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TRANSFORMATIONS OF THE EMPIRICAL MEASURE
AND KOLMOGOROV-SMIRNOV TESTS

By ALEJANDRA CABANA

Universitat de Barcelona

The power of Kolmogorov—Smirnov tests can be increased by trans-
forming the empirical process into a new process that converges to a
Wiener process under the null hypothesis and by choosing the transforma-
tion in such a way that some families of local alternatives become as
noticeable as possible.

1. Introduction. Given a random sample X, X,,..., X, having distri-
bution F we consider the design of sequences of tests, one for each sample

size, of the null hypothesis .%: F = F,, F, absolutely continuous, with the
following two main properties:

1. Consistency against any alternative, as in the classical Kolmogorov—
Smirnov test.

2. A good asymptotic power when the tests are applied to a given sequence of
contiguous alternatives converging to the null hypothesis.

In order to solve this problem, we introduce a large family of tests, indexed
by a functional parameter in L2[0, 1], all of them satisfying property 1, and
give a criterion to select a member of the family that provides good discrim-
ination of the alternatives [see also Cabana (1993); the adjustment of
Kolmogorov—Smirnov-type tests to certain local alternatives has also been
studied in Janssen and Milbrodt (1993) and Drees and Milbrodt (1994)].

Transform the original sample to U, = F'O(Xi), i=1,...,n, with distribu-
tion function F = F - F;'. We may consider, without loss of generality the
new problem of testing .Z,: F(u) = u.

The alternatives under consideration will be #: F"(u) = u +
(8/Vn)g,(u), where g, is a sequence of real functions that converges to a
limit g in the following sense:

(A) g, and g have derivatives g, and g such that [} (g,(s) — g(s)*ds —
0as n — o
B) g,/Vn - 0ae as n - .

In the terminology of Pfanzagl (1982), this family of alternatives converge to
the null hypothesis following a path with tangent vector g.
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Assumptions (A) and (B) imply that (dF™/du)"/? can be written as
1+ h,8/Vn , where h, converges in L*[0, 1] to some limit /4, and so Theorem
1 in Oosterhoff and van Zwet (1979) implies that the sequence of alternatives
(Z,) is contiguous to the uniform distribution in [0, 1].

Let us denote by F,(u) = (1/n)L}_; 1 ., the empirical distribution func-
tion constructed from the sample (where 1, is the indicator function of the
set C) and denote by b,(z) = Vn (F,(u) — u) the empirical process. It is well
known that under %, b, converges weakly in D[0, 1] to the standard Brown-
ian bridge, a centered Gaussian process b characterized by E(b(u;)b(u,)) =
(uy A ug) — uqju,, and to b + g under 7Z,.

The stochastic integral

ds

¢ b(s)
L1

wb(t) = [ db(s) +
0

maps a standard Brownian bridge b into a standard Wiener process w = 7'b.
It was introduced to goodness-of-fit theory in Khmaladze (1981).
We can replace the preceding expression by its differential form:

dw(u) d( b(u) )

1
(1) 1—-u 1-u
Define the empirical martingale w, by means of the analogous equation

B [12)

It is not hard to show by direct computation that w, is actually a
square integrable Martingale and that it has the same increasing process
as the standard Wiener process w. Moreover, the weak limit in L?[0, 1] of
w, is w under.Z; and w + y under (%), where the drift y is given by y(u) =
(1 —s)d(g(s)/(1 — s)) [see Khmaladze (1981)].

2. A family of transformations of the empirical process. For each
measurable a: [0,1] - R, [} a®(s)ds =1, define V (u) = [ a®(s)ds and
introduce the sequence of processes

(3) w) =, = [ a(s) dw,(s).
0

If w is a standard Wiener process, the stochastic integral w's = Zw =
fo a(s) dw(s) is a V, Wiener process, a centered Gaussian process character-
ized by Ew"(u)w"(uy) = V,(u; A uy).

