↓0

φ��1− ε�ξ + εξx� −φ�ξ�
ε

:

Here ξx is a point mass at x ∈ �a; b� and φ�ξ� is a design criterion such that
d�ξ; x� exists. From Whittle (1973) or Chaloner and Larntz (1989), a design
ξ0 is a Bayesian optimal design if and only if

d�ξ0; x� ≤ 0 for all x ∈ X :

To obtain an expression for d�ξ; x�, we first derive a simple expression for
the gradient vector ∇f. For any positive integer n, let

hn ≡ hn�x� = �1; x; x2; : : : ; xn�t:(9)
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For any integer i, 0 ≤ i ≤ p+ q, let bi denote the following p+ q+ 1 column
vector:

bi =





�0;0; : : : ;0︸ ︷︷ ︸
i

;1; θp+1; θp+2; : : : ; θp+q;0;0; : : : ;0︸ ︷︷ ︸
p−i

�t;

if 0 ≤ i ≤ p;
−�0;0; : : : ;0︸ ︷︷ ︸

i−p

; θ0; θ1; : : : ; θp;0;0; : : : ;0︸ ︷︷ ︸
p+q−i

�t;

if p+ 1 ≤ i ≤ p+ q:

(10)

Define a �p+ q+ 1� × �p+ q+ 1� matrix B by

B ≡ B�u� = �b0;b1; : : : ;bp+q�t:(11)

Also let

gi�x� =
∂

∂θi
f�x;u� =





xi

Q�x� ; if 0 ≤ i ≤ p;

−x
i−pP�x�
Q2�x� ; if p+ 1 ≤ i ≤ p+ q:

(12)

Lemma 1 (A gradient identity). We have the following relationship:

∇f = ∇f�x;u� = B�u�htp+q�x�/Q2�x;uQ�:(13)

The proof of the identity is fairly straightforward and will be omitted. It is
crucial in proving most of the results related to the rational model (6).

In the following it will always be assumed that on the support sets
of ξ and π the polynomial Q2�x;uQ� is bounded away from 0 and that∫

log��B�u��2�dπ�u� <∞.

Lemma 2. For the rational model (6), the Fisher information matrix I�u; x�
and the average information M�u; ξ� are

I�u; x� = 1
Q4

Bhp+qh
t
p+qB

t(14)

and

M�uy ξ� = BM0�uQy ξ�Bt;(15)

respectively, where

M0�uQy ξ� =
∫ b
a

1
Q4�xyuQ�

hp+q�x�htp+q�x�ξ�dx�:(16)

Proof. This follows immediately from the gradient identity in Lemma 1. 2
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3.2. Bayesian D-optimal designs.

Theorem 3. The design criterion φD�ξ� and the corresponding directional
derivative dD�ξ; x� are

φD�ξ� =
∫

Q
log��B�2�π�du� +

∫
Q

log��M0�uQy ξ���π�du�(17)

and

dD�ξ; x�

=
∫

Q
tr
{
M−1

0 �uQy ξ�
(

1
Q4

hp+q�x�htp+q�x�
)}
π�du� − �p+ q+ 1�;(18)

respectively.

Proof. The result follows from the definition of directional derivative and
formula (1.1.34) of Fedorov (1972). 2

Corollary 1. Under the assumptions of Theorem 2, the Bayesian D-
optimal design is independent of uP = �θ0; θ1; : : : ; θP�, the parameters in the
numerator polynomial P�x;uP�.

Since the mean response is linear in uP, the parameters inP�x�, one expects
that the optimal design should be independent of uP. This type of nonlinear
regression model is known as a partially nonlinear model and has been dis-
cussed by Hill (1980). It is expected that an optimal design for a partially
nonlinear model is independent of the linear parameters. Unfortunately, this
is not always the case and a counterexample can be found in Hill (1980). When
all the parameters in a rational regression model are of interest, Corollary 1
confirms the above property for the design criterion (4). Surprisingly, if we are
interested in only a subset of all the parameters in the model, a Bayesian or
locally D-optimal design may depend on all the parameters in the model in
general. For details, see He (1993).

Remark 1. If the Bayesian D-optimal design ξ has support on p + q + 1
points, then Theorem 2 tells us that ξ must have equal weight on these points.

Example 1. In describing crop yield on the fertilizer input, Sparrow
(1979a) considered the model

Y = �θ0 + θ1x�/�1+ θ2x� + ε; x ∈ �a; b�;(19)

where θ2 ≥ 0, 0 ≤ a < b <∞. This a special case of (6) when p = q = 1. It is
easy to see that

B =




1 θ2 0

0 1 θ2

0 −θ0 −θ1




and �B� = θ0θ2 − θ1:
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Proposition 1. Consider the model (19). Assume that the marginal prior
distribution of θ2 has half its mass at each of the points c and d, where 0 < c ≤
d, and that, on the support of the prior, θ0θ2 − θ1 6= 0. Then, among all three-
point designs, the Bayesian D-optimal design ξ has equal weight on �a; x∗; b�,
where

x∗ = abcd− 1+
√
�ac+ 1��ad+ 1��bc+ 1��bd+ 1�
�a+ b�cd+ c+ d :(20)

Proof. For any design ξ having equal weight at points a ≤ x0 < x1 <
x2 ≤ b,

φD�ξ� = C+ 2g�x0; x1; x2�;
where C is some constant and

g�x0; x1; x2� = log
�x1 − x0��x2 − x0��x2 − x1�

�cx0 + 1��cx1 + 1��cx2 + 1��dx0 + 1��dx1 + 1��dx2 + 1� :

Using this, it can readily be verified that x0 must be a and then x2 = b. The
derivative with respect to x1 results in a quadratic equation of which (20) is
the relevant root. 2

We have found the Bayesian D-optimal design for the model (19) among all
three-point designs. An open question is to verify that this design is indeed
the Bayesian D-optimal design.

3.3. Bayesian L-optimal and ce-optimal designs. We first derive the for-
mula for the general Bayesian L-optimal design.

Theorem 4. The design criterion φL�ξ� and the corresponding directional
derivative dL�ξ; x� are

φL�ξ� =
∫

Q
tr�B−1L�u��B−1�tM−1

0 �uQy ξ��π�du�(21)

and

dL�ξ; x� = φL�ξ� −
∫

Q
tr
{

B−1L�u��B−1�tM−1
0 �uQy ξ�

×
(

1
Q4

hp+qh
t
p+q

)
M−1

0 �uQy ξ�
}
π�du�;

(22)

respectively. Here M0�uQy ξ� is given by (16) and B is given by (11).

Proof. This follows from Lemma 1 above and formula (1.1.33) of Fedorov
(1972). 2

Suppose that it is necessary to estimate f�xe;u� = P�xe�/Q�xe�, the mean
response at a given point xe /∈ �a; b�. A ce-optimal design is an L-optimal
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design with L�u� = ∇f�xe;u�∇f�xe;u�t = Q−4�xe�Bhp+q�xe�htp+q�xe�Bt. Then
we have the following results.

Corollary 2. The Bayesian ce-optimal design criterion and the corre-
sponding directional derivative are

φe�ξ� = φe�ξ; xe� =
∫

Q

1
Q4�xe�

htp+q�xe�M−1
0 �uQy ξ�hp+q�xe�π�du�(23)

and

de�ξ; x� = φe�ξ� −
∫

Q

1
Q4�xe�Q4�x�
× �htp+q�xe�M−1

0 �uQy ξ�hp+q�x��2π�du�;
(24)

respectively.

Corollary 3. If B−1L�u��B−1�t does not depend on uP, then the Bayesian
design criterion φL�ξ� does not depend on uP. In particular, the Bayesian ce-
optimal design does not depend on the marginal distribution of uQ.