We will next show that w)« converges weakly in D[0, 1] (equipped with
Skorokhod’s topology) to w'« = Zw = [; a(s) dw(s) under %, and to Z,w +
Zy=w""+ [;a(s) dy(s) under (%) (Theorem 1). This allows the construc-
tion of a family of tests for the null hypothesis F(u) = u, consistent against
any fixed alternative F' = G, not uniform, by means of the rejection region

{supy - , < 1lw)*(w)| > const.}, as described in Section 3.
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Besides, if one is interested in detecting a specific family of contiguous
alternatives, a particular 4 can be chosen so that the resulting test based on
w)¢ is efficient, as will be seen in Section 3.2.

THEOREM 1. Given a € L?[0,1], () a®(s) ds = 1, define A(u) =
fe (a8l /(1 — s)) ds.

(i) (Weak convergence of w)e under #,.) When U,,...,U, are i.i.d. uni-
formly in [0, 1], Z,w, converges weakly in D[0,1] to a V,-Wiener process w"e.

(ii) (Consistency of the test against any fixed alternative.) When U, ..., U,
are i.i.d. with P{U, < u} = u + D(u), where D(0) = D(1) = 0, D not identi-
cally zero and V, is strictly increasing, [4 a*(s)d(s + D(s)) < and
I& A%(s) d(s + D(s)) < =, there exists u* € [0, 1] such that lim Ew)(u*)
= o and Var w)«(u*) < «, for every n.

(ii1) (Asymptotic behavior under contiguous alternatives.) Assume that: (a)
for each n, U, 1,U, o,...,U, , are independent variables distributed accord-
ing to F™ with density f™ such that f™(u) =1 + (8/Vn)g, (u), where g
and g, are functions on [0, 1] with derivatives g and g, satisfying g(0) = g(1)

=0, lim,_ . [l(g,(s) —g(s)?*ds =0 and (g,)?/Vn — 0 almost everywhere.

n—ow

If there exists a measure F* with density f* such that (b) for all n f™ < f*,
da*(s)df*(s) <= and [} A*(s)df* < », then ZLw, converges weakly in
DI0,1] to w" + &y,, where y,(u) = [ a(s)(1 — 5)d(g(s)/(1 — s)).

We state now some technical results to prepare the proof of Theorem 1.

LEMMA 1. When the function g:[0,1] - R has a square integrable deriva-
tive g and g(0) = g(1) = 0, then:

@) lim, ., (g(w))?/(1 —u)) = 0.

(i) (g(w)) /(1 — u) is square integrable.

LEMMA 2. Let U be a random variable with distribution function F™ and

I(x,y,U) = [a(U) - xU ]C_l(_S)S ds}l{qu) _ /xyf(_s)

— 3 ds 1(y<U)'

Then, under the assumptions of Theorem 1(iil), there exist absolutely continu-
ous finite measures pq, pg, on [0,1] and py on [0,1] X [0,1] such that for
x <y, [EI(x, y, U] < u,((x, y), EI?%(x, y,U)) < uy((x,y)) and for x <y <
z, E(I%(x, y, U)I*(y, 2,U)) < us((x, y) X (y, 2)) for every n.

The proofs of Lemmas 1 and 2 are given at the end of this section.
ProOF OF THEOREM 1. Part (i). Suppose first that a has an integrable

derivative. Since the sequence w, converges weakly to w in D[0, 1] [as a
consequence of (iii) with a(s) = 1, 0 < s < 1], there exist copies of w, and w
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with sup ., .3 lw, () — w(w)l > 0 a.s. as n — ». With these strongly con-
vergent copies an integration by parts gives

sup |Zw,(u) —Zw(uw)l <2 sup la(u)l sup |w,(u) —w(u)l - 0.
{0<u<1} {0<u<1} {0<u<1}

For general a, it suffices to show that, for any uniformly continuous
bounded functional ¥ in D[0, 1] with the Skorokhod distance p, EV.Zw, —
EVZw. Let M be a bound for [¥|.

Given an arbitrary & > 0, choose & such that p(x, y) < & implies |¥(x) —
W(y)| < £/4 and choose an L? approximation a, of a with integrable deriva-
tive, such that the difference A, = a — a, has L?*norm bounded by &Ve/4/M .

Then

BV(Zw,) - BY(Zw)
< EV(Zw,) - E¥Y(Zw) + [EV(Zw,) — E¥Y(Z w,)
+ [EV(Zw) — E\If(,?jlgw)l.
Because a, has an integrable derivative, the first term in the right-hand

side is smaller than ¢/4, for n sufficiently large.
From Doob’s inequality applied to the Martingale 4, w,, we get

7
and, therefore, E[V(Zw,) — ¥(Z, w,)| is bounded by &/4 + 2Me/16 M =
3e/8.

The same argument applied to the Martingale %, w leads to the estimate
EW(Zw) - ¥(Z w)| < 3&/8.

Joining the previous results, the inequality [EV(Zw,) — E¥(Zw)| < ¢
follows for n sufficiently large, and this proves (1).

Part (iii). Suppose now that the assumptions in (iii) hold and u < 1. Write

bn(S))

1 2 1 1 9 &
Oz,lizlflggwn(u)‘ > 6} < yE(,‘ZAwn(l)) = ﬁfo A%(s)ds < 1607

wl(u) =Zw,(u) = [“a(s)(1 - 9) d( e

& unU; a(s) 8).

1 —_—
-—% (a(Ui)lw,.m - [T

i=1

The convergence of the finite-dimensional distributions of w,« follows from
the central limit theorem, after establishing

(4) ’}EI}OEWX"(U) = va(®)
and
(5) lim Var wy«(u) = V,(u).

n—w
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Compute
Ew,*(u)

=\/E[/; (a(s —/ 1= dr)f(”)(s)d —fou f(_s)s ds P{u < U}[,

where U has probability density f. This expectation becomes 0 when [
is replaced by the constant 1; hence, since £ =1 + 8(g,/ Vn), then

gn( ))

Ew'(u) = 5/ a(s)(1—s)d

u . w o &(s)
-5f0 a(s)gn(s)ds+6f0 d

The first term converges to 8 [ a(s)g(s) ds, because g, converges to g in
L*[0,1]. Since g,(u) — g(w), &/[{ als)g,(s)/(1 —s))ds — 8[¢ als)Ng(s)/
(1 — s)) ds. This proves (4).

As for (5), compute

v a(s) u a(s)
o 1_sds)1(U<u}_ o Ed81{u<U)

Var w)(u) = Var[(a(U) -

- (a(s)_ e )f(”)(S)ds

0

1-
( ua(s) ) u<U}——E2 Ve(u).
0

Since

u s a(r) z «
j;)(a(s)—fol_rdr)f(s)ds<oo,
the dominated convergence theorem implies
. )\ o u sa(r) \*
ilflfo (a(s)—fl f (s)ds_[ a(s) = [ T dr| ds.

On the other hand, lim, ,, P{u < U} = 1 — u. Use finally that (4) implies
lim, . (E?wY«(x)/n) = 0 and conclude

n—ow 1—-r

lim Var () = fou(a(s) - OS a(r) dr) ds + ([0 f(_s)s ds) (1-u).

It is easily verified by differentiation that this last expression is V, (u). The
case u = 1 is simpler, because w,(1) reduces to

ﬁé(a(Ui) - OU" f(_s)s ds).
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A minor modification of the moments criterion in Theorem 15.6 of Billings-
ley (1967) implies the tightness of w,<, provided there exists an absolutely
continuous finite measure p on [0, 1] X [0, 1] such that for u; < u < u,, the
inequality

E((w)(u) — wle(u,)) (wl(us) — wie(u))’)

< ,u((ul,ug) X (uy,uy))

(6)

holds.

The increment w)«(y) — w'«(x) is (1/Vn )X, I(x, y,U,) [the notation
I(x,y,U) is introduced in Lemma 2]. Let Y, = I(uy,u,U,) and Z, =
I(u, u,,U), so that w)«(u) —wY«(u,) =0/Vn)Lr_, Y, and w)(uy) —
w/(w) =1/ Vn) X, Z,.