Although the Bayesian D-optimal design itself does not depend on uP, the
criterion functional φD�ξ� does depend on uP. We have given a condition where
φL�ξ� itself is independent of uP. Here is another example where we can apply
the corollary. Assume that we are interested in g�u� = θp/θp+q, the ratio of the
coefficients of the highest orders in the two polynomials P and Q. Consider
g�û�, where û is the MLE of u. When u is given, the asymptotic variance of
g�û� is ∇gtM−1�u; ξ� ∇g; where

∇g = θ−2
p+q�0; : : : ;0︸ ︷︷ ︸

p

; θp+q;0; : : : ;0︸ ︷︷ ︸
q−1

;−θp�t:(25)

Thus, for the corresponding Bayesian L-optimal design, L�u� = ∇g∇gt. It
turns out that

∇g = B
1

θ2
p+q
�0; : : : ;0;1�t:(26)

Clearly, B−1L�u��B−1�t does not depend on uP. In fact, the Bayesian design
criterion is

∫
Q

1

θ4
p+q
�0; : : : ;0;1�M−1

0 �uQy ξ��0; : : : ;0;1�tπ�du�;

which is indeed independent of uP. It is also interesting to note that this L-
optimal criterion is a limiting case of the ce-optimal criterion. Details are given
at the end of Section 5.
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4. Locally D-optimal designs.

4.1. Existence. It is known that the locally D-optimal design for a simple
polynomial regression of degree p has exactly p+1 supporting points. The fol-
lowing theorem tells us the number of supporting points for a general rational
model (6).

Theorem 5. Consider the general rational model (6). Assume that �B� 6= 0.
Then the maximum of log �M�u; ξ�� with respect to the set of all probability
measures is attained by a measure ξ∗ which is concentrated on exactly p+q+1
points with equal weights 1/�p+ q+ 1�, if any one of the following conditions
holds:

(i) Q�x� does not vanish for all x ∈ �a; b�, and ∂2�p+q�+1Q4�x�/∂x2�p+q�+1;
as a function of x, has no 0 on the open interval �a; b� (which implies that
p < q);

(ii) Q�x� does not vanish for all x ∈ �a; b� and p ≥ q;

(iii)
{

1;
1
Q4
;
x

Q4
;
x2

Q4
; : : : ;

x2�p+q�

Q4

}

is a T-system on �a; b�.

Proof. By Theorem 2, we have that

log �M�u; ξ�� = log �B�2 + log det
[∫ b
a

1
Q4

hp+q�x�hp+q�x�t dξ�x�
]
:(27)

Note that the first term on the right-hand side of the above equation is inde-
pendent of ξ, and hence can be ignored. Also note that log�·� is a monotonically
increasing function. Therefore, the problem of maximizing log �M�ξ�� among
ξ ∈ 4 is equivalent to that of

max
ξ

det
[∫ b
a

1
Q4�x�hp+q�x�hp+q�x�

t dξ�x�
]
:(28)

If we let w�x� = 1/Q4�x�, we conclude that the D-optimal design ξ∗ is concen-
trated on exactly p+ q+ 1 points by using a theorem in Karlin and Studden
(1966), page 33. Furthermore, from Theorem 2, ξ should be equally weighted
on its supporting points. 2

Example 1 (Continued). Again consider the model (19). Assume that �B� =
θ0θ2−θ1 6= 0. By part (ii) of Theorem 5, the locally D-optimal design is equally
weighted on three points. If we let c = d = θ2 in Proposition 1, we find the
locally D-optimal design ξ∗ to be the three-point design with equal weights
1/3 at �a; x∗; b�, where

x∗ = a+ b+ 2abθ2

2+ �a+ b�θ2
:(29)
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Note that x∗ given by (29) is monotonically decreasing in θ2 ∈ �0;∞�, ranging
from the arithmetic mean to the harmonic mean of a and b.

4.2. Relationship with polynomial regression. It is known that the D-
optimal design for a polynomial regression model is invariant under a change
of interval. Suppose we have two linear models:

Model 1x Y = θ0 + θ1x+ · · · + θpxp + ε; a ≤ x ≤ b;
Model 2x Y = θ∗0 + θ∗1z+ · · · + θ∗pzp + ε; 0 ≤ z ≤ 1;

Let �x0; x1; : : : ; xp� and �z0; z1; : : : ; zp� be the supporting points of the D-
optimal designs for model 1 and model 2, respectively. Then we have

xj = a+ �b− a�zj; j = 0; : : : ; p:(30)

This result is actually a special case of Lemma 3. For a rational model, the
locally D-optimal design depends on the parameter in Q�x�. We have the
following results.

Lemma 3. Suppose that the following two models are used to describe the
same experiment using the transformation x = a+ �b− a�z:

Model 1x Y = θ0 + θ1x+ · · · + θpxp
1+ θp+1x+ · · · + θp+qxq

+ ε; a ≤ x ≤ b;

Model 2x Y =
θ∗0 + θ∗1z+ · · · + θ∗pzp

1+ θ∗p+1z+ · · · + θ∗p+qzq
+ ε; 0 ≤ z ≤ 1:

Then we have the following one-to-one relationship:

θ∗j =
�b− a�j
Q�a�

q∑
i=j
θi

(
i

j

)
ai−j; j = 0; : : : ; p;(31)

θ∗p+j =
�b− a�j
Q�a�

q∑
i=j
θp+i

(
i

j

)
ai−j; j = 1; : : : ; q;(32)

where Q�a� = 1+∑q
i=1 θp+ia

i:

Proof. The result follows from some simple algebra. 2

Theorem 6. Consider the two models in Lemma 3 for the same experiment.
Assume that the locally D-optimal design using model 2 has its support on the
k points z1; : : : ; zk. Then the locally D-optimal design using model 1 with
parameters given by (32) has its support on the k points, xi = a+�b−a�zi; i =
1; : : : ; k.

Proof. This result follows from simple invariance considerations in linear
models. For completeness, we spell out a direct proof. Let B and B∗ be the
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matrices defined by (11) for model 1 and model 2, respectively. For any design
ξ under model 1, it follows from (17) that

φ�ξ� = log��B�2� + log
(

det
{ ∫ b

a

1
Q4�x�hp+q�x�h

t
p+q�x� ξ�dx�

})

= log��B�2�

+ log
(
det

{∫ 1

0

hp+q�a+�b−a�z�htp+q�a+�b−a�z�
Q4�a+�b−a�z� dξ�a+ �b− a�z�

})
;

where hp+q�x� is defined by (9). It is clear that Q�a+ �b− a�z� = Q�a�Q∗�z�;
where Q∗�z� = 1+ θ∗p+1z+ · · · + θ∗p+1z

p+q. Since hp+q�a+ �b− a�z� is equal to




1 0 0 · · · 0
a b− a 0 · · · 0
:::

:::
:::

:::
ap+q

(
p+q

1

)
�b− a�ap+q−1

(
p+q

2

)
�b− a�2ap+q−2 · · · �b− a�p+q


hp+q�z�;

we then have

φ�ξ� = log��B�2� − log�Q4�a�� + �p+ q��p+ q+ 1� log�b− a�

+ log
(

det
{∫ 1

0

hp+q�z�htp+q�z�
�Q∗�z��4 dξ�a+ �b− a�z�

})
:

Noting that the analog of the design criterion under model 2 is

φ∗�ξ∗� = log��B∗�2� + log
(

det
{∫ 1

0

1
�Q∗�z��4 hp+q�z�htp+q�z�dξ∗�z�

})
;

we obtain the result immediately. 2

4.3. Weak convergence. In model (6), if uQ → 0q the mean response goes
to a pth-degree ordinary polynomial regression model, where 0q is the zero
vector in Rq. One might think that the locally D-optimal design for model
(6) goes to the locally D-optimal design for a pth-degree ordinary polynomial
regression model. This is not quite correct. The answer is a special case of
the following general theorem about weak continuity of the locally D-optimal
design.