In order to establish (6), compute
v, v, 20V, v, 2
E((w)e(w) — wle(u,)) (w¥(us) — wle(w))’)

1
™ - B T vvzaz,
n i gk,

< E(Y?)E(Z}) + 2(B(Y,Z,))" + E(Y/Z})

and apply the inequalities in Lemma 2 to get w((uq,u,) X (uy,u,)) =
3 mouy, u)? + wa((uy, uy) X (uy, uy)). This ends the proof of (iii).
Part (ii). From w)«(w) = [¥ a(s)(1 — ) d((b,(s)/(1 —5))) and Eb (u) =
Vn D(u), we get
u D(S)
(8) Ew)(u) =\/E[O a(s)(l—s)d(:).

Let us also denote by D the signed measure with distribution function D
and denote by |D| its total variation.

The expectation (8) is zero for all u, if and only if |D|({s: a(s) # 0}) = 0.
Observe that if C is any subset of (0, 1) with Lebesgue measure A(C) = 1 and
D(C°) # 0, then D(C°®) is necessarily positive and hence, D(C) is negative
and so the total variation |[D|(C) must be different from 0.

Under the assumption that V, is strictly increasing, {s: a(s) # 0} has
Lebesgue measure 1, so that |D|({s: a(s) # 0}) # 0 and therefore there exists
a u* such that Ew)«(u*) > « a.s.

Observe now that the variance of w, «(v) is

v a(s)

Var(a(U) - fo

u a(s)
Aty [ 2

ds lu<wyls

-8 1-—s

with P{U < u} = u + D(u), so it is independent of n.
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In order to show that it is finite, bound the second-order moment

E(w)(u))’ < 2[0” (a(s) - fo f(_r)
u als)
J

0 1-—s

d(s + D(s))

+ 2

ds)2P{u < U}.

The first term is finite because @ and A are in L2([0,1], A + D). The
remaining term is bounded by /& [ (la(s)| /(1 — )(la(r)| /(1 — r))[}, , d(¢ +
D(t))dsdr = [§ A%(¢) d(¢ + D(t)) < . This ends the proof of the theorem. O

ProOF OF LEMMA 1. Part (i) follows from g2(u) = (—[! g(s)ds)* < (1 —
w)f, (g(s))?* ds.

In order to prove (ii), define, for 0 < u < 1, K(u) = [*(g2%(s)/(1 — 5)?) ds.
This is an increasing function of u; therefore, it has a limit, finite or infinite,
when u — 1.

An integration by parts leads to

K()_g() 0 g() é(s) ds:
_ o 1
hence
2
g (u)
K? 2 + 4|[gll: K .
(u) = ((1_u) léllK (u)
Taking limits for u — 1, it follows that lim, ,; K(u) < «. O

PrOOF OoF LEMMA 2.

El(x,y,U) = fy(a(s) - fs%dr)ﬂn)(s) ds

hence,

EI(x,y,U)l </ a®(s)f*(s) ds + /yAZ(s)f*(s)ds

y Ia(S)I

+P{y<U}f ds.

Observe that

U}/y| (=)l ds<f £ (t)dtfy| ) e = i |a( )lf £4(¢) dtds.
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This is a measure as a function of the interval (x, y), and it is finite because

1 Ia( )|

0

[ f*(t) dtds = flA(t)f*(t)dt < o,
Then,

yl()l

wal(x,9)) = [ (a*(s) + A%(9)) () ds + [* 5 [1f7(0) deds.