Theorem 7. Consider the rational model (6). Assume that Q�x;u� does
not vanish on �a; b� for any u under consideration. In this case the locally D-
optimal design exists. Let ξ�uQ� be the locallyD-optimal design (which depends
only on uQ). Then ξ�uQ� is weakly continuous in uQ in the following sense. For

any sequence �umQ�m≥1, assume that umQ → u0
Q and the locally D-optimal design

ξ�u0
Q� is unique. Then ξ�umQ�→wξ�u0

Q�.
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Proof. For the first result, it is enough to prove that every weakly conver-
gent subsequence of �ξ�umQ��m≥1 converges to the same measure ξ�u0

Q�. In fact,

let �ξ�umj

Q ��j≥1 be any subsequence of �ξ�umQ��m≥1, so that �ξ�umj

Q �� →w ξ
∗ for

some measure ξ∗. It is easy to show that

tr
[(∫ b

a

hp+q�s�htp+q�s�
Q4�syumj

Q �
ξ�umj

Q �syu
mj

Q ���ds�
)−1(hp+q�x�htp+q�x�

Q4�xyumj

Q �

)]

− �p+ q+ 1�

→ tr
[(∫ b

a

hp+q�s�htp+q�s�
Q4�syu0

Q�
ξ∗�ds�

)−1(hp+q�x�htp+q�x�
Q4�xyu0

Q�

)]

− �p+ q+ 1�

(33)

as j→∞ for each x ∈ �a; b�: Since each term on the left-hand side is negative
for each x ∈ �a; b�; so is the right-hand side. Note that the right-hand side is
the directional derivative of ξ∗ in the direction ξx, so we know that ξ∗ is the
locally D-optimal design for u0

Q, which is unique by assumption. Therefore,
ξ∗ = ξ�u0

Q�. The desired results then follow. 2

Corollary 4. Under the assumptions of Theorem 7, if umQ → 0q, then
ξ�umQ� →w ξp+q, where 0q is the zero vector in Rq and ξp+q is the D-optimal

design for a �p+ q�th ordinary polynomial regression model.

Proof. If u0
Q = 0q, then ξ�u0

Q� is the D-optimal design for the �p + q�th-
degree polynomial regression model and is indeed unique from Guest
(1958). 2

Example 1 (Continued). As θ2 → 0, (29) goes to the arithmetic mean of
a and b, so that the locally D-optimal design ξ∗ tends to the design equally
weighted at �a; �a+b�/2; b�, which is the D-optimal design for the polynomial
model Y = θ0+θ1x+θ2x

2+ε, x ∈ X = �a; b�. This agrees with the conclusion
in Corollary 4.

5. Locally ce-optimal designs. The problem of extrapolation with a ra-
tional response model follows the result for the ordinary polynomial to some
extent. The polynomial case was first derived by Hoel and Levine (1964), who
showed that the support of the optimal extrapolation design does not depend
on the point of extrapolation xe. Again consider model (6). From (23), if we
define c = hp+q�xe�/Q2�xe�, then the optimal design ξ minimizing φe�ξyxe� is
the optimal design minimizing ctM−1

0 �uQ; ξ�c.
The solution depends on the existence of a certain oscillating polynomial

described in the following lemma. Denote a class of functions on �a; b� by
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W = �W�x� =∑p+q
i=0 aix

i/Q2�x��ai ∈ R, x ∈ �a; b�� and define the determinant
by

H

(
0; 1; : : : ; p+ q
x0; x1; : : : ; xp+q

)
≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Q2�x0�

1
Q2�x1�

· · · 1
Q2�xp+q�

x0

Q2�x0�
x1

Q2�x1�
· · · xp+q

Q2�xp+q�
:::

:::
:::

x
p+q
0

Q2�x0�
x
p+q
1

Q2�x1�
· · · x

p+q
p+q

Q2�xp+q�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

:(34)

Lemma 4. Assume that Q�x� = Q�x;uQ� 6= 0 for any x ∈ �a; b�. Then

there exists a unique W∗�x� = ∑p+q
i=0 a

∗
ix

i/Q2�x� ∈ W satisfying the following
properties:

(i) �W∗�x�� ≤ 1;
(ii) there are p + q + 1 points a ≤ s0 < s1 < · · · < sp+q ≤ b, such that

W∗�si� = �−1�p+q−i, i = 0;1; : : : ; p+q. Furthermore, whenU�x� ≡ 1 ∈ W , then
s0 = a and sp+q = b, and equality occurs in part (i) only for x = s0; s1; : : : ; sp+q.

Proof. The result follows from Theorem 2.10.1 of Karlin and Studden
(1966) and the fact that

1
Q2�x�hp+q�x� =

1
Q2�x��1; x; : : : ; x

p+q�t

forms a T-system on �a; b�. 2

For s0; s1; : : : ; sp+q given by Lemma 4, define the following determinants:

Di =H
(

0; : : : ; i− 1; i; : : : ; p+ q− 1; p+ q
s0; : : : ; si−1; si+1; : : : ; sp+q; xe

)
;(35)

where i = 0; : : : ; p+q. We know that Di > 0 if xe > b, and the sign of Di will
be �−1�p+q if xe < a. We further let

pi = �Di�
/p+q∑

j=0

�Dj�; i = 0; : : : ; p+ q:(36)

Then we have the following theorem for the locally ce-optimal design.

Theorem 8. Assume that Q�x� 6= 0 for any x ∈ �xe� ∪ �a; b�. Then:

(a) For any design ξ,

φe�ξ; xe� ≥ �W∗�xe��2:(37)

(b) Equality occurs in (37) if and only if ξ = ξ∗ which puts mass pi at the
point si; i = 0;1; : : : ; p+ q.
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Proof. The proof follows the same arguments as in the proof of Theorem
2.2 of Studden (1968) and is therefore omitted. 2

Remark 2. Assume that the conditions of Theorem 8 hold. If p ≥ q, then:

(a) Q2�x�W∗�x� is the �p+ q�th orthogonal polynomial with respect to

1√
�b− x��x− a�Q4�x�

y

(b) the two boundary supporting points of the ce-optimal design are s0 = a
and sp+q = b;

(c) the middle supporting points �s1; : : : ; sp+q−1� for the ce-optimal design are
the roots of the �p+q−1�th orthogonal polynomial up+q−1�x� with respect to

√
�b− x��x− a�
Q4�x� :

Proof. Part (a) follows from Krein and Nudelman (1977), pages 363 and
364. Part (b) follows from Theorem 2.2 of Studden (1968) and part (c) follows
from Lau (1983), page 125. 2

We know that the locally ce-optimal design, say ξe, is independent of uP,
the parameters in P�x�. From Lemma 4 and Theorem 8, the p+q+1 support
points �s0; s1; : : : ; sp+q� of ξe do not depend on xe (this agrees with the result
for ce-optimal designs under a polynomial regression model). In contrast, the
weights at �s0; s1; : : : ; sp+q� for ξe depend on xe and are not equally weighted.
Recall that, in Theorem 5, we showed that the locally D-optimal design, ξD
say, is equally weighted on p + q + 1 points. However, we do not know the
location of these p+ q+ 1 points. In practice, instead of finding ξD, one may
use the design ξew

e which puts equal weight on the p+q+ 1 support points of
ξe. Such a ξew

e is often “close” to ξD, as the following example illustrates.