In order to obtain a bound for the second-order moment of I(x, y, U), write
I’(x,y,U) < 3a2(U)1(x<Usy) + 3A2(U)1(x<Usy}

+3(A(y) — A(x))"1, -y,

and
9 y la(s)l
P{y <U}(A(y) — A(x)) Sf;f*(t)dtfx 2(A(s) — A( 1(_)3ds
< 2fxyA(s) 'f(_s)sl f:f*(t) dt ds.
Joining these results, we obtain
Var I(x,y,U)
s3fxya2(s)f*(s)ds+3/;CyA2(s)f*(s) ds
+3(A(y) — A(x))*P{y < U}
la(s)l
<3[ (a®(s) + A%(s))f*(s) ds +6[ As) 7 als )ff(t)dtd

Each term in the right-hand side of this inequality is a finite measure as a
function of the interval (x, y). For the first two, it is immediate from the
assumptions on a and A. As for the third, it follows from the estimate

la(s)l |()|dsd

fA(s) /f (t)dtds—f f* (t)/ A(s)

t|()|dsd

= [[rman [ 5

=f £*(t) A2(t) dt < .
0
Suppose now that x <y < z. Since

v a(s)

x 1—s

2
Iz(x,y,U)Iz(y,z,U)=( ds) I*(y,2,U0),
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then

EI?%(x,y,U)I*(y,z,U)
< (A(y) — A(x))?

x 3/;(a2(s) + A2(s5))f*(s) ds + 3(A(2) — A(y))*P{z < U}|.

The expression (A(y) — A(x))* 7 a*(s)f*(s) ds is bounded by the product of
the finite measure [ a a(s)f*(s) ds times (A(y) — A(x))? /5 f*(s) ds, which is
bounded by

2 1 y la(s)l 1
(A(y) — A(x)) fyf*(s)dss2fx A(s)l(_)sfs f*(t) dtds,

that is finite as was seen before. Thus, (A(y) — A(x))? N a’(s)f*(s)ds is
bounded by an absolutely continuous finite measure computed on (x, y) X

(y, 2).
A similar argument is used to bound

(A(y) —A(x))zfyzAZ(s)f*(s) ds
la ( s)l

<2/ At(s)f* (s)ds/ A(s) 7 [ £*(t) dtds.

Finally, observe that (A(y) — A(x))?(A(z) — A(y))?P{z < U} is bounded
by

Ia( )l |a(8)|

4[ A(r) 7 fA( ) f (2 dtdsdr.

This is an absolutely continuous measure as a function of the Cartesian
product (x, y) X (y, z). In order to show that it is finite, compute

la ()l la(s)l

f fr(t) dedsdr
la(r)l la(s)l

[Av) fm>

dsd

—/fuMA() [ A(s) T

< fo A (1) F(t) dt < oo. O



TRANSFORMED K-S TESTS 2029

NOTE ADDED IN PROOF. The hypotheses in Theorem 1(iii) can be weakened.
In fact, (iii)(b) is not necessary: observe that the sequence F™ is contiguous
to the uniform distribution on [0, 1] [cf. Theorem 1 in Oosterhoff and van
Zwet (1979)] and A, = log(IT", f"(U,)/U.,), where the U;’s are i.i.d. uniform
in [0, 1], is asymptotically Gaussian. On the other hand, w)« is a sum of
independent random variables, each of them depending on one of the Us.
Then, the joint distribution of w'= and A, is asymptotically Gaussian.
Therefore, Le Cam’s third lemma [see Le Cam and Yang (1990), for instance]
implies that, when replacing U; by U, ; in w,« and A,,, their joint distribu-
tion is still asymptotically Gaussian. The second order moments of w,« do
not change, and the bias is given by £y = [, a(w) dy(w) = [; a(s)1 —
s)d(g(s)/1 —s).

3. Goodness-of-fit tests

3.1. The critical regions. Given a random sample X, X,,..., X, having
continuous distribution F, to test the null hypothesis #;: F = F, transform
the data by means of U, = F (X)), so that, under .%,, U;,U,,...,U, are i.i.d.
uniform on [0,1]. For each a € L?*[0,1] construct w)«(u) = [¥ a(s)1 —
s) d((b,(s)/(1 — s))), define K»* = supg.,.; wy«(u), K¢ =
Supy . , <1lw)«(w)| and use the critical regions {K* > ¢}} for a one-sided
test for .7, or {K¢ > ¢} for a two-sided test.