Example 1 (Continued). Suppose that we want to extrapolate the experi-
mental dependence to a given point xe > b for model (19), that is, to estimate,
f�xe;u� = �θ0 + θ1xe�/�1 + θ2xe�, the mean response at xe: Since p ≥ q,
from Remark 2, we know that the locally ce-optimal design has three support-
ing points �a; s1; b�, where s1 is the root of the linear function orthogonal to√
�b− x��x− a�/�1+ θ2x�4. Therefore, we have

s1 =
{∫ b

a

x
√
�b− x��x− a�
�1+ θ2x�4

dx

}/{∫ b
a

√
�b− x��x− a�
�1+ θ2x�4

dx

}
:(38)

Furthermore, by Theorem 8, the weights for the optimal design at the three
points �a; s1; b� are �p0; p1; p2�, where pi = Ci/�C0 + C1 + C2�; i = 0;1;2:
C0 = �1+ θ2a�2�b− s1��xe− b��xe− s1�; C1 = �1+ θ2s1�2�b−a��xe− b��xe−a�
and C2 = �1+ θ2b�2�s1 − a��xe − s1��xe − a�:
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Table 1

The middle design points x∗ and s1 and the weights �p1; p2; p3�
for the model Y = �θ0 + θ1x�/�1+ θ2x� + ε; x ∈ �0;1�

u2 x∗ s1 xe �p1;p2;p3�

0 0.4999999991 0.5000000000 2 (0.1765, 0.4706, 0.3529)
20 (0.2437, 0.4998, 0.2565)

200 (0.2494, 0.5000, 0.2506)

1 0.3333333341 0.3333333333 2 (0.1220, 0.3902, 0.4878)
20 (0.1719, 0.4662, 0.3619)

200 (0.1760, 0.4702, 0.3538)

10 0.0833333313 0.0833333333 2 (0.0373, 0.1426, 0.8201)
20 (0.0615, 0.2264, 0.7121)

200 (0.0636, 0.2333, 0.7031)

100 0.0098039039 0.0098039216 2 (0.0048, 0.0192, 0.9759)
20 (0.0090, 0.0356, 0.9554)

200 (0.0094, 0.0372, 0.9534)

Let us compare the numerical values of the two middle design points, x∗

[defined by (29) for the locally D-optimal design] and s1 [defined by (38) for
the locally ce-optimal design]. We chose a = 0 and b = 1. Then the numerical
values of x∗ and s1 for various values of θ2 are given in Table 1. The weights
pi for the locally ce-optimal design are also given. It is seen that x∗ and s1 are
identical up to 10−8.

Before concluding this section, let us state a relationship between the locally
ce-optimal design and the locally L-optimal design when L�u� = ∇gt ∇g and
∇g is given by (25). This arises from estimating θp/θp+q. It is of interest that
the supporting points for these two locally optimal designs are identical.

Theorem 9. Assume that Q�x� 6= 0 for any x ∈ �a;∞� and θp+q 6= 0. Then
the supporting points for the locally ce-optimal design are the same as those of
the locally L-optimal design when L�u� = ∇gt ∇g and ∇g is given by (25).

Proof. From Theorem 8, the ce-optimal design for estimatingP�xe�/Q�xe�
is independent of xe. The optimal design for estimating P�xe�/Q�xe� is invari-
ant under multiplication by a constant. Let xe→∞; then xq−pe P�xe�/Q�xe� →
θp/θp+q. The result follows immediately. 2

6. The Michaelis–Menten model.

6.1. The model and the D-optimal design. For many physical and biolog-
ical phenomena, saturation functions are often described by a rectangular
hyperbola. The Michaelis–Menten model

Y = θ1x

θ2 + x
+ ε; 0 ≤ x ≤ b ≤ ∞;(39)
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is frequently used to model the speed of enzyme kinetic reactions, where Y is
the reaction velocity, x the concentration of substrate, θ1 > 0 the maximum
velocity of the reaction and θ2 ≥ 0 the half-saturation constant, since the mean
response is half-maximal at θ2. Note that this model is not a special case of
model (6).

Currie (1982) concluded that the locally D-optimal design is obtained by
taking half the observations at the point θ2 and the other half as high as
possible, namely at b. We will see that this is only approximately true when
b is very large. Define

B̃ =
(
θ2 1
−θ1 0

)
; h̃ ≡ h̃�x� = 1

�θ2 + x�2
(
x

x2

)
:(40)

Then ∇f�x;u� = B̃h̃�x� and I�u; x� = ∇f∇ft = B̃h̃h̃tB̃t.

Theorem 10. Consider model (39).

(a) Assume that the marginal prior distribution of θ2 has one-half mass at
each of the points c and d. Among all two-point designs, the Bayesian optimal
design ξ puts equal weight on two points, x∗ and b, where

x∗ =
√
cd�b+ c��b+ d� − c

c+ d+ b :(41)

(b) The locally D-optimal design ξ∗ is the equally weighted two-point design
at �x∗; b�, where

x∗ = θ2b/�2θ2 + b�:(42)

Proof. Part (a) can be proved similarly to Proposition 1. For part (b), by
an argument similar to Theorem 5, we can show that the locally D-optimal
design is equally supported on two points. These two points can be found from
part (a) by letting c = d = θ2. 2

6.2. The locally ce-optimal design. Suppose that we want to extrapolate
the model to xe > b, that is, to estimate f�xe;u� = θ1xe/�θ2 + xe�. The design
criterion is

φe�ξyxe� = ∇f�xe;u�tM−1�u; ξ�∇f�xe;u�;

M�u; ξ� =
∫

X
I�u; x�ξ�dx�:

It is easy to see that

φe�ξyxe� = h̃t�xe�M−1
0 �θ2y ξ�h̃�xe�;

M−1
0 �θ2y ξ� =

∫
X

h̃�x�h̃t�x�ξ�dx�:
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Theorem 11. The ce-optimal design at xe is the two-point design at z∗ and
b with weights p∗ and 1− p∗, respectively, where

z∗ = �
√

2− 1�θ2
2 +
√

2θ2b

θ2
2 + 4θ2b+ 2b2

b;(43)

p∗ = b�xe − b��θ2 + z∗�2
b�xe − b��θ2 + z∗�2 + z∗�xe − z∗��θ2 + b�2

:(44)

Proof. This is similar to Theorem 8. 2

The following results give some comparisons for the two locally optimal
designs.

Proposition 2. For any given θ2, let x∗, z∗ and p∗ be given by (42), (43)
and (44), respectively. Then:

(a) lim
b→∞

x∗ = θ2y

(b) lim
b→∞

z∗ =
√

2
2
θ2y

(c) the lower locally D-optimal design point is always larger than the opti-
mal design point for extrapolation, that is, x∗ > z∗, for any b > 0;

(d) for fixed b > 0,

lim
xe↓b

p∗ = 0

and

lim
xe↑∞

p∗ = b
(√

2
2
+ 1

)2

θ2
2

/[
b

(√
2

2
+ 1

)2

θ2
2 +
√

2
2
θ2�θ2 + b�2

]
:

Proof. Parts (a) and (b) are obvious. For part (c), it is enough to check
that

��
√

2− 1�θ2 +
√

2b��b+ 2θ2� ≤ 2b2 + 4bθ2 + θ2
2:

Part (d) follows from part (a) and some algebra. 2

An example of the graph of the supporting points x∗ and z∗ is shown in
Figure 1. For the graph, we chose θ2 = 50. We see that both x∗ and z∗ are
monotonically increasing in b and satisfy z∗ < x∗ < θ2.
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Fig. 1. Comparison of lower supporting points x∗ = bθ2/�2θ2 + b� and z∗ = b��
√

2 − 1�θ2
2 +√

2θ2b�/�θ2
2 + 4θ2b+ 2b2� for fixed θ2 = 50.
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