In view of Theorem 1(i), the tests with these critical regions have asymp-
totic level «, if ¢, and ¢, are the well-known solutions of P{sup,_, ., w(w)
> cy} = a and P{sup,_, _;lw(w)| > c,} = a, where w is a standard Wiener
process on[0, 1].

The test based on {K? > ¢,} is consistent under any alternative F(u) =
u + D(u), provided a and D satisfy the assumptions of Theorem 1(i).

Suppose now that one is specially interested in detecting a specific se-
quence of contiguous alternatives .7: F™(u) = u + (8/ Vn )g, (1), where F™
satisfies the assumptions of Theorem 1(Gii)(b).

For any a with |lallz2 = 1, the asymptotic distribution of w"+(1) (and hence
of K¢ and K»*) under %, is the same. If the assumptions in Theorem
13iii)(b) were satisfied, the asymptotic drift under the alternative would be 1y,
for each fixed a.

This suggests that one can look for an appropriate a for better discrimina-
tion of the alternatives of interest. As a heuristic criterion we propose to
choose a in order to maximize the asymptotic drift in the point of maximum
asymptotic variance, that is, to choose @ such that v,(1) = sup,. 4),.- 1) Ya(D-

We verify in Section 3.2 that, if Theorem 1(Gii)b) is satisfied for the
resulting @, then the tests based on K¢ and K% * have high asymptotic
efficiency, near optimal when the level and the power approach 0 and 1,
respectively.

Denote y == y; and observe that v,(1) is the inner product in L?[0, 1] of
alw) and y(u) = g(u) + (g(w)/(A — w)); therefore, the optimum choice of a
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under our heuristic criterion is
Y

9 4 = .
) e

Notice that with this choice of 4,

Ya(u) = fo“d(sms) ds = /0”|w||de2(s) ds = [19112Vy(u).

3.2. On the efficiency of the test. Assume that for a = @, the assumptions
in Theorem 1(iii)(b) hold. We shall compare now the efficiency of the modified
Kolmogorov—Smirnov test (MKST) and the likelihood ratio test (LRT) by
comparing their local asymptotic powers. We present in detail the case of the
one-sided test to simplify the exposition. The two-sided case is similar.

Instead of comparing directly the MKST with the LRT, we compare both
with a simple test (ST) with critical region {wY#(1) > const.}. This ST is
closely related to the MKST, and asymptotically equivalent to the LRT:

In fact, the LRT is based on an asymptotically Gaussian test variable with
limit expectation and variance (E(§8),V,), such that the efficacy ((JE(5)/
98)|5-0)?V s Epgr = [d (8(w)? du = ||gl|72, under our assumptions on the
sequence g, [Capon (1965)].

Moreover, the test variable of the ST is asymptotically Gaussian, with
expectation §||yllz2 and variance 1. Hence the efficacy is

Egp = 1712 = /Ol(g(u) - f(_”i) du = |gll3: — /Old(%) = llgli3

[Lemma 1(i)]. Notice that y is obtained from g via the isometry that maps
g € L*[0,1] onto g(-) — [;(g(s)/(1 — s))ds. This isometry appears in Efron
and Johnston (1990) and Ritov and Wellner (1988) in the context of hazard
rates. See also Groneboom and Wellner (1992).

Let ® be the standard Gaussian distribution function and let ¢ be the
corresponding density.

The critical region for the ST with level « is {w (1) > —® '(a)} and its
asymptotic local power is 1 — Bgr(a, 8,4) = 1 — ®(S||yllL2 — & 1(a)).

The MKST with asymptotic level a has critical region {K%&* >
—® 1(a/2)}, by the reflexion principle, and its asymptotic power is

1 - Bygsr(a,8,d) = P{ sup wVﬁ(u) + Sllylleu > _q)_l(a/z)}
O<ux<l

(10) sus

- P{ sup w(z) + Sllyllz > —qu(a/z)},

0<z<1

where w is a standard Wiener process on [0, 1].
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This probability can be computed exactly [see, e.g., Karatzas and Shreve
(1991)]. Namely, if b denotes a standard Brownian bridge, with ¢ =
- (a/2),

1- BMKST(C\"’ 5,é)

- /ij{ sup w(z) + 8lllez > clw(l) = t}¢(t) dt

0<z<1

_ /075”7“1,21){ sup b(z) + (8llllz: + t)z > clw(1) = t}so(t) dt
—® 0<z<1
+1—®(c— 8yl
1) (¢ = 8llyllze)
- fC_BHVHLZP{for some z, b(z) > c¢ — (8llyllz2 + t)z}e(t) dt

— o0

+1—®(c—8llyle)
_ 10*3”7“L2exp(—2c(c — 8llyllz2)) () dt + 1 — ®(c — 8llyllz2)

= ®(—c — dllyllr2)exp(2¢éllyliz) + 1 — ®(c — 8ll7llz2).

In order to compare the performance of MKST and ST, we apply the ST to
samples of size [en] and the MKST to samples of size n, when the alternative
is F™. The value e for which both tests have the same local asymptotic
power 1 — B for equal level « is a measure of the local asymptotic relative
efficiency (LARE) and will depend, in general, on « and S.

The asymptotic distribution of the ST for the samples of size [en] is N(0, 1)
under %,, and N(&Ve|l¥llz2, 1) under the alternative.

Fix « and B (and assume them both smaller than 1/2). In order to attain
for both tests power 1 — 8 and level «, § and e must satisfy

(12) B=d(~d () - sVelyll:)
and
(13) B = Buksr(«,d,d)

Using (11), a numerical computation gives the values of e = e(a, B8) for
given a and B, eliminating & in (12) and (13).

Since K& > w"e, Byxsr(a, 8, 4) < Bgr(a/2, 8, 4); hence we can obtain a
bound for e as follows: From (12),

selyllz = —d ' (a) — @7 1(B).
From B = Byxsr(a, 8, 8) < Bgr(a/2,8,8) = P(—D (a/2) — sy,

8llyllz < =@~ (a/2) — @71(B).
Then

O (@) + @ '(B)
@7 (a/2) + 07(B)

and the right-hand term of this inequality can be chosen as near to 1 as
desired, for « and B sufficiently small.

e >
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By numerical computation it is readily verified that the lower bound is
very close to the actual values of e = e(a, B).

3.3. Some examples. Alternatives having changes in location or scale can
be written as %Z: F(¢t) = F"(t) and, consequently, 4 and the corresponding
test statistics can be derived easily for any specific null hypothesis.

Let us first study the change in location case, where the alternative
hypothesis is Z: F(t) = Fy(t — 6/ Vn).

From Fy(t — 8/ Vn) = Fy(t) — (8g,  F,(t)/ Vn), we obtain

(Fo(t)) ‘/;(F’(t) F’(t ° folt 98 0<6<1
Enl Lo :? 0 — Ly _W)):o(_f), )

n

and

folt = 0'(3/¥n)
fo(?)

where f, is the density function of the distribution F, and so g(Fy(¢)) = f,(¢)
and lim, _,, 8,(F,(£)) = fo(£) /().

We present some examples of change of location tests for symmetric
unimodal distributions, with decreasing nonvanishing density f~o on [0, + ),
and sectionally continuous derivative f(’) bounded by a constant C, nonde-
creasing on [ K, «) for some positive constant K.

These assumptions lead to

gn(ﬁo(t)) = , 0<0 <1,

W , forl|t| >K+ 8,
_—, for |t| < K + 8§,
fo()

that implies property (B) (Section 1). Moreover, the right-hand side is square
integrable provided

(14) [ Fay | o<

and in this case property (A) holds. ;
_ On the other hand, the measures with distribution functions F(¢) =
Fy(t — 6/ Vn) are dominated by the measure F* with density

Fot = 13]) ) 3

folt =181y, t> 8l
Fx(t) = 1 £,(0), lt] < 18],
fo(t +18), t< —s.
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With the change of variables u = Fy(t), g(u) = fo(Fy'(w)) = f,(x) and ac-
cording to (9), 4 has to be chosen proportional to

filw) | fo(w)

fo(u) 1-u

¥(uw) =

and satisfying [} 4%(s) ds = 1.

The remaining assumptions needed in order to apply the results in Section
2 [hypothes1s (iii)(b) of Theorem 1 concerning & and f* = (f*o 0’ 1y
foe F 1) are verified for each of the following examples separately].

ExaMpPLE 1. When F, is the logistic distribution, F,(t) =e’/(1 + e?),
fo(t) =e'/(1 +e)? g(w) =ull —uw), y(w) =g(u) + (g(u)/(l —uw)=1-u,
¥ = 1/3 and, hence, d(x) = V3 (1 — w).

The assumptions of Theorem 1 hold: f(’)(t) is negative for ¢ > 0 and
decreases in absolute value for # large enough. The integrand in (14) is
O(e ") for t > » and hence the integral is finite. Finally, since 4(x) and the
corresponding A(u) = V3u are bounded and f* is a finite measure, hypothe-
sis (iii)(b) of Theorem 1 is in force.

ExampPLE 2. Let F, be the standard Normal distribution, F,(¢) = ®(¢) =
[t o(s)ds, o(t) = (1/ V2m)e /2. Now (u) = (o(d~ 1(u))/(l - u) -
& 1(u) and

1411% = f;(% T q>1(u)) du

= [ e(t)
=f 1-d(t)

_/ (3 ( )
1-®(¢)
hence, 4(u) = y(w).

The function ¢'(¢) = —t¢(¢) is negative for ¢ > 0 and nondecreasing for
large ¢. From

2

() dt

+ fm t%(t) dt = 1;

(15) TR Y0 R LA A2 NP %?

t ¢?
the integrand in (14) is equivalent to ¢%p(¢) at ¢t = %, and hence (14) holds.
From (15), lim,_; d(u) = 0; hence f1/2 d*(s)f*(s) ds and
1,2 A*(s)f*(s)ds are finite. For u — 0, 4(u) is equivalent to —® () and
J2 (@ s f*(s) ds = [, th((t + |6|) 0) dt < . The ﬁmteness of
[o A*(s)f*(s) ds poses no additional problem, so the assumptions of Theorem
1 hold.
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-------------------- BeBalsn = me
M L poty

scale parameter §

Fic. 1. Estimated power of the tests based on K¢ and the standard KS test based on D,,. Level
a = 10%.

ExamPLE 3. Changes in scale are treated similarly: Write the alter-
native as Z: F(t) = F ot — (8/ Vn Xt — w) = Fy(t) — (8/Vn)g, ° F, (t), so
that g (F, (t)) =(t — ,u)fo(t —(65/Vn Xt — w) and consequently, g(F (1)

= (t — wiy(#) and

RN ())(F (w) = i) o Fo ' (w)(Fo ' (u) — p)
y(u) = i +

+1

ol(u)) 1-u ’

and proceed as before.

We present now a numerical example of the proposed goodness-of-fit test.
We have simulated samples of sizes n = 50 and n = 100 with laws F"(u) =
u + 8g(u), where g(u)=2u?—u for 0 <u<1/2, and g(u) = —2u% +
3u—1 for 1/2 <u <1, for different values of the scale parameter é.

= a A 0 Q S
S o o o <) -
scale parameter

Fic. 2. Estimated power of the tests based on K¢ and the standard KS test based on D,,. Level
a=5%.
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The optimum choice of the score function 4 [see (9)] is d(u) = V3 (2u — 2 +
1/Q —u))for 0 <u <1/2 and d4(u) = \/5(2 —2u)forl/2 <u<1.
The power of the tests based on K, and the standard Kolmogorov-

Smirnov test based on D (u) = sup,.,.,Vn (F,(u) — u) was calculated by
simulation (5000 replications). The behavior of these tests is summarized in
Figures 1 and 2.
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